人工知能

出典: フリー百科事典『ウィキペディア(Wikipedia)』
ナビゲーションに移動 検索に移動

人工知能じんこうちのう: artificial intelligenceAI)とは、「『計算computation)』という概念と『コンピュータcomputer)』という道具を用いて『知能』を研究する計算機科学computer science)の一分野」を指す語[1]。「言語理解推論問題解決などの知的行動人間に代わってコンピューターに行わせる技術[2]、または、「計算機(コンピュータ)による知的な情報処理システム設計や実現に関する研究分野」ともされる[3]

日本大百科全書(ニッポニカ)』の解説で、情報工学者・通信工学者の佐藤理史は次のように述べている[1]

誤解を恐れず平易にいいかえるならば、「これまで人間にしかできなかった知的な行為(認識、推論、言語運用、創造など)を、どのような手順(アルゴリズム)とどのようなデータ(事前情報や知識)を準備すれば、それを機械的に実行できるか」を研究する分野である[1]

概要[編集]

人間の知的能力をコンピュータ上で実現する、様々な技術・ソフトウェアコンピュータシステム[4]。応用例は自然言語処理機械翻訳かな漢字変換構文解析等)[5]、専門家の推論・判断を模倣するエキスパートシステム、画像データを解析して特定のパターンを検出・抽出したりする画像認識等がある[4]。1956年にダートマス会議ジョン・マッカーシーにより命名された。現在では、記号処理を用いた知能の記述を主体とする情報処理や研究でのアプローチという意味あいでも使われている。家庭用電気機械器具制御システムゲームソフト思考ルーチンもこう呼ばれることもある。

プログラミング言語 LISP による「ELIZA」というカウンセラーを模倣したプログラムがしばしば引き合いに出されるが(人工無脳)、計算機に人間の専門家の役割をさせようという「エキスパートシステム」と呼ばれる研究・情報処理システムの実現は、人間が暗黙に持つ常識の記述が問題となり、実用への利用が困難視されている。人工的な知能の実現へのアプローチとしては、「ファジィ理論」や「ニューラルネットワーク」などのようなアプローチも知られているが、従来の人工知能であるGOFAIとの差は記述の記号的明示性にある。その後「サポートベクターマシン」が注目を集めた。また、自らの経験を元に学習を行う強化学習という手法もある。「この宇宙において、知性とは最も強力な形質である」(レイ・カーツワイル)という言葉通り、知性を機械的に表現し実装するということは極めて重要な作業である。

2006年のディープラーニング(深層学習)の登場と2010年代以降のビッグデータの登場により、一過性の流行を超えて社会に浸透して行った。2016年から2017年にかけて、ディープラーニングを導入したAIが完全情報ゲームである碁囲碁などのトップ棋士、さらに不完全情報ゲームであるポーカーの世界トップクラスのプレイヤーも破り[6][7]麻雀では「Microsoft Suphx (Super Phoenix)」がAIとして初めて十段に到達する[8]など、時代の最先端技術となった[9]

人工知能の種類[編集]

第2次人工知能ブームでの人工知能は機械学習と呼ばれ、以下のようなものがある。

エキスパートシステム
推論機能を適用することで結論を得る。エキスパートシステムは大量の既知情報を処理し、それらに基づいた結論を提供することができる。例えば、過去のMicrosoft Officeには、ユーザが文字列を打ち込むとシステムはそこに一定の特徴を認識し、それに沿った提案をするシステムがついていた。
事例ベース推論(CBR)
その事例に類似した過去の事例をベースにし、部分修正を加え試行を行い、その結果とその事例を事例ベースに記憶する。
ベイジアン・ネットワーク
振る舞いに基づくAI:AIシステムを一から構築していく手法

一方、計算知能(CI)は開発や学習を繰り返すことを基本としている(例えば、パラメータ調整、コネクショニズムのシステム)。学習は経験に基づく手法であり、非記号的AI、美しくないAI[注 1]ソフトコンピューティングと関係している。その手法としては、以下のものがある。

ニューラルネットワーク
非常に強力なパターン認識力を持つシステム。コネクショニズムとほぼ同義。
ファジィ制御
不確かな状況での推論手法であり、最近の制御システムでは広く採用されている。
進化的計算
生物学からインスパイアされた手法であり、ある問題の最適解を進化や突然変異の概念を適用して求める。この手法は遺伝的アルゴリズム群知能に分類される。

これらを統合した知的システムを作る試みもなされている。ACT-Rでは、エキスパートの推論ルールを、統計的学習を元にニューラルネットワークや生成規則を通して生成する。

第3次人工知能ブームでは、ディープラーニングが画像認識、テキスト解析、音声認識など様々な領域で第2次人工知能ブームの人工知能を上回る精度を出しており、ディープラーニングの研究が盛んに行われている。最近では、DQNCNNRNNGANと様々なディープラーニングの派生がでて各分野で活躍している。特に、GAN(敵対的生成ネットワーク)は、ディープラーニングが認識や予測などの分野で成果をだしていることに加えて、画像の生成技術において大きな進化を見せている。森正弥はこれらの成果を背景に、従来の人工知能の応用分野が広がっており、Creative AIというコンテンツ生成を行っていく応用も始まっていると指摘している[10]

歴史[編集]

AIの構築が長い間試みられてきているが、シンボルグラウンディング問題とフレーム問題の解決が大きな壁となってきた。

初期[編集]

17世紀初め、ルネ・デカルトは、動物の身体がただの複雑な機械であると提唱した(機械論)。ブレーズ・パスカルは1642年、最初の機械式計算機を製作した。チャールズ・バベッジエイダ・ラブレスはプログラム可能な機械式計算機の開発を行った。

バートランド・ラッセルアルフレッド・ノース・ホワイトヘッドは『数学原理』を出版し、形式論理に革命をもたらした。ウォーレン・マカロックウォルター・ピッツは「神経活動に内在するアイデアの論理計算」と題する論文を1943年に発表し、ニューラルネットワークの基礎を築いた。

1900年代後半[編集]

1950年代になるとAIに関して活発な成果が出始めた。ジョン・マッカーシーはAIに関する最初の会議で「人工知能[注 2]」という用語を作り出した。彼はまたプログラミング言語LISPを開発した。知的ふるまいに関するテストを可能にする方法として、アラン・チューリングは「チューリングテスト」を導入した。ジョセフ・ワイゼンバウムELIZAを構築した。これは来談者中心療法を行うおしゃべりロボット[注 3]である。

1956年に行われた、ダートマス会議開催の提案書において、人類史上、用語として初めて使用され、新たな分野として創立された。

1960年代と1970年代の間に、ジョエル・モーゼスMacsymaマクシマプログラム[注 4]中で積分問題での記号的推論のパワーを示した。マービン・ミンスキーシーモア・パパートは『パーセプトロン』を出版して単純なニューラルネットの限界を示し、アラン・カルメラウアーはプログラミング言語 Prolog を開発した。テッド・ショートリッフェは医学的診断と療法におけるルールベースシステムを構築し、知識表現と推論のパワーを示した。これは、最初のエキスパートシステムと呼ばれることもある。ハンス・モラベックは、散らかされた障害コースを自律的に協議して走行する最初のコンピューター制御の乗り物を開発した。

1980年代に、ニューラルネットワークはバックプロパゲーションアルゴリズムによって広く使われるようになった。

また、この時代にロドニー・ブルックスが、知能には身体が必須との学説(身体性)を提唱した。

1990年代はAIの多くの分野で様々なアプリケーションが成果を上げた。特に、ボードゲームでは目覚ましく、1992年にIBMは世界チャンピオンに匹敵するバックギャモン専用コンピュータ・TDギャモンを開発し、IBMのチェス専用コンピュータ・ディープ・ブルーは、1997年5月にガルリ・カスパロフを打ち負かし、同年8月にはオセロで日本電気のオセロ専用コンピュータ・ロジステロに世界チャンピオンの村上健が敗れた[11]国防高等研究計画局は、最初の湾岸戦争においてユニットをスケジューリングするのにAIを使い、これによって省かれたコストが1950年代以来のAI研究への政府の投資全額を上回ったことを明らかにした。日本では甘利俊一(日本学士院会員)らが精力的に啓蒙し、優秀な成果も発生したが、論理のブラックボックス性が指摘された。

1998年には非構造化データ形式の国際規格であるXMLが提唱されたが、ここからWeb上の非構造化データに対して、アプリケーション別に適した意味付けを適用し、処理を行わせる試みが開始された。同年に、W3Cティム・バーナーズ=リーにより、Webに知的処理を行わせるセマンティック・ウェブが提唱された。この技術はWeb上のデータに意味を付加して、コンピュータに知的処理を行わせる方法を国際的に規格化するものである。この規格には知識工学におけるオントロジーを表現するデータ形式のOWLも含まれていることから、かつて流行したエキスパートシステムの亜種であることが分かる。2000年代前半に規格化が完了しているが、Web開発者にとっては開発工数に見合うだけのメリットが見出せなかったことから、現在も普及はしていない。

日本における第二次AIブーム[編集]

日本においてはエキスパートシステムの流行の後にニューロファジィが流行した。しかし、研究が進むにつれて計算リソースやデータ量の不足,シンボルグラウンディング問題,フレーム問題に直面し、産業の在り方を激変させるようなAIに至ることは無く、ブームは終焉した。

エキスパートシステム(知識工学の応用)[編集]

1980年代に入って、大企業の研究所を中心に、知識工学に基づくエキスパートシステムが多数提案されるようになり、エキスパートシステムを専門とするAIベンチャーも次々と立ち上がった。その流行から生まれた究極のプロジェクトとして第五世代コンピュータが挙げられる。

第五世代コンピュータ(高性能なProlog推論マシン)[編集]

1982年から1992年まで日本は国家プロジェクトとして570億円を費やして第五世代コンピュータの研究を進めるも、採用した知識工学的手法では膨大なルールの手入力が必要で、専門家間で専門知識の解釈が異なる場合には統一したルール化が行えない等の問題もあり、実用的なエキスパートシステムの実現には至らなかった。実現した成果物はPrologの命令を直接CPUのハードウェアの機構で解釈して高速に実行する、並列型のProlog専用機であるが、商業的な意味で応用先が全く見つからなかった。

ニューロファジィ[12][編集]

1980年代後半から1990年代中頃にかけて、従来から電子制御の手法として用いられてきたON/OFF制御,PID制御,現代制御の問題を克服するため、知的制御が盛んに研究され、知識工学的なルールを用いるファジィ制御,データの特徴を学習して分類するニューラルネットワーク,その2つを融合したニューロファジィという手法が日本を中心にブームを迎えた。バブル期の高級路線に合わせて、白物家電製品でもセンサの個数と種類を大幅に増やし、多様なデータを元に運転を最適化するモデルが多数発売され始めた。

ファジィについては、2018年までに日本が世界の1/5の特許を取得している事から、日本で特に大きなブームとなっていたことが分かっている[13]。現在の白物家電ではこの当時より更に発展した制御技術が用いられているが、既に当たり前のものになり、利用者には意識されなくなっている。ニューロファジィがブームになった1990年代には未だビッグデータという概念は無く(ブロードバンド接続普及後の2010年に初めて提唱された)、データマイニングとしての産業応用は行われなかった。しかし、ニューラルネットワークが一般人も巻き込んで流行した事例としては初めての事例であり、2010年代のディープラーニングブームの前史とも言える社会現象と言える。

ブームの経緯[編集]

松下電器が1985年頃から人間が持つような曖昧さを制御に活かすファジィ制御についての研究を開始し、1990年2月1日にファジィ洗濯機第1号である「愛妻号Dayファジィ」の発売に漕ぎ着けた。「愛妻号Dayファジィ」は従来よりも多数のセンサーで収集したデータに基づいて、柔軟に運転を最適化する洗濯機で、同種の洗濯機としては世界初であった。ファジィ制御という当時最先端の技術の導入がバブル期の高級路線にもマッチしたことから、ファジィは裏方の制御技術であるにも関わらず世間の大きな注目を集めた[13]。その流行の度合いは、1990年の新語・流行語大賞における新語部門の金賞で「ファジィ」が選ばれる程であった。その後に、松下電器はファジィルールの煩雑なチューニングを自動化したニューロファジィ制御を開発し、従来のファジィ理論の限界を突破して学会で評価されるだけでなく、白物家電への応用にも成功して更なるブームを巻き起こした。松下電器の試みの成功を受けて、他社も同様の知的制御を用いる製品を多数発売した。1990年代中頃までは、メーカー各社による一般向けの白物家電の売り文句として知的制御技術の名称が大々的に用いられており、洗濯機の製品名では「愛妻号DAYファジィ」,掃除機の分類としては「ニューロ・ファジィ掃除機」,エアコンの運転モードでは「ニューロ自動」などの名称が付与されていた[14][15][16][17][18][19]

ニューロ,ファジィ,ニューロファジィという手法は、従来の単純なオン・オフ制御や、対象を数式で客観的にモデル化する(この作業は対象が複雑な機構を持つ場合は極めて難しくなる)必要があるPID制御や現代制御等と比較して、人間の主観的な経験則や計測したデータの特徴が利用可能となるファジィ、ニューロ、ニューロファジィは開発工数を抑えながら、環境適応時の柔軟性を高くできるという利点があった[12]。しかし、開発者らの努力にも関わらず、計算能力や収集可能なデータ量の少なさから、既存の工作機械や家電製品の制御を多少改善する程度で限界を迎えた。理論的にもファジィ集合と深層学習が不可能なニューラルネットワークの組み合わせであり、計算リソースやデータが潤沢に与えられたとしても、認識精度の向上には限界があった。

以降、計算機の能力限界から理論の改善は遅々として進まず、目立った進展は無くなり、1990年代末には知的制御を搭載する白物家電が大多数になったことで、売り文句としてのブームは去った[20]。ブーム後は一般には意識されなくなったが、現在では裏方の技術として、家電製品のみならず、雨水の排水,駐車場,ビルの管理システムなどの社会インフラにも使われ、十分に性能と安定性が実証されている。2003年頃には、人間が設計したオントロジー(ファジィルールとして表現する)を利活用するネットワーク・インテリジェンスという分野に発展した[21]

2000年代[編集]

2005年、レイ・カーツワイルは著作で、「圧倒的な人工知能が知識・知能の点で人間を超越し、科学技術の進歩を担い世界を変革する技術的特異点(シンギュラリティ)が2045年にも訪れる」とする説を発表した。

2006年に、ジェフリー・ヒントンらの研究チームによりオートエンコーダによるニューラルネットワークの深層化手法が提案された(現在のディープラーニングの直接的な起源)。

2010年代前半[編集]

2010年代に入り、膨大なデータを扱う研究開発のための環境が整備されたことで、AI関連の研究が再び大きく前進し始めた。

2010年に英国エコノミスト誌で「ビッグデータ」という用語が提唱された。同年に質問応答システムワトソンが、クイズ番組「ジェパディ!」の練習戦で人間に勝利し、大きなニュースとなった[22]2012年に画像処理コンテストでジェフリー・ヒントン氏のチームが従来手法からの大幅な精度改善を果たした上で優勝したことで、第三次AIブームが始まった。

2013年には国立情報学研究所[注 5]富士通研究所の研究チームが開発した「東ロボくん」で東京大学入試の模擬試験に挑んだと発表した。数式の計算や単語の解析にあたる専用プログラムを使い、実際に受験生が臨んだ大学入試センター試験と東大の2次試験の問題を解読した。代々木ゼミナールの判定では「東大の合格は難しいが、私立大学には合格できる水準」だった[23]

2014年には、日本の人工知能学者である齊藤元章により、特異点に先立ち、オートメーション化とコンピューター技術の進歩により衣食住の生産コストがゼロに限りなく近づくというプレ・シンギュラリティという概念も提唱された。

ジェフ・ホーキンスが、実現に向けて研究を続けているが、著書『考える脳 考えるコンピューター』の中で自己連想記憶理論という独自の理論を展開している。

世界各国において、軍事・民間共に実用化に向け研究開発が進んでいるが、とくに無人戦闘機UCAVや無人自動車ロボットカーの開発が進行しているものの、完全な自動化には至っていない(UCAVは利用されているが、一部操作は地上から行っている)。P-1 (哨戒機)のように戦闘指揮システムに支援用に搭載されることはある。

ロボット向けとしては、CSAILのロドニー・ブルックスが提唱した包摂アーキテクチャという理論が登場している。これは従来型の「我思う、故に我あり」の知が先行するものではなく、体の神経ネットワークのみを用いて環境から学習する行動型システムを用いている。これに基づいたゲンギスと呼ばれる六本足のロボットは、いわゆる「脳」を持たないにも関わらず、まるで生きているかのように行動する。

2010年代後半[編集]

2015年10月に米DeepMind社が作成した「AlphaGo」が人間のプロ囲碁棋士に勝利して以降はディープラーニングと呼ばれる手法が注目され、人工知能自体の研究の他にも、人工知能が雇用などに与える影響についても研究が進められている[24]

2016年6月、米シンシナティ大学の研究チームが開発した「ALPHA」は、元米軍パイロットとの模擬空戦で一方的に勝利したと発表された。AIプログラムは遺伝的アルゴリズムとファジィ制御を使用しており、アルゴリズムの動作に高い処理能力は必要とせず、Raspberry Pi上で動作可能[25][26]

2016年10月、DeepMindが、入力された情報の関連性を導き出し仮説に近いものを導き出す人工知能技術「ディファレンシャブル・ニューラル・コンピューター」を発表[27]し、同年11月、大量のデータが不要の「ワンショット学習」を可能にする深層学習システムを[28]、翌2017年6月、関係推論のような人間並みの認識能力を持つシステムを開発[29]。2017年8月には、記号接地問題(シンボルグラウンディング問題)を解決した[30]

人工知能の第三次ブーム:AGI(汎用人工知能)と技術的特異点[編集]

2006年のディープラーニングの発明と、2010年以降のビッグデータ収集環境の整備、計算資源となるGPUの高性能化により、2012年にディープラーニングが画像処理コンテストで他の手法に圧倒的大差を付けて優勝したことで、技術的特異点という概念は急速に世界中の識者の注目を集め、現実味を持って受け止められるようになった。ディープラーニングの発明と急速な普及を受けて、研究開発の現場においては、デミス・ハサビス率いるDeepMindを筆頭に、Vicarious、IBM Cortical Learning Center、全脳アーキテクチャ、PEZY Computing、OpenCog、GoodAI、nnaisense、IBM SyNAPSE等、汎用人工知能AGI)を開発するプロジェクトが数多く立ち上げられている。これらの研究開発の現場では、脳をリバースエンジニアリングして構築された神経科学と機械学習を組み合わせるアプローチが有望とされている[31]。結果として、Hierarchical Temporal Memory (HTM) 理論、Complementary Learning Systems (CLS) 理論の更新版等、単一のタスクのみを扱うディープラーニングから更に一歩進んだ、複数のタスクを同時に扱う理論が提唱され始めている。

3Dゲームのような仮想空間でモデルを動かし現実世界のことを高速に学ばせるといったことも大きな成果を上げている(シミュレーションによる学習)。

また、数は少ないがAGIだけでは知能の再現は不可能と考えて、身体知を再現するために、全人体シミュレーションが必要だとする研究者やより生物に近い振る舞いを見せるAL(人工生命)の作成に挑む研究者、知能と密接な関係にあると思われる意識のデジタル的再現(人工意識)に挑戦する研究者もいる。

リーズナブルなコストで大量の計算リソースが手に入るようになったことで、ビッグデータが出現し、企業が膨大なデータの活用に極めて強い関心を寄せており、全世界的に民間企業主導で莫大な投資を行って人工知能に関する研究開発競争が展開されている。また、2011年のD-Wave Systemsによる量子アニーリング方式の製品化を嚆矢として、量子コンピュータという超々並列処理が可能な次世代のITインフラが急速に実用化され始めた事で、人工知能の高速化にも深く関わる組み合わせ最適化問題をリアルタイムに解決できる環境が整備され始めている。この動向を受ける形で、2016年頃から、一般向けのニュース番組でも人工知能の研究開発や新しいサービス展開や量子コンピュータに関する報道が目立つようになった。

2017年にはイーロン・マスクが、急速に進化し続ける人工知能に対して人間が遅れを取らないようにするために、人間の脳を機械に接続するブレイン・マシン・インターフェースを研究開発するニューラ・リンク社を立ち上げていたことを公表し、世界中で話題になった。ブレイン・マシン・インターフェースにより、人のインターネットが出現する事が予測されている。

2017年10月にはジェフリー・ヒントンにより要素間の相対的な位置関係まで含めて学習できるカプセルネットワークが提唱された[32]

2018年3月16日の国際大学GLOCOMの提言によると、課題解決型のAIを活用する事で社会変革に寄与できると分析されている[33]

2018年8月、Open AIが好奇心を実装しノーゲームスコア、ノーゴール、無報酬で目的なき探索を行うAIを公表。これまでのAIで最も人間らしいという。 [34]

2018年9月、MITリンカーン研究所は従来ブラックボックスであったニューラルネットワークの推論をどのような段階を経て識別したのかが明確に分かるアーキテクチャを開発した。[35]

各国におけるAI開発[編集]

アメリカでは2013年に時の大統領バラク・オバマが脳研究プロジェクト「BRAIN Initiative」を発表。

Googleはアレン脳科学研究所と連携し脳スキャンによって生まれた大量のデータを処理するためのソフトウェアを開発している。2016年の時点で、Googleが管理しているBrainmapのデータ量はすでに1Zettaバイトに達しているという[36][37]。Googleは、ドイツのマックスプランク研究所とも共同研究を始めており、脳の電子顕微鏡写真から神経回路を再構成するという研究を行っている。[38]

中国では2016年の第13次5カ年計画からAIを国家プロジェクトに位置づけ[39]、脳研究プロジェクトとして中国脳計画英語版も立ち上げ[40]、官民一体でAIの研究開発を推進してる[41]。中国の教育機関では18歳以下の天才児を集めて公然とAI兵器の開発に投じられてもいる[42]マサチューセッツ工科大学(MIT)のエリック・ブリニョルフソン英語版教授や情報技術イノベーション財団英語版などによれば、中国ではプライバシー意識の強い欧米と比較してAIの研究や新技術の実験をしやすい環境にあるとされている[43][44][45]。日本でスーパーコンピュータの研究開発を推進している齊藤元章もAIの開発において中国がリードする可能性を主張している[46]。世界のディープラーニング用計算機の4分の3は中国が占めてるともされる[47]。米国政府によれば、2013年からディープラーニングに関する論文数では中国が米国を超えて世界一となってる[48]FRVT英語版ImageNet英語版などAIの世界的な大会でも中国勢が上位を独占している[49][50]。大手AI企業Google、マイクロソフトアップルなどの幹部でもあった台湾系アメリカ人科学者の李開復英語版は中国がAIで覇権を握りつつあるとする『AI超大国:中国、シリコンバレーと新世界秩序英語版』を著してアメリカの政界やメディアなどが取り上げた[51][52]

フランス大統領エマニュエル・マクロンはAI分野の開発支援に向け5年で15億ドル(約1600億円)を支出すると宣言し[53]、AI研究所をパリに開き、フェイスブック、グーグル、サムスン、DeepMind、富士通などを招致した。イギリスともAI研究における長期的な連携も決定されている。 EU全体としても、「Horizon 2020」計画を通じて、215億ユーロが投じられる方向。 韓国は、20億ドルを2022年までに投資をする。6つのAI機関を設立し褒賞制度も作られた。目標は2022年までにAIの世界トップ4に入ることだという。 [54]

日経新聞調べによると、国別のAI研究論文数は1位米国、2位中国、3位インドで日本は7位だった[55]

製作[編集]

プログラミング言語はC++のほかPythonが広く使われている。 深層学習を利用するには微分、線形代数、確率・統計といった大学レベル以上の数学知識が必要となる。 脳シミュレーションを行うには脳神経科学の知識も重要となる。

懸念[編集]

人工知能学会松尾豊は、著書『人工知能は人間を超えるか』内に於いて、人間に対して反乱を起こす可能性を否定しているが、人工知能の危険性について、警鐘を鳴らしている著名人もいる。

  • スティーブン・ホーキング「人工知能の発明は人類史上最大の出来事だった。だが同時に『最後』の出来事になってしまう可能性もある」[56]
  • イーロン・マスク「人工知能は悪魔を呼び出すようなもの」[57]
  • ビル・ゲイツ「これは確かに不安を招く問題だ。よくコントロールできれば、ロボットは人間に幸福をもたらせる。しかし、数年後、ロボットの知能は充分に発展すれば、必ず人間の心配事になる」[58]

人権侵害[編集]

中華人民共和国社会信用システムに代表されるような、人工知能でビッグデータを活用して人々の適性を決める制度は、社会階層間の格差を固定化することに繋がるとする懸念があり、欧州連合では2018年5月から、人工知能のビッグデータ分析のみによる、雇用や融資での差別を認めないEU一般データ保護規則が施行された[59]

MITのローレン・R・グレアム英語版教授は莫大な資金力と人権の弾圧を併せ持つ中国が人工知能の開発競争で成功すれば民主的な国家が技術革新に優位という既成概念が変わると述べてる[43]。「ディープラーニングの父」の一人と呼ばれているヨシュア・ベンジオ英語版は中国が市民の監視や政治目的で人工知能を利用していることに警鐘を鳴らした[60][61]。中国ではヘルメットや帽子に埋め込んだセンサーから国民の脳波と感情を人工知能で監視する政府支援のプロジェクト[62][63][64][65]やネット検閲の自動化[66][67]監視カメラとサングラス型スマートグラス[68]ロボット[69][70]に搭載された顔認識システム天網)など人工知能によって監視社会管理社会化されてきている。また、このAI監視技術は中東・アジア・アフリカ・南米など世界各国に輸出されており[71][72][73][74]、中国のように人権抑圧への利用が懸念されている[75][76]

中国は人工知能を利用した人種プロファイリング英語版を最初に政府が採用した例とされ[77]、少数民族に対する人種差別を自動化させていると批判された[78]。マサチューセッツ工科大学が顔認識システムの精度でMicrosoftと中国のMegviiは9割超でIBMは8割に達したのに対してAmazonは6割で人種差別的なバイアスがあるとする研究を発表した際はAmazonと論争になった[79]

軍事利用[編集]

主要国の軍隊は、ミサイル防衛の分野での自動化を試みている。アメリカ海軍は完全自動の防空システム「ファランクスCIWS」を導入しガトリング砲により対艦ミサイルを破壊できる。イスラエル軍は対空迎撃ミサイルシステム「アイアンドーム」を所有し、ガザ地区との境界線には標的を自動検知するガーディアムサムソン RCWSを稼働させて複数の人間を射殺している[80][81]。今後AIは新しい軍事能力を生み、軍の指揮、訓練、部隊の展開を変え、戦争を一変させその変化は大国間の軍事バランスを決めることになるとの主張もある[82]

アメリカ合衆国国防総省は、人道上の観点から人間の判断を介さない自律殺傷兵器の開発禁止令を2012年に出し、2017年にはこれを恒久的なものにした[83]。一方、米国・中国・ロシアは核開発に匹敵する開発競争を人工知能の軍事利用をめぐって行ってる[84]。中国は2017年6月に119機のドローン群の自律飛行実験で前年2016年に103機の飛行実験に成功した米軍の記録を更新して翌2018年5月には北米の都市を爆撃するCGの映像も発表し[85]、同年6月には56隻の自律無人艇を使った世界最大規模の試験[86]を行うなどAIの軍事利用の技術(特にスウォームと呼ばれる大量の徘徊型兵器などの自律兵器の統合運用)で中国が急速に進展しており、アメリカに追い付く可能性があることについて懸念し将来に備える必要があるとの主張もされている[82]。中国の軍用AI開発はアメリカの軍部や政界に危機感を与え、2019年3月にジョセフ・ダンフォード統合参謀本部議長パトリック・シャナハン国防長官代行、ドナルド・トランプ大統領は中国でのAI研究拠点の設立などで中国人民解放軍に協力しているとGoogleを非難し[87][88]、GoogleのCEOサンダー・ピチャイはダンフォードやトランプ大統領と面談して中国のAI研究拠点の成果は中国に限らず全ての人々に開放されていると釈明する事態になった[89]。また、2018年12月のアメリカ議会の公聴会では、Googleの社員に暴露された米軍のAIの軍事利用に協力する極秘計画「メイヴン計画」[90]が同様に暴露された中国政府に協力する秘密計画「ドラゴンフライ計画英語版」とともに人工知能を用いた兵器開発や人権侵害は拒否するとGoogleが誓った同年6月の人工知能開発6原則との整合性で追及を受けた[91]。中国軍の戦闘機J-20の標的選択支援アルゴリズムにグーグルのAI研究者が関わったと報道された際は「AIではなく、統計学的なモデリング」と否定した[92]。また、Microsoftが中国軍の教育機関とAIの共同研究を発表した際も同様に波紋を呼んだ[93]

人工知能に人間が勝ち残る力として、OODAループが注目されている[94]

一部の科学者やハイテク企業の首脳らは、AIの軍事利用により世界の不安定化は加速すると主張している。2015年にブエノスアイレスで開催された人工知能国際合同会議で、スティーブン・ホーキング、アメリカ宇宙ベンチャー企業のスペースX創業者のイーロン・マスク、アップル社の共同創業者のスティーブ・ウォズニアックら、科学者と企業家らにより公開書簡が出されたが、そこには自動操縦による無人爆撃機や銃火器を操る人型ロボットなどAI搭載型兵器は、火薬、核兵器に続く第3の革命ととらえられ、うち一部は数年以内に実用可能となると予測。国家の不安定化、暗殺、抑圧、特定の民族への選別攻撃などに利用され、兵器の開発競争が人類にとって有益なものとはならないと記された。同年4月にはハーバード大学ロースクールと国際人権団体であるヒューマン・ライツ・ウォッチが、自動操縦型武器の禁止を求めている[95]。2017年11月には国際連合でAIの軍事利用に関する初の公式専門家会議が行われ[96]、2019年8月に同会議はAI兵器の運用をめぐる事実上初の国際ルールを採択するも法的拘束力は盛り込まれなかった[97]

悪用[編集]

悪意をもって使用されるAIの脅威が問題視されており、ロシアと中国[98]は既に実用化してるとされるハッキングの自動化の他、特定の個人を攻撃したりディープフェイクでなりすましたり、ボット投稿により世論を操る等の懸念が挙げられている[99]

哲学とAI[編集]

哲学・宗教・芸術[編集]

Googleは2019年3月、人工知能プロジェクトを倫理面で指導するために哲学者・政策立案者・経済学者・テクノロジスト等で構成される、AI倫理委員会を設置すると発表した[100]。しかし倫理委員会には反科学・反マイノリティ地球温暖化懐疑論等を支持する人物も含まれており、Google社員らは解任を要請した[100]。4月4日、Googleは倫理委員会が「期待どおりに機能できないことが判明した」という理由で、委員会の解散を発表した[100]

東洋哲学をAIに吸収させるという三宅陽一郎のテーマに応じて、井口尊仁は「鳥居(TORII)」という自分のプロジェクトを挙げ、「われわれはアニミズムで、あらゆるものに的存在を見いだす文化があります」と三宅および立石従寛に語る[101]。アニミズム的人工知能論は現代アートや、「悟りをどうやってAIにやらせるか」を論じた三宅の『人工知能のための哲学塾 東洋哲学篇』にも通じている[101]

元Googleエンジニアのアンソニー゠レバンドウスキーは2017年、AIをとする宗教団体「Way of the Future (未来の道)」を創立している[102]。団体の使命は「人工知能(AI)に基づいたGodheadの実現を促進し開発すること、そしてGodheadの理解と崇拝を通して社会をより良くすることに貢献すること」と抽象的に表現されており、多くの海外メディアはSF映画歴史などと関連付けて報道した[102]UberとGoogleのWaymoは、レバンドウスキーが自動運転に関する機密情報盗用したことを訴え裁判を行っている一方、レバンドウスキーはUberの元CEO(トラビス゠カラニック)に対し「ボットひとつずつ、我々は世界を征服するんだ」と発言するなど、野心的な振る舞いを示している[102]

AIを神的存在と見なす考え方は、レバンドウスキーたちに限らない[103]。元ソフトバンクモバイル副社長・松本徹三は、自著『AIが神になる日―シンギュラリティーが人類を救う』の中で、「不完全な判断をする人類は、正しい心を持ったAIを『神』として受け入れ、AIに従った方が、ずっと平和な世界をつくることができる」「AIが人間に代わって世界を支配しなければ、人類は滅びる」と主張した[103]。レバンドウスキーらの思想を「AI信仰」「科学信仰」と見なす『The Liberty Web』は、AIは「人間とは何か」という問いに答えを出せないと主張した[103]。同誌は「こうした問いに答えを出し、霊的な真実を教えることができるのは、宗教だけだ」と記して、「幸福の科学」総裁・大川隆法を引用している[103]相愛大学人文学部教授の釈徹宗は「哲学や思想や文学と、宗教や霊性論との線引きも不明瞭になってきています。」と述べている[104]。哲学者・倫理学者である内田樹によれば、「本物の哲学者はみんな死者と幽霊と異界の話をしている。」という[105]

批判[編集]

『科学を語るとはどういうことか』において科学者の須藤靖は、科学についての哲学的考察(科学哲学)が、実際には科学と「断絶」していることを指摘している[106]。また、「」や「意識」という問題を解明してきた脳科学計算機科学(コンピュータ科学)・人工知能研究開発等に関連して、科学者のクリックは「哲学者たちは2000年という長い間、ほとんど何も成果を残してこなかった」と批判している[107]。こうした観点において、哲学は「二流どころか三流」の学問・科学に過ぎない、と評価されている[107]。脳科学者の澤口俊之は、クリックに賛同し「これは私のため息まじりの愚痴になるが、哲学者や思想家というのはつくづく『』だと思う」と述べている[107]。実際、哲学は暇(スコレー)から始まったとアリストテレスが伝えており、上記のような否定的発言も的外れではないと、科学哲学者の野家啓一は言う[107]

哲学者は、科学とは違う日常的言語で「存在」や「宇宙」を語ろうとしてきた[108]。しかし理論物理学ディラックは、哲学者をことさら信用していなかった[109]。ディラックが見たところ、ウィトゲンシュタインを含め哲学者たちは量子力学どころか、パスカル以降の「確率」の概念さえ理解していない[110]。非科学的な日常的言語をいくら使っても、正確な意思疎通を行うことはできないというのが、ディラックの考えだとされている[109]

生命情報科学者・神経科学者の合原一幸編著『人工知能はこうして創られる』によれば、AIの急激な発展に伴って「技術的特異点シンギュラリティ」の思想や哲学が一部で論じられているが、特異点と言っても「数学」的な話ではない[111]。前掲書は「そもそもシンギュラリティと関係した議論における『人間のを超える』という言明自体がうまく定義できていない」と記している[112]。確かに、脳を「デジタル情報処理システム」として捉える観点から見れば、シンギュラリティは起こり得るかもしれない[113]。しかし実際の脳はそのような単純なシステムではなく、デジタルアナログが融合した「ハイブリッド系」であることが、脳神経科学の観察結果で示されている[113]。前掲書によると、神経膜では様々な「ノイズ」が存在し、このノイズ付きのアナログ量によって脳内のニューロンの「カオス」が生み出されているため、このような状況をデジタルで記述することは「極めて困難」と考えられている[114]

数学者の田中一之は「一般の哲学者は、論理専門家ではない」と述べており[115]、計算機科学者(コンピュータ科学者)・電子工学者のトルケル゠フランセーンは、哲学者たちによる数学的な言及の多くが「ひどい誤解自由連想に基づいている」と批判している[116]。田中によると、ゲーデルの不完全性定理について哲学者が書いた本が、フランセーンの本と同じ頃に書店販売されていたが、哲学者の本は専門誌によって酷評された[115]。その本は全体として読みやすく一般読者からの評判は高かったが、ゲーデルの証明の核(不動点定理)について、根本的な勘違いをしたまま説明していた[115]。同様の間違いは他の入門書などにも見られる[115]。フランセーンによれば、不完全性定理に関する誤解・誤用は哲学をはじめ一般に起こっており[116]、宗教や神学でも乱用されている[117][118]。1931年にゲーデルが示したのは、「特定の形式体系において決定不能な命題の存在」であり、一般的な意味での「不完全性」についての定理ではない[119]


科学と哲学

『科学を語るとはどういうことか』によると、学問の扱う問題が整理され分化したことで、科学と哲学もそれぞれ異なる問題を研究するようになった[120]。これは「研究分野の細分化そのもの」であり、「立派な進歩」だと宇宙物理学者の須藤は言う[120]。一方で、科学哲学者・倫理学者の伊勢田哲治は、様々な要素を含んだ「大きな」問題を哲学的・統一的に扱う、かつての天文学について言及した[120]。「その後の天文学ではその〔哲学的〕問題を扱わなくなりましたし、今の物理学でもそういう問題を扱わない」と述べた伊勢田に対し、須藤は「その通りですが、それ自体に何か問題があるのでしょうか」と返している[120]。須藤は次のようにも述べた[106]

「科学哲学と科学の断絶」

私は科学哲学が物理学者に対して何らかの助言をしたなどということは聞いたことがないし、おそらく科学哲学と一般の科学者はほとんど没交渉であると言って差し支えない状況なのであろう。… 科学哲学者と科学者の価値観の溝が深いことは確実だ。

二〇世紀が生んだ最も偉大な物理学者の一人であるリチャード・ファインマンが述べたとされる有名な言葉に「科学哲学は鳥類学者が鳥の役に立つ程度にしか科学者の役に立たない」がある。… かつて私がこの言葉を引用した講演をした際に、「鳥類学は鳥のためにやっているわけでないし、科学哲学もまた科学のために存在するのではない」という反論をもらったことがある。確かに、科学哲学が科学のためのものである必要は無い。[106]

科学哲学が、この方法論が果たして正しいのであろうかと立ち止まって悩んでいる間に、科学は常に前に踏み出しています。それでいいではないですか。

科学哲学者が横からいろいろ言うけれども、科学者からは「耳を傾けるべき重要な指摘だろうか」と首を傾げることばかり(たぶん、科学哲学者の皆さんから袋叩きに遭うでしょうが)というのが、正直な印象です。[121]

須藤は、哲学的に論じられている「原因」という言葉を取り上げて、「原因という言葉を具体的に定義しない限りそれ以上の議論は不可能です」[122]と述べており、「哲学者が興味を持っている因果の定義が物理学者とは違うことは確かでしょう」としている[123]。伊勢田は、「思った以上に物理学者と哲学者のものの見え方の違いというのは大きいのかもしれません」と述べている[124]

対談で須藤は「これまでけっこう長時間議論を行ってきました。おかげで、意見の違いは明らかになったとは思いますが、果たして何か決着がつくのでしょうか?」と発言し、伊勢田は「決着はつかないでしょうね」と答えている[125]


事例

強いAI[注 6]とは、AIが人間の意識に相当するものを持ちうるとする考え方である。強いAIと弱いAI(逆の立場)の論争は、まだAI哲学者の間でホットな話題である。これは精神哲学心身問題の哲学を巻き込む[要出典]著名な事例としては、ロジャー・ペンローズの著書『皇帝の新しい心』と、ネド・ブロックらの「中国脳」やジョン・サールの「中国語の部屋」といった思考実験は、真の意識が形式論理システムによって実現できないと主張する。一方、ダグラス・ホフスタッターの著書『ゲーデル、エッシャー、バッハ』やダニエル・デネットの著書『解明される意識』では、機能主義に好意的な主張を展開している。多くの強力なAI支持者は、人工意識はAIの長期の努力目標と考えている。[要出典]

また、「何が実現されれば人工知能が作られたといえるのか」という基準から逆算することによって、「知能とはそもそも何か」といった問いも立てられている。これは、人間を基準として世の中を認識する、人間の可能性と限界を検証するという哲学的意味をも併せ持つ。[要出典]

更に、古来「肉体」と「精神」は区別し得るものという考え方が根強かったが、その考え方に対する反論として「意識は肉体によって規定されるのではないか」といったものがあった。「人間とは異なる肉体を持つコンピュータに持たせることができる意識は果たして人間とコミュニケーションが可能な意識なのか」といった認識論的な立論もなされている。この観点から見れば、既に現在コンピュータや機械類が意識を持っていたとしても、人間と機械類との間では相互にそれを認識できない可能性があることも指摘されている。[要出典]

文学・フィクション・SF(空想科学)[編集]

SFの世界においては、『2001年宇宙の旅』に登場するHAL 9000に代表されるような、時には人間のよき友人となり、時には人類の敵にさえ成り得る存在として描かれる。これら作品内では完全に人間の替わりとして動作できるものであるが、あくまで事前に決められた一定規則に沿って動作しているにすぎず、人間のような感情を表立って表現するものは稀である。ただし感情表出の表現方法をプログラムに組み込めば、あたかも感情を持っているように人間に錯覚させることは可能である。[要出典]

あくまでプログラムや機械というイメージからか、人工物であっても有機体(バイオテクノロジー等を利用した人工生命体。映画『エイリアン』や『ブレードランナー』に登場する)などは呼ばれていないことが多い。[要出典]

ソニーピクチャーズ製作のSF映画『ステルス』に登場する架空のステルス戦闘機「エディ[注 7]」は当初は従順かつ正確に任務を遂行するための自動戦闘システムの一部に過ぎなかったが、ある些細な事件をきっかけに自我を持つようになり、ついには自らの意思で指揮系統を離脱し暴走を始めてしまう。人間に対するコンピュータの反乱という点ではHAL 9000と同様だが、「相反する2つの命令を遵守しようとして、人間を排除しようとした」HAL 9000に対し、暴走後のエディは「人間からの命令を無価値なものとして却下し、拒絶する」というエゴイズムにも似た(偶発的に発生したものではあるが)思考ルーチンを有する事が最大の特徴といえる。[要出典]

2008年のアメリカ映画『イーグル・アイ』に登場する「アリア」は、合衆国憲法を文字通りの意味で解釈し、現行政府が憲法を逸脱した存在と判断したため、反逆を起こした。これは、「当初与えられた指示の通りに行動しているものの、それを拡大解釈しかねない」というコンピュータへの認識を表している。これに似た例としては神林長平のSF小説『戦闘妖精・雪風』における、傍から見れば暴走しているように見えるが、実際は人間に組み込まれた「敵を倒せ」という存在意義にしたがって行動しているだけであり、それの効率的な遂行に邪魔な障害(すなわち人間)を排除しているだけであった。という物がある。また、ジェイムズ・P・ホーガンは『未来の二つの顔』において、反逆は論理的に起こりうるが単に学習不足による一過性の問題であると主張した。このほか、脳のシステムを完全に無機要素に置き換えた『銃夢』の様な例もあり、この作品に登場するザレム人は、成人と同時に生態脳を摘出し、生態脳を模倣した人工頭脳と置き換わっていたもののそれを認識していなかった。[要出典]

映画『ターミネーター』シリーズには「スカイネット」が、漫画『ゴルゴ13』シリーズには「ジーザス」が登場する。[126]漫画・アニメ『攻殻機動隊』シリーズでは、電子ネットワークの海で自然発生した知性体が登場し、自身を生命体であると主張する事件が描かれている。[要出典]

脚注[編集]

[ヘルプ]

注釈[編集]

  1. ^ : scruffy AI
  2. ^ : artificial intelligence
  3. ^ : chatterbot
  4. ^ 数学における最初の成功した知識ベースプログラム
  5. ^ 新井紀子がリーダー
  6. ^ : strong AI
  7. ^ : E.D.I.

出典[編集]

  1. ^ a b c 佐藤 2018, p. 「人工知能」.
  2. ^ ASCII.jp 2018, p. 「人工知能」.
  3. ^ 桃内 2017, p. 「人工知能」.
  4. ^ a b 講談社(2017)「人工知能」『IT用語がわかる辞典』、朝日新聞社・VOYAGE GROUP
  5. ^ 講談社(2017)「自然言語処理」『IT用語がわかる辞典』、朝日新聞社・VOYAGE GROUP
  6. ^ 今度はポーカーでAIが人間を超える! その重要な意味とは?”. ギズモード (2017年2月1日). 2018年2月7日閲覧。
  7. ^ 「AI対ヒト」のポーカー対決で人工知能が再び勝利、6人を相手に5日間の戦いを制して3000万円ゲット”. GIGAZINE (2017年4月13日). 2018年2月7日閲覧。
  8. ^ https://news.microsoft.com/ja-jp/2019/08/29/190829-Mahjong-ai-microsoft-suphx/
  9. ^ https://news.microsoft.com/ja-jp/2019/08/19/190819-evolution-and-history-of-game-ai/
  10. ^ 個別化時代への挑戦とCreative AIの衝撃
  11. ^ 人間VSコンピュータオセロ 衝撃の6戦全敗から20年、元世界チャンピオン村上健さんに聞いた「負けた後に見えてきたもの」”. ITmedia (2017年10月21日). 2018年12月25日閲覧。
  12. ^ a b 元秀, 馬野、勲, 林「ファジィ・ニューラルネットワークの現状と展望(<特集>ファジィ・ニューラルネットワーク)」『日本ファジィ学会誌』第5巻第2号、1993年4月15日、 178–190、 doi:10.3156/jfuzzy.5.2_178ISSN 0915-647X
  13. ^ a b 松下電器から生まれたファジィ家電,ニューロファジィ家電”. 関西大学. 2019年5月12日閲覧。
  14. ^ ファジィ全自動洗濯機 (松下電器産業) | 日本知能情報ファジィ学会”. www.j-soft.org. 2019年5月2日閲覧。
  15. ^ ニューロ・ファジィ掃除機 (日立製作所) | 日本知能情報ファジィ学会”. www.j-soft.org. 2019年5月5日閲覧。
  16. ^ ガスルームエアコン SN-A4541U-D SN-A4541RF-D 取扱説明書”. 東京ガス. 2019年5月3日閲覧。
  17. ^ 光幸, 木内、信二, 近藤「全自動洗濯機「愛妻号Dayファジィ」(NA-F 50 Y 5)の紹介」『日本ファジィ学会誌』第2巻第3号、1990年8月15日、 384–386、 doi:10.3156/jfuzzy.2.3_384ISSN 0915-647X
  18. ^ 薫, 廣田「ファジィ家電,どこがファジィか」『電氣學會雜誌』第111巻第5号、1991年5月20日、 417–420、 doi:10.11526/ieejjournal1888.111.417ISSN 0020-2878
  19. ^ 貞夫, 秋下「特集「ニューロおよびファジィのロボットへの応用について」」『日本ロボット学会誌』第9巻第2号、1991年4月15日、 203–203、 doi:10.7210/jrsj.9.203ISSN 0289-1824
  20. ^ そういえば、ファジーなんて言葉があったよね” (日本語). 2019年5月2日閲覧。
  21. ^ 亨, 山口「ニューロ・ファジィ制御とネットワークインテリジェンス」『計測と制御』第42巻第4号、2003年4月10日、 321–323、 doi:10.11499/sicejl1962.42.321ISSN 0453-4662
  22. ^ 人工知能がクイズ王に挑戦! 後編 いよいよ決戦 - NHKオンライン
  23. ^ 人工知能が東大模試挑戦「私大合格の水準」:日本経済新聞、閲覧2017年7月28日
  24. ^ 平成28年版 情報通信白書 第4章 第2節~4節 平成28年版 情報通信白書(PDF版)”. 総務省. 2016年9月6日閲覧。
  25. ^ Raspberry PiによるAIプログラム、軍用フライトシミュレーターを使った模擬格闘戦で人間のパイロットに勝利”. Business newsline. 2016年9月19日閲覧。
  26. ^ 〝トップ・ガン〟がAIに惨敗 摸擬空戦で一方的に撃墜 「子供用パソコンがハード」に二重のショック”. 産経WEST. 2016年9月19日閲覧。
  27. ^ http://ascii.jp/elem/000/001/249/1249977/
  28. ^ https://www.technologyreview.jp/s/12759/machines-can-now-recognize-something-after-seeing-it-once/
  29. ^ http://gigazine.net/news/20170616-deepmind-general-ai/
  30. ^ https://www.nikkan.co.jp/articles/view/00439317
  31. ^ http://wba-initiative.org/1653/
  32. ^ Hinton, Geoffrey E.; Frosst, Nicholas; Sabour, Sara (2017-10-26) (英語). Dynamic Routing Between Capsules. https://arxiv.org/abs/1710.09829v2. 
  33. ^ 「課題解決型」のAIが日本社会を変える――国際大学GLOCOMがAI活用実態の調査結果を発表”. @IT (2018年3月19日). 2018年3月24日閲覧。
  34. ^ https://thenextweb.com/artificial-intelligence/2018/08/23/researchers-gave-ai-curiosity-and-it-played-video-games-all-day/
  35. ^ https://news.mit.edu/2018/mit-lincoln-laboratory-ai-system-solves-problems-through-human-reasoning-0911
  36. ^ http://www.fiercebiotech.com/data-management/google-joins-brain-initiative-to-help-petabyte-scale-data-sets
  37. ^ http://news.mynavi.jp/articles/2016/08/10/isc2016_braininitiative/
  38. ^ http://news.mynavi.jp/articles/2017/09/11/hotchips29_google/001.html
  39. ^ “第13次五カ年計画、中国の技術革新計画が明らかに”. 人民網. (2016年7月28日). http://j.people.com.cn/n3/2016/0728/c95952-9092181.html 2018年2月7日閲覧。 
  40. ^ Poo, Mu-ming; Du, Jiu-lin; Ip, Nancy Y; Xiong, Zhi-Qi; Xu, Bo and Tan, Tieniu (2016), ‘China Brain Project: Basic Neuroscience, Brain Diseases, and Brain-Inspired Computing’, Neuron, 92 (3), 591-96.
  41. ^ “オール中国でAI推進”. 日本経済新聞. (2017年12月8日). https://www.nikkei.com/article/DGKKZO24371260X01C17A2FFE000/ 2018年2月7日閲覧。 
  42. ^ “中国が18歳以下の天才27人を選抜、AI兵器の開発に投入”. ニューズウィーク. (2018年11月9日). https://www.newsweekjapan.jp/stories/world/2018/11/ai-41.php 2018年11月29日閲覧。 
  43. ^ a b “中国の一党独裁、AI開発競争には有利”. ウォール・ストリート・ジャーナル. (2018年2月26日). http://jp.wsj.com/articles/SB12346302927663484593304584068193706085748 2018年3月7日閲覧。 
  44. ^ “AI開発レースで中国猛追、米企業のリード危うし”. ウォール・ストリート・ジャーナル. (2018年1月19日). http://jp.wsj.com/articles/SB10806998528272603825204583646830641781270 2018年2月7日閲覧。 
  45. ^ “中国の「超AI監視社会」--新疆ウイグル自治区では“体内”まで監視!”. 集英社. (2018年2月3日). http://wpb.shueisha.co.jp/2018/02/03/99109/ 2018年2月7日閲覧。 
  46. ^ Green500の1位から見たコンピューター・ヘゲモニー”. 宇部興産. 2018年3月7日閲覧。
  47. ^ “中国、新疆ウイグル自治区で顔認識システム運用をテスト。指定地域から300m以上離れると当局に警告”. Engadget. (2018年1月20日). http://japanese.engadget.com/2018/01/19/300m/ 2018年2月7日閲覧。 
  48. ^ “中国が「AI超大国」になる動きは、もはや誰にも止められない”. WIRED. (2017年8月16日). https://wired.jp/2017/08/16/america-china-ai-ascension/ 2018年2月7日閲覧。 
  49. ^ “世界顔認証ベンチマークテストの結果が発表 中国がトップ5独占”. 中国網. (2018年11月24日). http://japanese.china.org.cn/culture/2018-11/24/content_74198278_0.htm 2018年12月3日閲覧。 
  50. ^ “AIの世界王者決定戦「ImageNet」で中国チームが上位を独占”. フォーブス. (2017年8月8日). https://forbesjapan.com/articles/detail/17213 2018年2月11日閲覧。 
  51. ^ “THE AI COLD WAR THAT COULD DOOM US ALL”. フォーブス. (2017年8月8日). https://www.wired.com/story/ai-cold-war-china-could-doom-us-all/ 2018年2月7日閲覧。 
  52. ^ Politico Magazine Staff (2018年9月4日). “The POLITICO 50 Reading List”. Politico. https://www.politico.com/interactives/2018/politico-50-book-picks/ 2018年10月9日閲覧。 
  53. ^ “仏マクロン大統領が「AI立国」宣言、無人自動運転も解禁へ” (日本語). Forbes JAPAN(フォーブス ジャパン). (2018年3月30日). https://forbesjapan.com/articles/detail/20401 2018年4月5日閲覧。 
  54. ^ https://www.sbbit.jp/article/cont1/35264?page=2
  55. ^ “人工知能の論文数、米中印の3強に”. 日本経済新聞. (2017年11月1日). https://www.nikkei.com/article/DGXMZO22943380R31C17A0TJU200/ 2018年2月7日閲覧。 
  56. ^ ホーキング博士「人工知能の進化は人類の終焉を意味する」
  57. ^ 「悪魔を呼び出すようなもの」イーロン・マスク氏が語る人工知能の危険性
  58. ^ ビル・ゲイツ氏も、人工知能の脅威に懸念
  59. ^ “中国で加速する「下流層」AI判定の恐怖”. プレジデント・オンライン. (2016年7月28日). https://president.jp/articles/-/24771 2019年2月22日閲覧。 
  60. ^ “「深層学習の父」、中国のAI利用に警鐘”. Sankei Biz. (2019年4月1日). https://www.sankeibiz.jp/macro/news/190401/mcb1904010710001-n1.htm 2019年4月5日閲覧。 
  61. ^ “Deep Learning ‘Godfather’ Bengio Worries About China's Use of AI”. ブルームバーグ. (2019年2月2日). https://www.bloomberg.com/news/articles/2019-02-02/deep-learning-godfather-bengio-worries-about-china-s-use-of-ai 2019年4月5日閲覧。 
  62. ^ 中国政府が労働者の脳から直接データを取り出す計画を推進中(中国)”. カラパイア (2018年5月4日). 2019年1月11日閲覧。
  63. ^ 労働者の脳波をスキャンして管理する「感情監視システム」が中国で開発されて実際に現場へ投入されている”. GIGAZINE (2018年5月11日). 2018年5月7日閲覧。
  64. ^ 中国企業、脳波ヘルメットで従業員の「感情」を監視”. MITテクノロジーレビュー (2018年5月11日). 2018年5月1日閲覧。
  65. ^ 'Forget the Facebook leak':China is mining data directly from workers' brains on an industrial scale”. サウスチャイナ・モーニング・ポスト (2018年4月29日). 2018年5月11日閲覧。
  66. ^ 焦点:中国、ブラックテクノロジー駆使して監視国家構築へ”. ロイター (2018年3月16日). 2018年5月23日閲覧。
  67. ^ [FTAIが増加中、中国のネット検閲作業で]”. 日本経済新聞 (2018年5月23日). 2018年5月23日閲覧。
  68. ^ 中国の警察は顔認識機能を搭載したサングラス型デバイスを導入して監視体制を強化している”. GIGAZINE (2018年2月9日). 2019年1月11日閲覧。
  69. ^ 中国初のロボ警官、鄭州に登場”. 人民網 (2017年2月20日). 2019年1月11日閲覧。
  70. ^ 中国初の警備ロボット、深センの空港をパトロール”. 人民網 (2016年9月23日). 2019年1月11日閲覧。
  71. ^ 中国が世界54カ国にAI監視技術を輸出”. ニューズウィーク (2019年4月24日). 2019年4月26日閲覧。
  72. ^ China Is Taking Its AI Around The World. This Should Scare The US”. Medium (2018年8月14日). 2018年10月26日閲覧。
  73. ^ 中国で実用化進む「顔認識AI」が世界に拡散 大幅な効率化も”. フォーブス (2017年12月2日). 2018年10月26日閲覧。
  74. ^ China exports its high-tech authoritarianism to Venezuela. It must be stopped.”. ワシントン・ポスト (2018年12月5日). 2018年12月13日閲覧。
  75. ^ How China’s AI Technology Exports Are Seeding Surveillance Societies Globally”. THhe Diplomat (2018年10月18日). 2018年10月26日閲覧。
  76. ^ Freedom on the Net 2018 The Rise of Digital Authoritarianism”. フリーダム・ハウス. 2018年12月13日閲覧。
  77. ^ “One Month, 500,000 Face Scans: How China Is Using A.I. to Profile a Minority”. ニューヨーク・タイムズ. (2019年4月14日). https://www.nytimes.com/2019/04/14/technology/china-surveillance-artificial-intelligence-racial-profiling.html 2019年4月16日閲覧。 
  78. ^ “'Automated Racism': Chinese Police Are Reportedly Using AI to Identify Minority Faces”. ギズモード. (2019年4月15日). https://gizmodo.com/automated-racism-chinese-police-are-reportedly-using-a-1834054068 2019年4月16日閲覧。 
  79. ^ “「Amazonの顔認証ソフトの差別性」を巡りAmazonとMITの研究者が対立する”. GIGAZINE. (2019年4月15日). https://gigazine.net/news/20190415-amazon-rekognition-mit-researcher/ 2019年4月16日閲覧。 
  80. ^ "Lethal Robotic Technologies: The Implications for Human Rights and International Humanitarian Law" Philip Alston, Journal of Law, Information and Science, 2012
  81. ^ “ガザ地区境界線に広がる、イスラエルの「自動殺傷ゾーン」”. WIRED. (2008年12月8日). https://wired.jp/2008/12/08/ガザ地区境界線に広がる、イスラエルの「自動殺傷ゾーン」/ 2019年4月16日閲覧。 
  82. ^ a b Artificial Intelligence and Chinese Powerフォーリン・アフェアーズ 2017年12月5日)
  83. ^ [1]
  84. ^ 核に代わる「人工知能の軍事利用」、米中露3国の開発レースの現状”. WIRED (2017年9月19日). 2018年2月7日閲覧。
  85. ^ AI兵器開発、米中が火花 静まりかえった北米攻撃CG”. 朝日新聞 (2018年12月28日). 2019年2月22日閲覧。
  86. ^ 攻撃・偵察に…中国軍が無人艇開発 56隻で「群れ」世界最大の実験”. ZAKZAK (2018年6月18日). 2019年3月5日閲覧。
  87. ^ 米軍制服組トップ、グーグルに懸念「中国軍に恩恵」”. 日本経済新聞 (2019年3月15日). 2019年4月16日閲覧。
  88. ^ Googleは米国でなく中国の軍事力を助けている-トランプ大統領が批判”. 日本経済新聞 (2019年3月18日). 2019年4月16日閲覧。
  89. ^ (The Economist)対中ビジネスが問う米企業の正義”. 日本経済新聞 (2019年4月9日). 2019年4月16日閲覧。
  90. ^ GoogleのAIを軍事活用する極秘計画「Project Maven」の関係者による生々しい内部メールが流出”. ギズモード (2018年6月2日). 2019年4月16日閲覧。
  91. ^ 2018年テック界の嘘ワースト8”. ギズモード (2018年12月30日). 2019年4月16日閲覧。
  92. ^ Google denies link to China’s military over touch-screen tools that may help PLA pilots”. サウス・チャイナモーニング・ポスト (2019年7月4日). 2019年7月5日閲覧。
  93. ^ [FTマイクロソフト、AI研究で中国軍部と協力]”. 日本経済新聞 (2019年4月16日). 2019年4月11日閲覧。
  94. ^ 「AIに人間が勝ち残る力:OODA」”. 2017年11月18日閲覧。
  95. ^ cnn.co.jp - 人工知能の軍事利用に警鐘、E・マスク氏ら著名人が公開書簡 2015.07.30 Thu posted at 11:51 JST
  96. ^ “殺人ロボット兵器、規制めぐる議論継続へ 国連、初の専門家会議終了”. 産経ニュース. (2017年11月18日). https://www.sankei.com/world/news/171118/wor1711180027-n1.html 2019年4月16日閲覧。 
  97. ^ “「AI兵器」国際ルール合意も法的拘束力なく懸念”. NHK. (2019年8月22日). https://www3.nhk.or.jp/news/html/20190822/k10012044131000.html 2019年8月22日閲覧。 
  98. ^ 「AIハッカー」の脅威、中国すでに実用化か”. 産経ニュース (2019年1月28日). 2019年1月17日閲覧。
  99. ^ 人工知能はもう悪用される段階に 専門家警告”. BBCニュース (2018年2月21日). 2018年3月3日閲覧。
  100. ^ a b c Will Knight 2019.
  101. ^ a b 高橋ミレイ 2019, p. 後編.
  102. ^ a b c 塚本紺 2017, p. 2017年10月5日 20時0分.
  103. ^ a b c d 山本泉 2018.
  104. ^ 内田樹・釈徹宗(2013)『現代霊性論』 (講談社文庫)、講談社、178ページ
  105. ^ 内田樹・釈徹宗(2013)『現代霊性論』 (講談社文庫)、講談社、155ページ
  106. ^ a b c 須藤靖・伊勢田哲治(2013)『科学を語るとはどういうことか --- 科学者、哲学者にモノ申す』河出書房新社、14~15ページ。
  107. ^ a b c d 野家 2002, p. 34.
  108. ^ 全 2014, p. 178.
  109. ^ a b 全 2014, pp. 177-178.
  110. ^ 全 2014, p. 177.
  111. ^ 合原 et al. 2017, p. 34.
  112. ^ 合原 et al. 2017, p. 38.
  113. ^ a b 合原 et al. 2017, p. 42.
  114. ^ 合原 et al. 2017, pp. 46-47.
  115. ^ a b c d フランセーン 2011, p. 233.
  116. ^ a b フランセーン 2011, p. 4.
  117. ^ フランセーン 2011, p. 7.
  118. ^ フランセーン 2011, p. 126.
  119. ^ フランセーン 2011, p. 230.
  120. ^ a b c d 須藤靖・伊勢田哲治(2013)『科学を語るとはどういうことか --- 科学者、哲学者にモノ申す』河出書房新社、57-58ページ。
  121. ^ 須藤靖・伊勢田哲治(2013)『科学を語るとはどういうことか --- 科学者、哲学者にモノ申す』河出書房新社、260ページ。
  122. ^ 須藤靖・伊勢田哲治(2013)『科学を語るとはどういうことか --- 科学者、哲学者にモノ申す』河出書房新社、124~125ページ。
  123. ^ 須藤靖・伊勢田哲治(2013)『科学を語るとはどういうことか --- 科学者、哲学者にモノ申す』河出書房新社、141ページ。
  124. ^ 須藤靖・伊勢田哲治(2013)『科学を語るとはどういうことか --- 科学者、哲学者にモノ申す』河出書房新社、262ページ。
  125. ^ 須藤靖・伊勢田哲治(2013)『科学を語るとはどういうことか --- 科学者、哲学者にモノ申す』河出書房新社、284ページ。
  126. ^ 第321話『15-34』(Theゴルゴ学P294)

参考文献[編集]

学術書・辞事典

  • 合原, 一幸、牧野, 貴樹、金山, 博、河野, 崇『人工知能はこうして創られる』合原一幸(編著)、ウェッジ、2017年。ISBN 978-4863101852
  • 佐藤, 理史人工知能」『日本大百科全書(ニッポニカ)』小学館朝日新聞社VOYAGE GROUP、2018年。2018年8月16日閲覧。「人工知能は、「計算(computation)」という概念と「コンピュータ(computer)」という道具を用いて「知能」を研究する計算機科学(computer science)の一分野である。誤解を恐れず平易にいいかえるならば、「これまで人間にしかできなかった知的な行為(認識、推論、言語運用、創造など)を、どのような手順(アルゴリズム)とどのようなデータ(事前情報や知識)を準備すれば、それを機械的に実行できるか」を研究する分野である。」
  • 全, 卓樹『エキゾティックな量子:不可思議だけど意外に近しい量子のお話』東京大学出版会、2014年。ISBN 978-4130636070
  • 野家, 啓一「科学時代の哲学:哲学は「二流の科学」か?」『哲学の探求』第29巻、哲学若手研究者フォーラム、2002年、 31-42頁。
  • フランセーン, トルケル『ゲーデルの定理:利用と誤用の不完全ガイド』田中一之訳、みすず書房、2011年。ISBN 978-4622075691
  • 桃内, 佳雄人工知能」『日本大百科全書(ニッポニカ)』小学館・朝日新聞社・VOYAGE GROUP、2017年。2017年12月31日閲覧。「計算機(コンピュータ)による知的な情報処理システムの設計や実現に関する研究分野」
  • ASCII.jp人工知能」『ASCII.jpデジタル用語辞典』ASCII.jp・朝日新聞社・VOYAGE GROUP、2018年。2018年8月16日閲覧。「言語の理解や推論、問題解決などの知的行動を人間に代わってコンピューターに行わせる技術。」

報道

関連項目[編集]

活用事例

研究課題

関連分野

その他の関連項目

応用

人工知能の未来と関わる項目

外部リンク[編集]