ベイジアンネットワーク

出典: フリー百科事典『ウィキペディア(Wikipedia)』
ナビゲーションに移動 検索に移動

ベイジアンネットワーク: Bayesian network)は、因果関係確率により記述するグラフィカルモデルの1つで、複雑な因果関係の推論有向非巡回グラフ構造により表すとともに、個々の変数の関係を条件つき確率で表す確率推論のモデルである。ネットワークとは重み付けグラフのこと。

定義[編集]

確率分布確率変数をノード、変数間関係をリンクとするグラフ/ネットワークで表現できる[1][2](確率的グラフィカルモデル[3])。このうちリンクが向きを持ち依存関係が巡回しないもの(有向非巡回グラフ)を有向グラフィカルモデルあるいはベイジアンネットワークと呼ぶ[4]

特徴[編集]

確率分布を有向グラフと捉えることにより、グラフを用いた解析が可能になる。また有向グラフであるため変数間の因果関係をリンクで表現できる[5]。ベイジアンネットワーク上で確率推論を行うことで、複雑でかつ不確実な事象の起こりやすさやその可能性を予測することができる。これまで蓄積された情報をもとに、起こりうる確率をそれぞれの場合について求め、それらを起こる経路に従って計算することで、複雑な経路を伴った因果関係の発生確率を定量的に表すことが可能となる。

モデルの簡単な例[編集]

確率変数A、B、Cの間の条件付依存性をA→C、B→Cと表し、リンクの元となる親ノードをAやB、リンクの先にくる子ノードをCとする時、Aが起こる確率をP(A)、Aが既に起こったときにCとなる条件付確率をP(C|A)のように表すこととすると、Cが起こりうる確率は、P(A,B,C)=P(C|A,B)P(A)P(B)となる。

色々な因果関係に対し、グラフ上の各ノードに対応する確率変数として表現する方法やルールが定められている。複雑な系においても、各ノードにおける条件付確率表やベイズの定理等を用いながら、それぞれの確率を計算でき、確率的な依存関係をモデル化できる。

応用例[編集]

医者の診断[6]、イメージ認識[7]、言語認識[8]、選択アルゴリズム[9] など、1980年代から各種の応用例が報告されている。

歴史[編集]

ジューディア・パール1985年に命名した[10]。ジューディア・パールはこの研究の功績によりチューリング賞を受賞した。 人工知能の分野では、ベイジアンネットワークを確率推論アルゴリズムとして1980年頃から研究が進められ、既に長い研究と実用化の歴史がある。

関連書籍[編集]

  • ジューディア・パール、2009、『統計的因果推論 -モデル・推論・推測』、共立出版 ISBN 978-4320018778

脚注[編集]

  1. ^ "A graph comprises nodes ... connected by links ... . In a probabilistic graphical model, each node represents a random variable ... and the links express probabilistic relationships between these variables." PRML. p.360.
  2. ^ ネットワーク(重み付けグラフ)
  3. ^ "diagrammatic representations of probability distributions, called probabilistic graphical models." PRML p.359
  4. ^ "Bayesian networks, also known as directed graphical models" PRML. p.360.
  5. ^ 逆(向きから因果関係を決定すること)は一般に成り立たない。
  6. ^ シュピーゲルハルター他、1989年
  7. ^ Booker、Hota、1986年
  8. ^ Charniak、Goldman、1989年
  9. ^ ハンソン、マイヤー、1989年
  10. ^ Pearl, Judea (8 1985). “Bayesian Networks: a Model of Self-Activated Memory for Evidential Reasoning”. Proceedings, Cognitive Science Society: 329-334. http://ftp.cs.ucla.edu/pub/stat_ser/r43-1985.pdf. 

関連項目[編集]

  1. ^ : Markov network