渋滞

出典: フリー百科事典『ウィキペディア(Wikipedia)』

これはこのページの過去の版です。121.3.205.228 (会話) による 2016年1月10日 (日) 14:24個人設定で未設定ならUTC)時点の版 (→‎世界における渋滞)であり、現在の版とは大きく異なる場合があります。

交通集中+サグ部による渋滞
東名阪自動車道 亀山JCT付近)

渋滞(じゅうたい、英語:traffic jam、traffic congestion)とは、インフラストラクチャーの能力を越える動体の流入により移動速度が遅くなった状態をいう。道路交通上の交通渋滞を特に渋滞と呼ぶこともある。

定義

交通渋滞の定義は、道路管理者や交通管理者ごとに異なっている。 例えば、警視庁では統計上、下記を渋滞の定義としている(警視庁交通部 交通量統計表)[1]

  • 一般道路 : 走行速度が20km/h以下になった状態
  • 高速道路 : 走行速度が40km/h以下になった状態

しかし渋滞長がいくら長くても、1回の青信号で信号待ち車列が全て捌ける場合は、一般には渋滞とは呼ばない。

主に日本における原因

渋滞の原因は、一般道路と高速道路で異なる。上り坂が渋滞の原因になるのは主に高速道路であって、一般道路での渋滞の最大の原因は信号交差点である。

一般道路で発生する渋滞

一般道路での渋滞。観光地における観光シーズンの交通量増加に因る
夏祭り会場へ向かう車のために起こった片側渋滞
グリッドロックの模式図

道路の1車線には1時間あたり約2,000台の交通容量がある。例えば、片側2車線の単路部(立体交差のように信号のない部分)の交通容量は1時間あたり約4,000台であるが、これを超える量の車両が流入すると渋滞が発生する。

信号交差点
都市部では単路部は長くは続かず、信号交差点が数多くある。単路部で十分な交通容量があっても、その先の信号交差点の存在によってその道路の交通容量は低下する。例えば、信号の青信号の秒数が30秒、黄信号が0秒、赤信号の秒数が30秒という極めて単純な信号を仮定したとき、青信号時間の比率は50%となり、交通容量は青時間率が100%のとき(すなわち立体交差のとき)と比べて約半分となる。
また交差点への進入車両が極度に増えた場合、隣接する交差点まで車両の列が伸びて渋滞が連鎖的に増える グリッドロックと呼ばれる「超渋滞」現象が発生する。日本では東日本大震災で発生した渋滞でグリッドロック状態が観測され、解消までほぼ一日を要した[2]
信号機のパラメータ設定は、渋滞の発生有無に大きく影響する。不適切に設定すると、以前は渋滞のなかった交差点に渋滞が発生するようになる。
右折待ち車両
平面な交差点を右折する場合、必ず対面する交通をまたぐ必要がある。そのため、狭い道路で右折車が本線上で対面交通が途切れるのを待機していたり、右折レーンが存在してもその容量を超えて本線にはみ出している場合は、後続車が阻まれて渋滞が起こる。対面する交通は不定期に右折車に道を譲るのでこちらも速度低下が起こる。この場合、右折レーンの距離を長くする、右折信号がある場合はその時間を長くするなどが解決法として挙げられる。
地方によってはこれを防ぐため、地元住民の間で右折優先のルールが通用していることもある特に狭い路地の多い都市に顕著である、例:松本走りが、旅行者など事情を知らない者にとって非常に危険であるため、取り締まりや啓発活動が積極的に行われている。
左折待ち車両
右折待ち車両ほど大きな問題になることは少ないが、大都市や鉄道駅周辺、あるいはイベント開催時の会場周辺など、横断歩行者が多い交差点では横断歩行者がなかなか途切れず左折できずにいる車によって後続の車が阻まれることがある。この対策として左折レーンを整備し、歩行者が途切れるのを待つ左折車を直進レーンから分離すると、直進方向の交通容量向上に大きな効果を得ることができる。あるいは、歩道橋ペデストリアンデッキを整備したり、信号機を歩車分離式とすることで、歩行者と車両を分離すると、左折車両の滞留が減少する。
信号同士の協調が不適切または協調が無い
ある交差点の信号が青信号に変わっても、先の交差点の信号が赤信号だと先の信号で車が詰まり、手前の交差点(信号)に入れない。これを解消する方法には、まず基準信号を設け、ある基準信号が青に変わると、数か所先まで一斉に青信号や赤信号に変わる方式と、ドミノ式に青信号や赤信号に変化していく方式がある。すると、交通容量が多くなり、また、平均速度向上につながる。
(有効)車線数の減少
路上に駐車車両があるとその部分の有効車線数が減るため、交通容量は低下する。特に交差点付近の駐車車両は交通容量を著しく低下させ、特に都市部において顕著である。沿道の大規模商業施設ロードサイド店舗)の駐車場に入ろうとする車列も、同じく渋滞の原因となる。このため側道の不足も流入台数の増加に繋がる。
道路工事による車線規制も交通容量が低下させる。道路工事を夜間に行うことが多いのは、夜間は交通量が少ないため、車線規制による渋滞の発生を軽減できるからである。
踏切
踏切では列車通過時に道路が遮断され、特に都市部の踏切は遮断率が高く開かずの踏切になりやすい。さらに日本の法規制では原則的に、信号機がない場合は遮断されていなくても一時停止が義務付けられているため、踏切によって道路容量が低下する。このような状況を解消すべく、道路整備の一環とした都市計画事業の一つである連続立体交差事業というものを実施し、都市部を中心に鉄道の一定区間を高架化あるいは地下化して、踏切の除却を行う。
河川
本来、橋そのものが交通容量を低下させるわけではないが、都市の道路ネットワークの構造として橋の数が少ないため、交通需要が集中し、渋滞が起こる。これを改善するためには橋を増やすか、大都市において適当な幅のある川は稀に暗渠化される(ただし暗渠化の多くはこの目的で行うものではない)。
事故
狭義には交通事故により、車線が塞がれて起きる渋滞である。広義には火事天災によるものも含める。
見物渋滞(わき見渋滞)
交通工学の本来の用語ではない。ドライバーが景色や火事や対向車線の事故に目を取られて減速や停車をすることによって渋滞が起こる。またわき見運転は事故の危険も伴い、こうしたドライバーが事故を起こせば渋滞をさらに悪化させることになる。
悪天候
雪などでチェーン規制となった場合、チェーンの着脱のために装着場へ入る車が多くなること、サービスエリアパーキングエリアなどに強制流入させて滑り止め装着の有無を点検すること、チェーン装着車は最高速度が30 - 50km/h程度に制限されることなどから渋滞の原因になる。
また、凍結の場合、摩擦係数が小さくなりタイヤが滑りやすくなるため、ドライバーが慎重に運転し、また大雨の場合、視界が悪く低速度で運転せざるを得ないため、道路容量が低下する。悪天候のために事故が起こればやはり渋滞は悪化する。

高速道路で発生する渋滞

高速道路上で、渋滞最後尾や、車間距離が詰まって速度が急に低下した場合の自動車の運転手は、追突事故の防止のためにハザードランプを点滅させて、後続車に注意を促す暗黙の了解があるが(道路交通法では特に定められてはいない)、NEXCO3社では本用法を推奨している。

分岐点での渋滞
インターチェンジ(IC)やジャンクション(JCT)では流出、流入が発生するが、本線の車は流入車を入れるため、前車との車間距離を空けるために少し減速したり、追越車線に移動したりする。本線の後続車は車間距離を一定に保とうとして、詰まった車間距離を広げるために速度を先行車より落とす。これが連鎖的に続くと渋滞となる。流入車そのものも遅い速度のまま本線に合流すれば渋滞の原因となりうる。また、流出でもカーブのため40km/h規制、対向車線からの流出合流、料金所、一般道での渋滞などによって本線まで続くことがある。
織り込み交通の模式図
織り込み(ウィービング)とは右図のようなものを言う。
料金所による渋滞
ETCの普及により、ノンストップで料金所を通過できる車両が増えたため、日本では解消されつつある。しかし料金所を抜けて一般道へつながる交差点や信号機でうまく自動車が流れず渋滞することもある。本線料金所では通行するすべての車が停車または減速を強いられるため、そこへ続く本線の交通量によっては渋滞が発生する。
事故渋滞の電光掲示板表示例
工事・事故による渋滞
工事や事故のため車線が減少・規制あるいは通行止めされることで渋滞になる。ときには全く動かなくなることもある。工事による渋滞はWebページやVICS等を通じて事前に公表されることがあるが、事故による渋滞は前述のケースや料金所での渋滞と違いいつどこで起こるかわからないため、予想することは困難で、VICSなどにも情報がすぐには入りにくい。
車線規制が終了し交通容量が回復した後で、車線規制による渋滞列中に存在する車両がすべて通過して、渋滞解消となる。渋滞情報などで事故渋滞と表示されていても、事故車両を見かけないことが多いのはこのためである。
山間部による渋滞
日本における高速道路では山間部のように険しい地形上に路線を建設するため、傾斜が多く存在する。ドライバーが平坦部と変わらないアクセルの踏み方で上り坂を登ろうとすると、傾斜角度3%程度のドライバーも気付かないほどのわずかな傾斜でも速度が低下する。特に加速性能の低い大型車は速度低下が大きい。
後続の車は前方車両のわずかな減速に対し、安全のためにと前方車両以上に減速してしまうことがある。これがいくつか繰り返されると、後方の車両はかなりの低速状態になってしまい、渋滞が発生する。
このような原因による交通容量の低下を防止するために、大きな勾配が存在する区間には付加車線(登坂車線)が設置されている。
サグ部の一例
(名神高速 高槻BS付近)
サグ部による渋滞(sag)
すり鉢状の地形にある道路(サグ)ではドライバーが凹状の底の地点(谷底)に到着して上り坂となったとき、緩慢な変化に気が付きにくいことから、アクセルを強く踏むタイミングが遅れ、速度低下が発生しやすい(オートマチック車の場合はギアチェンジが起こらない)。
自動車のアクセルは速度を管理・調整する機能ではなく、燃焼状況(トルク)を調節する機能であるため、路面状況の変化にドライバーが気が付かず同じようにアクセルを操作すれば、このわずかなタイミングの遅れにより速度の低下が起こることで結果的に交通容量の低下が起こる[3]。なお、渋滞時のサグの容量は非渋滞時の容量に比べて大幅に低下する。回避させるために「この先上り坂」や「速度回復願います」と簡易型電光掲示板に表示する対策方法が取られている。NEXCO中日本の調査では、管内で発生する交通集中渋滞のうち約55%(平成19年)がサグ及び上り坂が原因で発生している。
トンネルによる渋滞
トンネルは視覚的に狭く感じ、明るさも変化するため、ドライバーはその入り口付近でアクセルを緩めてしまいやすい。その結果、交通容量が低下する[4]。また、雨水をはくために中央に向けて上り坂となっているトンネルもあり、これも渋滞の原因となっている。回避させるためにトンネル入り口付近の照明度を高くする、トンネル側面に水準線を描き、上り下りの状況判断をし易くする等の工夫が有効である。従来、夜間時は昼間時の5分の1に照明度を落としていたが、2009年8月6日から対策としてNEXCO西日本は管内76か所のトンネルで、夜間時の照明度を昼間時の照明度と同じにする対策をとった。先行して都市部の一部トンネルで実施しており、一定の効果があったため2009年8月6日より地方部のトンネルでの運用が決まった。

総距離の長い渋滞

発生日時 先頭 末尾 延長 備考
1995年12月27日 名神高速道路 秦荘PA
滋賀県愛荘町、現・湖東三山PA)
東名高速道路 赤塚PA
愛知県豊川市
154km 日本の渋滞最長記録
滋賀県~愛知県でのゲリラ豪雪による通行止めの影響
1990年8月12日 中国自動車道 山崎IC
兵庫県山崎町
名神高速道路 瀬田西IC
(滋賀県大津市
135km
1995年8月11日 名神高速道路 竜王IC
(滋賀県竜王町
中国自動車道 福崎IC
(兵庫県福崎町
129km
1995年5月2日 東北自動車道 東北自動車道 126km
1994年8月13日 関越自動車道 水上IC
(群馬県水上町
関越自動車道 川越IC
(埼玉県川越市
122km
2006年8月 東北自動車道 那須高原SA
(栃木県那須町
東北自動車道 館林IC
(群馬県館林市
113km

日本の高速道路における渋滞の多発地点

上りは首都高速東京外かく環状道路の渋滞が伸びてくるため休日は特にここで渋滞する。
上り線の矢板IC流入ランプ本線車道との合流部から1km以上に亘って緩やかな上り坂となっており、速度が低下しやすい箇所である。対策として、2010年7月に矢板ICの合流車線は2kmに延長されており、渋滞緩和が期待されている。またリゾート地である那須・塩原地区からの車両が那須IC黒磯板室IC西那須野塩原ICの各ICから流入してくるために交通量が飛躍的に増加する。
関東屈指の渋滞地点。トンネルによる圧迫感に加え、元八王子BSから当トンネルの間に坂が多数存在しており、その上、高井戸IC-上野原ICは、交通量に対して2車線区間がほとんど(東名、東北道、関越道、常磐道東関道の首都圏部はいずれも3車線ある)のため、土休日、長期連休中を中心に大渋滞が発生する。場合によっては上り線は笹子トンネルまで、下り線は高井戸IC付近まで渋滞が伸びる場合がある。
  • 中央自動車道 笹子TN付近
トンネル内の圧迫感や工事により車線規制されることが多いのが原因
渋滞中の大和トンネル
関東屈指の渋滞地点。関東からの身近なリゾート地(旅行先)として有名な、富士・箱根・伊豆などからの帰省者の多くが東名を利用し、また厚木ICにて、箱根熱海下田など東伊豆方面からの帰省する際に利用する小田原厚木道路が合流するため、特に休日や行楽シーズンの夕方から夜にかけて、上り車線では20Kmを超える渋滞が多発する。以前は、綾瀬BS付近を先頭とする渋滞であったが、渋滞緩和を目的とし海老名SAから綾瀬BS過ぎまでを4車線化したことで綾瀬BSを先頭とする渋滞は無くなったが、車線が3車線に戻るその先の大和トンネル付近が新たな渋滞スポットになっただけであった。トンネルによる圧迫感により、自然とドライバーがブレーキを踏んで速度が低下しやすいことに加え、トンネル付近は緩やかな上り坂となっていることが主な渋滞の要因。新東名高速道路もこの区間は事業化されていない。
上下車線にて渋滞が発生する。松岡BSと富士川SAの間に富士川橋がかかっているが、松岡BSから富士川SAに向けて上り坂のカーブの橋である。そのため、下り車線は自然と速度が下がり、上り車線はブレーキを踏む事が渋滞の主な原因である(富士川SAを抜け富士川橋にさしかかると、一斉に開けた視界に雄大な富士山が飛び込み、ドライバーは目を奪われがちになるのだが、下り坂で自然と加速した車を制御するためにブレーキを踏む事も一因)。休日特別割引(いわゆる地方高速上限1,000円)が実施された初のGWでは、当地点から神奈川県大井松田IC付近まで66.4Kmの渋滞が発生し、2009年の全国ワースト3位となった。2012年の新東名高速道路の部分開通により解消された。
2004年の伊勢湾岸自動車道の開通、2008年の新名神高速道路の部分開通、2012年の新東名高速道路の部分開通によって、東京-名古屋-大阪間のルートのうち、御殿場JCT-三ヶ日JCT間および豊田JCT-(名神高速道路)草津JCT間は、東名・名神と新東名・新名神とで二重化されたが、新東名の浜松いなさJCT-豊田東JCT間は未開通のため、三ヶ日JCT-豊田JCT間はルートが1本しかなく車両が集中する。このため、ルートが1本に絞り込まれる三ヶ日JCTや豊田JCT付近で渋滞が頻発している。
さらに当該区間は自動車関連工場が多く、輸送ルートの出入口となる浜松IC豊川IC岡崎IC豊田IC名古屋ICなどからの流出入で交通量が多くなり、また全般的にアップダウンが多いため、速度低下が起こりやすい。このため、宇利トンネル付近、音羽蒲郡IC-本宿BS間、岡崎IC-豊田JCT間などでも渋滞が頻発する。休日や長期連休では、これらの渋滞が繋がって20km以上の大渋滞になることもある。なお、2011年に下り線は美合PA-豊田JCT間、上り線は豊田JCT間-本宿BS付近の暫定3車線化が行われたため、これらの区間では渋滞の頻度は大幅に減少している。
2016年2月13日に、新東名の浜松いなさJCT-豊田東JCT間が開通予定となっており、ルートの二重化によって上記区間での渋滞緩和が期待される。
上社IC出口を流出した先に国道302号の交差点があり、そちらも信号待ちで渋滞することから主に平日朝に最長で上記の区間が渋滞する。
東海屈指の渋滞地点。当該区間では東名阪道-伊勢道名阪国道ルートと伊勢湾岸道-新名神高速ルートが完全に重複しており、下り線は主に午前中、上り線は主に夕方に渋滞が頻発している。新名神高速開通前の2007年の四日市IC-鈴鹿IC間の交通量は一日平均67,000台であったが、2008年2月23日に新名神高速が部分開通したことにより、東京・静岡方面-京都・大阪方面を利用する車両が、東名高速-名神高速ルートから伊勢湾岸道-新名神高速ルートにシフトしたため、開通後の2009年は89,000台と大幅に増加した。
また四日市IC-亀山JCT間には下り坂から上り坂に変わり、車両の巡航速度が気付かず低下してしまうサグ部が5ヶ所存在することや、四日市JCT-亀山JCT間にはJCT・IC・SAから本線への合流が6ヶ所も集中し、車両の流れが悪化するのも渋滞の原因である。NEXCO中日本は渋滞緩和を目的として、四日市IC付近のサグ部3ヶ所に「速度低下注意」と表示するLED情報板を2009年3月に設置したほか、ICなどの合流車線を延長して事実上、四日市JCT-四日市IC間8.9kmの車線を3車線化(途中、3.3kmは2車線)する付加車線工事を2008年12月に約72億円をかけて行ったほか、2012年12月13日に四日市IC-四日市東IC間の上り車線、12月19日には四日市IC-鈴鹿ICの下り車線を一部暫定3車線化する運用を開始したが[5]、市街地内の掘割区間などは3車線化することが出来ず完全な渋滞解消には至っていない。
2018年度に新名神高速道路の四日市北JCT-亀山西JCT間が開通予定となっており、これにより東名阪道-伊勢道・名阪国道ルートと伊勢湾岸道-新名神高速ルートが分離されて交通量の分担が可能となり渋滞の緩和が期待される。
東海北陸自動車道が接続する一宮JCTまでの区間は交通が集中するため渋滞が発生しやすい。渋滞が激しい場合は上りが関ヶ原ICまたは東海北陸道一宮木曽川ICまで、下りは東名高速小牧ICまで及ぶことがあり、一宮ICで接続する名古屋高速16号一宮線国道22号名岐バイパス)まで渋滞が発生することがある。
高槻BSを中心に比較的急勾配な坂(サグ)が続くため、速度が低下する。また高槻BS付近は日本有数の交通量を誇る。2010年の第二京阪道路の延伸(枚方東IC-門真JCTの開通により全線開通)により交通量が分散し、渋滞は緩和された。
関西一の渋滞地点。トンネル内部が上り坂になっていることや、関西地区最大の交通量を誇ることが渋滞の要因である。特に上りに関しては、手前で舞鶴若狭自動車道山陽自動車道と合流するために渋滞に拍車をかけている。新名神高速道路の高槻第二JCT-神戸JCTの開通により、渋滞の緩和が期待される。
阪和道は有田IC以南が対面通行区間であり、行楽シーズンの週末に渋滞が発生しやすい。主に午前の南行きは湯浅御坊道路である広川南IC - 川辺IC間にある鳥松山トンネル付近と、終点である南紀田辺ICから本線にかけて、午後の北行きは川辺第一トンネル付近を先頭に渋滞が発生する。かつては阪和道の長峰トンネル付近が平日休日問わず激しい渋滞の名所となっていたが、現在は有田ICまで4車線化したため、同区間での渋滞はほとんど見られなくなり、全体で見ても渋滞量は減少している。
岡山方面への上り線は、広島東IC付近から続く長い上り坂の頂点にあり、速度が低下する。逆に、広島方面への下り線は、急勾配の下り坂でカーブが続くため、冬場を中心に事故が多い。さらに、トンネル内のカーブもきつく、これによる速度低下も渋滞の要因となる。
江戸橋JCTから0.8kmで箱崎JCTに、箱崎JCTから1.3kmで両国JCTに到達している区間であり、分岐と合流が立て続けに発生することから渋滞が多発している。特に上りの場合は、両国JCTで7号小松川線との合流により走行車線が1車線ずつに絞り込まれ、さらに当該JCTは7号小松川線にとって唯一のJCTでもあるため、渋滞に拍車を掛ける要因となっている。
交通量が多いことや流出台数より流入台数のほうが多いことや、そもそもの出口数が少ないことを原因に上りが大橋JCT、下りが三軒茶屋出入口を先頭に、終日のように渋滞する。
全線で渋滞が多発する。並行する中国道宝塚トンネル(前述)とともに関西屈指の渋滞地点。

世界における渋滞

2008年9月、台北での交通渋滞。
台北では主にオートバイによって渋滞が引き起こされている。

2010年、米外交専門誌フォーリン・ポリシーは、世界で最も交通渋滞が深刻な都市として、モスクワラゴスメキシコシティサンパウロ北京の5つの都市を挙げている。このうちサンパウロでは2008年9月に、世界で最も長いといわれる165マイル(約265km)超の渋滞が発生している。また、2010年8月14日には、中国の北京~ラサ間のG110国道京蔵高速道路で100キロに及ぶ渋滞が10日以上にわたって続いた[6]。またBBCの2012年の調査によれば、バンコクジャカルタナイロビマニラムンバイの上位5都市が、渋滞が深刻な世界の都市としてランクインしている[7]

渋滞対策

信号制御

中国吉林省吉林市において、これまでの統計とバスに搭載された端末を通じてデータを元に信号の設定を変えた結果、車両の平均時速が上がり渋滞緩和に成功した[8]

立体交差

道路が他の道路や踏切と平面交差している事により、結節点としての効果を発揮する代わりに円滑な交通を妨げになっていた[9]。そこで立体的に交差することより、効率よく通行することができる[10]。 具体例として小田急電鉄小田原線成城学園前駅から登戸駅連続立体交差化した結果、実施前は旅行速度8km/hに対して実施後は旅行速度19km/hと大幅に向上することに成功した[11]

道路拡張・バイパス

道路の容量を超えると渋滞する原因の一つである[12]ことから、全国各地で道路拡張やバイパス道路建設を進めている。秋田南バイパスのケースでは、国道7号線のバイパスとして建設された結果、整備前の23km/hから整備後32km/hと速度向上できた[13]。しかしながらその後、一部区間で慢性的な渋滞が発生し問題となっていた。そこで4線化に着手した結果、新屋跨道橋交差点では整備後旅行速度は3倍向上した[14]

LED発光パネル

東日本高速道路(NEXCO東日本)の調べによると、高速道路の道路渋滞は交通集中を原因とする渋滞が約7割を占め、さらに上り坂及びサグ部での渋滞がそのうちの約7割となっているという。具体的には、上り坂やザク部での車の速度低下により、後続の車が車間距離を空けようとブレーキを踏み、その動作にさらに後続の車が反応することで旅行速度の著しい低下を招く、というものである[15]。そこでNEXCO東日本では、LED発光パネルを道路脇に複数設置して進行方向に流れるように光るシステムを開発した。その装置によりドライバーは光の流れを意識するようになり、速度向上を自然と意識するのが狙いである[15]。LED発光パネルが始めて設置されたのは2011年2月三陸自動車道利府ジャンクションが最初である。実際に設置を行った箇所では以前より速度向上し、後続車も追随することにより渋滞延長は2100m から800mと短くなり、渋滞継続時間は50分から30分へ短縮した[15]。現在ではNEXCO東日本ではペースメーカーライト[15]、首都高速道路ではエスコートライト[16]、NEXCO中日本では速度感覚コントロールシステム[17]という名称で設置を行っている。

渋滞税

イギリスロンドン市では、2003年にコンジェスチョン・チャージ(いわゆる渋滞税)を導入をした結果、交通量が20%減少し、渋滞遅延時間も30%減少した[18]

渋滞吸収運転

2009年警察庁日本自動車連盟が共同で中央自動車道小仏トンネルで8台の車が一斉に車間距離40mを空けて走行した結果、実施前の平均時速55km/hから80km/hに回復した実験結果が出ている[19]。これは車間距離を詰め過ぎると前の車に反応した後ろの車によってスピードが落ちるので、距離が40m空けることにより防ぐことができる[20]

渋滞予測カレンダー

1987年年末年始から日本道路公団で渋滞予測情報提供が始まり、現在ではNEXCO日本道路交通情報センターが提供している[21]。これにより渋滞する日付と時間帯が分かり渋滞を避けられる[21]。なお的中率は8割程度で、外れる原因としては天候やメディアで紹介された場所へ人々が殺到することが挙げられる[21]

脚注

  1. ^ 平成23年中の都内の交通渋滞統計(一般道路、首都高速道路) 警視庁ホームページ
  2. ^ グリッドロック:「超」渋滞現象、震災で初確認- 毎日jp(毎日新聞)
  3. ^ サグ部などで起きる「渋滞」の原因とその対策について NEXCO東日本ホームページ
  4. ^ “中国道“名物”「宝塚トンネル常時渋滞」の本当の理由…2年後には劇的解消“秘策”が”. 産経新聞. (2014年4月21日). http://sankei.jp.msn.com/west/west_life/news/140421/wlf14042107000001-n3.htm 2014年4月26日閲覧。 
  5. ^ 東名阪 四日市IC付近の3車線(暫定)運用を開始します ~四日市IC付近の渋滞が解消します~ NEXCO中日本ホームページ
  6. ^ 史上最大の交通渋滞!北京-ラサ間高速道で、100キロが9日連続レコード・チャイナ 2010年8月25日
  7. ^ NHK BS1キャッチ!世界の視点」でもジャカルタを取り上げた。「解消せよ!ジャカルタの渋滞問題」 - NHK報道番組 「特集まるごと」(2014年8月18日(月)版 / 2015年10月28日閲覧)
  8. ^ 中国・吉林市において、ビッグデータを活用した「渋滞予測・信号制御シミュレーション」の実証実験で渋滞緩和効果を確認 2015年1月23日 株式会社NTTデータ
  9. ^ 日本大百科全書「平面交差」より
  10. ^ 世界大百科事典「インターチェンジ」より
  11. ^ 全国連続立体交差事業促進協議会 事業の効果
  12. ^ 国土交通省 関東地方整備局 安全で快適な道路空間の実現に向けて 渋滞 (PDF)
  13. ^ 平成14年度 全建賞 秋田南ワイパス整備事業 (PDF)
  14. ^ 国道7号秋田南バイパス4車線化により通勤時間帯の渋滞解消、旅行速度向上、市街地の交通環境向上 秋田河川国道事務所 (PDF)
  15. ^ a b c d 東日本高速道路 本社管理事業本部交通部交通課ほか (2013-11). LED発光パネル(ペースメーカー)を活用した渋滞緩和対策を活用した渋滞緩和対策 (PDF) (Report). 道路行政セミナー. 一般財団法人道路新産業開発機構. {{cite report}}: |date=の日付が不正です。 (説明)
  16. ^ 首都高に設置されたドライバーを引き寄せる光 その効果は? 2015年2月18日 乗りものニュース
  17. ^ NEXCO中日本 快適走行
  18. ^ ロンドンの交通事情と渋滞税 北海道道路管理技術センター (PDF)
  19. ^ ポイントは車間距離 "渋滞学"権威が明かす「渋滞吸収運転」とは BOOKSTAND
  20. ^ athomeこだわりアカデミー 2011年11月号掲載
  21. ^ a b c なぜ渋滞予報士は1人だけなのか その意外な存在意義 2015年8月9日 乗りものニュース

関連項目

外部リンク