コンテンツにスキップ

「地震」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
ページの置換: 'P波[初期微動]=プラマイリ波 S波[本震]=セカンダリ波'
タグ: サイズの大幅な増減
m 地震のカテゴリマスター (会話) による版を Hosiryuhosi による版へ巻き戻し
1行目: 1行目:
'''地震'''(じしん、{{lang-en-short|Earthquake}})は、[[地球]]表面の[[地殻]]の内部で、固く密着している岩盤同士が、[[断層]]と呼ばれる破壊面を境目にして、急激にずれ動くこと。これによって'''[[地震動]]'''(じしんどう)と呼ばれる大きな地面の[[振動]]が引き起こされ、一般的にはこちらも「地震」と呼ぶ。
P波[初期微動]=プラマイリ波

S波[本震]=セカンダリ波
「地震」(なゐふる)という語句は『[[日本書紀]]』にも見え、その他[[古文書]]の記録にも登場するが、これらは今日の[[地震学]]における地震動のことであり、また[[震度]]の程度を表すものでもあった<ref>{{PDFlink|[http://sakuya.ed.shizuoka.ac.jp/rzisin/kaishi_18/01-Usami.pdf 宇佐美龍夫(2002)]}} 宇佐美龍夫 「歴史史料の「日記」の地震記事と震度について」『歴史地震』 第18号、1-14、2002年</ref>。

[[地質学|地質]]現象(地質活動)の一種。地震に対して、地殻が非常にゆっくりとずれ動く現象を[[地殻変動]]と呼ぶ。

地震を対象とした学問を'''地震学'''という。地震学は[[地球物理学]]の一分野であり、[[構造地質学]]とも密接に関わっている。

== 概要 ==
[[ファイル:Nojima fault side view.jpg|thumb|200px|[[兵庫県南部地震]]([[阪神・淡路大震災]])によって発生した[[野島断層]]。地震の震源となった断層のずれが波及して「地表地震断層」として現れたものである。激しい揺れを起こした断層本体(震源断層、起震断層)とは別のものであり、また地下に存在する断層のほとんどは地表から観察できないので、防災上注意しなければならない。]]
[[ファイル:Pwave.png|thumb|200px|地震計で観測された地震動のグラフ。]]
地震は、'''[[断層]]'''と呼ばれる地下の岩盤のずれが動くことで発生する。断層のずれによって生じた振動は、[[地震波]]となって地中を伝わり、人間が生活している地表でも振動(地震動)が引き起こされる。断層は、地下数km~数十kmの深さにあることが多く、地表までは達しないことが多い。しかし、大きな地震の時には'''地表地震断層'''とよばれる段差が地表にも現れることがある。(特に[[カリフォルニア]]にある[[サンアンドレアス断層]]は、日本の地震学者に地震と断層の結びつきを知らせたことで有名である。日本では[[阪神淡路大震災]]の[[野島断層]]、[[濃尾地震]]の[[根尾谷断層]]、[[関東大震災]]の[[丹那断層]]などが有名。)

=== 震源・震央・震源域 ===
地下で断層が動いた時、最初に動いた地中の位置(地震波の発生源)を'''[[震源]]'''と呼び、地上における震源の真上の地点を[[震央]]と呼ぶ。テレビや新聞などで一般的に使用される震源は震央の位置を示している。震源だけではなく震源の周囲数m - 数百kmの範囲の断層でずれが生じ地震波を発生する。このずれの範囲を[[震源域]]と呼ぶ。

=== 地震波 ===
{{Main|地震波}}
[[地震波]]は波の一種であり、地中を伝わる波(実体波)と地表を伝わる波([[表面波]])に大別される。実体波はさらに、速度が速い[[地震波#P波|P波]](たて波、疎密波)と、速度が遅い[[地震波#S波|S波]](横波、ねじれ波)に分けられる<ref>表面波もレイリー波とラブ波に分けられる。</ref>。

地震のはじめに感じられることが多い細かい震動([[初期微動]])は[[P波]]、地震の激しい震動(主要動)は主に[[S波]]による。P波とS波は伝わる速度が違うので、P波とS波の到達時間の差である[[初期微動]]の時間<ref>初期微動継続時間という。</ref>が震央と観測地点との間の距離に比例する。初期微動が長い場合は、震源が遠い。加えて主要動が大きい場合は、震源が遠いにも関わらず振幅が大きいので、巨大地震の可能性が高まる。初期微動が短い場合は、震源が近い<ref group="注">加えて振幅が小さければ、微小地震の可能性が高い。</ref>。

このようなP波とS波の違いによって、観測地点から震央までの距離や、2つ以上の観測点からは震源の位置が、3つ以上の観測点があれば震源の深さも求めることができる<ref group="注">この式は[[大森房吉]]が1899年に発表したので、「震源の[[大森公式]]」と呼ばれている。</ref>。また、P波はS波の前に到達することが多いので、P波を検知したときに警報を出せば被害が軽減できることがあるため、[[緊急地震速報]]や緊急停止システム<ref>鉄道、新幹線・[[エレベーター]]の緊急停止(P波管制運転)など</ref>で応用されている。

一つの地震からはいろいろな周期(周波数)の地震波が出るが、その成分の違いによって被害が異なる。[[キラーパルス]]と呼ばれる周期1秒程度の地震波が大きい場合は、木造・低層住宅の被害が大きくなる<ref group="注">2004年の新潟県中越地震、2011年の東北地方太平洋沖地震で地震被害が比較的少なかったのは、キラーパルスが少なかったからである。</ref>。

=== 本震・前震・余震 ===
ある程度の規模を超える地震は、地震活動に時間的・空間的なまとまりがあり、その中で最も規模が大きな地震を[[本震]]と呼ぶ。ただし、本震の区別が容易でない地震もあり、断層のずれの程度や前後に起こる地震の経過、断層の過去の活動などを考慮して判断される。他に[[前震]]・[[余震]]を伴うことがある。本震の前に起こるものが前震、後に起こるものが余震である。被害をもたらすような大地震ではほぼ例外なく余震が発生し、余震により被害が拡大する例も多い。余震の発生する範囲は、震源域とほぼ重なる(発生する範囲が違うものには、[[群発地震]]、[[連動地震]]、[[誘発地震]]などがあり、区別される)大きな地震であるほど、本震の後に起こる余震の回数・規模が大きくなる。この余震の経過を示す法則には、「余震の大森公式」を改良したものがある。

=== 地震の大きさを表現する指標 ===
地震の大きさを表現する指標は主に2系統あり、それぞれいくつかの種類がある。Mは[[指数関数]]、震度は[[非線形]]関数であり、数字の大きさと実際の物理量は[[比例]]関係ではない<ref group="注">例えば、Mが1大きくなると、それが表現するエネルギー量は約32倍となる。気象庁震度階級は同一振幅・周波数が数秒間継続した理想波形の場合6galで計測値2.50、60galで4.50であるが、実際の地震波は複雑なので対応関係は表現できない。</ref>。
*[[マグニチュード]] (M) <ref group="注">英語圏では普通リヒター・スケール(Richter scale、発音はリクター・スケール)という。</ref>は地震の規模、あるいは地震の際に放出される[[エネルギー]]の量を表す指標である。
*[[震度|震度階級]](震度)は地表の各地点での揺れの大きさを表す指標である。単に「ある地震の震度」という場合には、その地震における全観測地点の最大震度をいう。

=== 地震による災害 ===
大きな地震はしばしば建造物を破壊して家財を散乱させ、[[火災]]、[[土砂災害]]などを引き起こす。典型的な自然[[災害]]の1つである。科学的な予報・予知が確立されておらず、前触れもなく突然やってくるので、建造物の強度を増す・震災時の生活物資を備蓄する・避難計画をしっかり立てるなどの対策をとり(防災と減災)、「いつ来てもいいように」備えるのが一般的である。また、海域で発生する大規模な地震は'''[[津波]]'''を発生させ、震源から離れたところにも災害をもたらすことがある。そのため、学術的な研究目的に加えて、津波の発生を速報する目的で、各国の行政機関や大学等によって地震の発生状況が日々監視されている。[[チリ地震津波]]以降、[[太平洋]]全域の津波警報システムが整備され、[[2004年]]の[[スマトラ島沖地震 (2004年)|スマトラ島沖地震]]以降は、津波の警報態勢も大きく強化されている。

=== 地震の種類 ===
どの地殻構造で起こるかにより地震は3種類に分けられる(後述)。また、断層のずれる方向や向きなどのパターン、空間的なまとまり、時間的なまとまりからも、地震は特徴付けられる。被害をもたらすような大きな地震の多くは、既に存在する断層が数十万年から数十年に1回の活動期を迎えた時に発生する、周期的な[[固有地震]]であると考えられている(固有地震説)。

== メカニズム ==
[[ファイル:SketchFaultRupture.png|thumb|200px|地震の発生途中における断層面と地震のメカニズムの模式図。<br />2: 震央<br />3: 断層面の走向<br />4: 断層面の傾斜<br />5: 震源<br />6: 断層面のある平面<br />7: 破壊されている断層面<br />10: すでに破壊された断層面<br />8 + 11: 断層面 または 震源域(断層の最大破壊域)]]
[[ファイル:Tipos de fallas.png|thumb|200px|3種類の断層。上:逆断層、中:正断層、下:横ずれ断層。]]
[[ファイル:Plan nodal.png|thumb|200px|地震のメカニズム解([[発震機構]]解)の図。地震計の観測結果を基に図に表し、断層の位置や動いた方向を解析する。]]
{{Main2|地球の内部構造に関しては「[[地球#構造|地球の構造]]」を}}
{{Main2|プレートの移動に関する説明は[[プレートテクトニクス]]を}}
{{Main2|地震の発生、断層破壊の詳細に関しては「[[地震発生物理学]]」を}}
地球の表層は[[プレート]]と呼ばれる硬い板のような岩盤でできており、そのプレートは移動し、プレート同士で押し合いを続けている。そのため、プレート内部やプレート間の境界部には、[[力]]が加わり[[ひずみ|歪み]]が蓄積している。これら岩盤内では、岩盤の[[密度]]が低くもろい、[[温度]]([[粘性]])が高い、大きな摩擦力が掛かっているなどの理由で歪みが溜まりやすい部分がある。ここで'''[[応力]]'''(ストレス)が局所的に高まり、[[岩体]](岩盤)の[[せん断|剪断破壊強度]]を超えて、[[断層]]が生じあるいは既存の断層が動くことが地震であると考えられている。

断層はいわば過去の地震で生じた古傷であり、地殻に対する応力が集中しやすいことから、断層では繰り返し同じような周期(再来間隔)で地震が発生する。断層の大きさは数百mから数千kmまであり、またその断層の再来間隔も数年~数十万年とさまざまである。断層の中でも、数億年~数百万年前まで動いていて現在は動いていないような断層があり、そのようなものは古断層といって地震を起こさない。一方、現在も動いている断層を'''活断層'''という<ref group="注">活断層の統一された定義はない。古典的には、(旧来区分における)[[第四紀]]開始以降に活動したと推定される断層を活断層という。なお、2009年より第四紀の区分が変更されたので、現在の区分では「[[更新世]]中期の開始以降」にあたる。断層の活動性を考える上では、より重要度の高い「約10万年前にあたる更新世後期の開始以降」に限定する場合がある。「[http://www.geosociety.jp/faq/content0203.html 地球史Q&A]」 日本地質学会。</ref>。日本だけでも約2,000の活断層がある<ref>[http://www.hinet.bosai.go.jp/about_earthquake/sec6.2.html 地震の基礎知識とその観測 6.2 活断層] 防災科学技術研究所</ref>。ただし、活動の有無を判別するのが難しい断層もあり、古断層といわれていた断層が動いて地震を起こした例もあるため、防災上注意しなければならない。

岩盤内で蓄積される応力は、押し合う力だけではなく、引っ張り合う力や、すれ違う力など様々な向きのものが存在し、それによって断層のずれる方向が変わる。押し合う応力は断層面の上側が盛り上がる'''''[[逆断層]]'''''、引っ張り合う応力は断層面の下側が盛り上がる'''''[[正断層]]'''''、すれ違う応力はほぼ垂直な断層面の両側が互い違いに動く'''''[[横ずれ断層]]'''''を形成する。

地震の始まりは、岩盤内部の一点から破壊が始まり、急激に岩盤がずれて歪みを解放し始めることである。破壊が始まった一点が[[震源]]であり、破壊されてずれた部分が断層となる。このずれた部分は、地震波を解析する段階では便宜的に[[平面]](断層面または破壊面と呼ぶ)と仮定し、断層面の向き(走向)や断層面の[[鉛直]]方向に対する角度(傾斜)、震源の位置、地震の規模などを推定する。震源断層が曲がったり複数あったりする場合は、後の解析や余震の解析により推定される。

震源で始まった岩盤の破壊範囲は、多くの場合秒速2~3kmで拡大し、破壊された岩盤は、速いときで秒速数mでずれを拡大させていく。

; 実際の例
* 1923年の[[関東地震]]では、[[神奈川県]]小田原直下付近から破壊が始まり、破壊は放射状に伝播して40~50秒で房総半島の端にまで至り、長さ130km、幅70kmの断層面を形成し、[[小田原市]]~秦野市の地下と[[三浦半島]]の地下で特に大きなずれを生じ、約8秒で7~8mずれた<ref>[http://www.soc.nii.ac.jp/ssj/publications/NAIFURU/vol3/v3p4.html 『なゐふる第3号』p.4「関東大地震(大正12年9月1日)」]日本地震学会</ref>。
* 1995年の[[兵庫県南部地震]]では、[[明石海峡]]の地下17kmで始まった破壊は、北東の[[神戸市]]の地下から、南西の[[淡路島]]中部にまで拡大し、約13秒で長さ40km幅10kmの断層面を形成した。

このようにして破壊が終結すると、一つの地震が終わることになる。この断層面の広さとずれの大きさは、地震の規模と関連している。多くの場合、断層面が広くずれが大きくなれば大地震となり、逆に小さな地震では破壊は小規模である。こうして一つの地震が終結しても、大地震の場合は断層面にはまだ破壊されずに残っていて、歪みをため込んでいる部分がある。それらの岩盤も、'''余震'''とよばれるやや小さめの地震によって次第に破壊が進む。これに対して初めの大地震を'''本震'''という。本震の前に発生する'''前震'''もあり、そのメカニズムについては本震を誘発するものだという説、本震に先駆けて起こる小規模な破壊だという説などがあるが、はっきりと解明されていない。

本震の後に余震が多数発生する「本震 - 余震型」や、それに加えて前震も発生する「前震 - 本震 - 余震型」の場合は、応力が一気に増加することで発生すると考えられている。一方で[[群発地震]]の場合は、応力が比較的緩やかなスピードで増加することで地震が多数発生すると考えられている<ref>[http://www.aist.go.jp/aist_j/press_release/pr2002/pr20020905/pr20020905.html 群発地震発生のメカニズムを解明] 産業技術総合研究所、2002年9月5日</ref>。

== 地震の規模と揺れの指標 ==
=== マグニチュード ===
{{Main|マグニチュード}}
ふつう、地震の規模を表す指標としては、[[エネルギー]]量を示す[[マグニチュード]]を用い、「M」と表記する。マグニチュードには算定方法によっていくつかの種類があり、[[地震学]]では各種のマグニチュードを区別するために「M」に続けて区別の記号を付ける。[[地震学]]では[[マグニチュード#モーメントマグニチュード Mw|モーメントマグニチュード]](Mw)が広く使われる。日本では[[マグニチュード#気象庁マグニチュード Mj(2003年9月25日以降)|気象庁マグニチュード]](Mj)が広く使われる。

他にもそれぞれの観測機関によって使用されるマグニチュードのタイプが異なる場合もあるが、その値は差異ができるだけ小さく<!--概ね同じに-->なるように定められている。これらは最初にマグニチュードを定義した[[チャールズ・リヒター]]のものの改良版であり、基本的に地震動の最大振幅を基礎とする。モーメントマグニチュードを除き、いずれのタイプも8.5程度以上の[[巨大地震]]や超巨大地震ではその値が頭打ちになる傾向を持つ。

この弱点を改善するために、[[地震学]]では[[地震モーメント]]から算出される[[マグニチュード#モーメントマグニチュード Mw|モーメントマグニチュード]](Mw)が地震の規模を表す指標として用いられることが多く、これを単に「M」と表記することも多い([[アメリカ地質調査所]](USGS)など)。

日本では、気象庁が独自の定義による[[マグニチュード#気象庁マグニチュード Mj(2003年9月25日以降)|気象庁マグニチュード]](Mj)を発表しており、日本ではこれを単に「M」と表記することも多い。これに対し、多くの国では[[マグニチュード#表面波マグニチュード Ms|表面波マグニチュード]](Ms)や[[マグニチュード#実体波マグニチュード Mb|実体波マグニチュード]](Mb)のことを、単にマグニチュードと呼ぶことが多い。Mが1大きくなるとエネルギーは約32倍、2大きくなるとちょうど1000倍となる。

人類の観測史上最も大きな地震、つまりマグニチュード(Mw)が最も大きかったのは、[[1960年]]の[[チリ地震]](Mw9.5、Ms8.5)である。

ある地震のマグニチュードであっても、機関によって異なったり、複数の値を発表する場合がある。例えば[[東北地方太平洋沖地震]]のマグニチュードは9.0とされているが、これはモーメント・マグニチュードであり、従来の気象庁マグニチュードでは8.4である。なお発生直後から数度訂正されていて、気象庁マグニチュードで7.9と速報したが、後に8.4と修正し、さらにモーメントマグニチュードで8.8と発表し、最終的に9.0とした。[[アメリカ地質調査所]](USGS)は独自にモーメントマグニチュード9.0と発表している<ref>[http://www.usgs.gov/newsroom/article.asp?ID=2727&from=rss_home USGS Updates Magnitude of Japan’s 2011 Tohoku Earthquake to 9.0] USGS</ref>。

=== 震度 ===
{{Main|震度}}
地震動の大きさを表す数値として、[[速度]]や[[加速度]]、[[変位]]などがある。[[建築物]]や[[土木]]構造物の[[耐震]][[設計]]の分野では[[応答スペクトル]]や[[SI値]]という指標も、地震動の大きさを表す方法として広く用いられている。一般的には、被害の大きさなどを考慮して、地震動の大きさを客観的に段階付けた[[震度]]という指標が用いられる。

震度については、[[日本]]では[[気象庁震度階級]](通称「震度」)、[[アメリカ合衆国]]では[[メルカリ震度階級|改正メルカリ震度階級]]、[[ヨーロッパ]]では[[ヨーロッパ震度階級]](EMS)、[[独立国家共同体|CIS]]諸国や[[イスラエル]]、[[インド]]などでは[[MSK震度階級]]が現在使用されているほか、ほかにもいくつかの指標がある。

地震の規模が大きいほど震度は大きくなる傾向にあるが、震源域からの距離や断層のずれの方向、断層の破壊伝播速度、地盤の構造や性質、地震波の特性などによって地上の揺れは大きく異なる。水や空気が多く含まれ土壌粒子の固結が弱い柔らかい地層ほど、また新しい地層であるほど揺れが増幅され、一般的には[[軟弱地盤]]と呼ばれるような平野部や河川沿いや埋め立て地が揺れやすい傾向にあるが、[[地盤改良]]や基礎方式によって揺れを低減することが可能である。なお、俗に「[[キラーパルス]]」と呼ばれる周期0.5秒~2秒程度の地震波が大きな振幅で継続すると、一般家屋を含む低層建築物の被害が大きくなる傾向にある。

例えば[[東北地方太平洋沖地震]]は震度7とされているが、震度7は最大震度であって、公式に観測されたのは[[宮城県]][[栗原市]]だけであり、例えば島嶼部を除く[[東京都]]では震度5強([[千代田区]]大手町など18地点) - 震度3([[奥多摩町]]など3地点)であった。「各市町村の震度」「各地域の震度」はその市町村・地域内に設置されている複数の観測点のうち最も揺れが大きかった値である。また、震度はその地域を代表する地点に設置された震度計が示す目安値であり、実際の土地に当てはめれば地盤の状態によって近傍の観測点に比べ最大1程度の差が生じるので、必ずしも被害状況と地点震度が一致しない場合がある。

== 地震の原因と種類 ==
[[ファイル:Types of earthquakes ja.png|thumb|400px|4種類の地震の発生場所。茶色系統が大陸系、紫色系統が海洋系で、いずれも薄い色の方がプレート、濃い色の方が地殻。]]
{{See also|プレートテクトニクス}}
通常の地震は、既存の[[断層]]が動くこと、あるいは新たに断層が生じることが原因で起こる。地震の際に動く断層は1つとは限らず、大きな地震では[[震源]]に近い別の断層(共役断層)が同時に動くこともある。[[火山]]活動に伴う地震を[[火山性地震]]と呼ぶが、これには断層と関係が無いものも多く、通常の地震とは分けて考えることが多い。

地震を地下構造とプレートテクトニクスの観点から見た場合、大きく3種類に分けられる<ref>[http://www.nsc.go.jp/taishinkojo/pdf/column1.pdf コラム1 地震発生のメカニズムと活断層] 原子力安全委員会、新耐震指針の概要について</ref>。呼び方はそれぞれ複数ある。
*1.プレート同士の境界部分で発生する地震('''プレート間地震'''、'''プレート境界型地震'''、'''海溝型地震''')
** さらに「海溝型地震・衝突型境界で起こる地震・発散型境界で起こる地震・トランスフォーム断層で起こる地震」の4つに細分される。
*2.大陸プレートの内部や表層部で発生する地震('''内陸地殻内地震'''、'''大陸プレート内地震'''、'''断層型地震''')
*3. 海洋プレートで発生する地震('''海洋プレート内地震'''、'''スラブ内地震'''、'''プレート内地震''')
** さらに「沈み込む海洋プレート内地震」、沈み込んだ海洋プレート内地震(深発地震)」の2つに細分される。

プレート間地震の対軸として、内陸地殻内地震と海洋プレート内地震をあわせて'''プレート内地震'''という1つの大カテゴリーに当てはめることもある。また、火山性地震を含めて4種類とする場合もある。
* '''火山性地震'''
** 火山体周辺における断層破壊によって生じP波とS波が明瞭な'''A型地震'''、P波とS波が不明瞭で紡錘型の波形を生じる'''B型地震'''に大別される。

人工的な発破の振動などにより発生する[[人工地震]]も存在する。これに対して、自然に発生する地震を'''自然地震'''と呼ぶことがある。

地震を防災上の観点から分類した場合、直下型地震(内陸地震)、海洋型地震などに分けられる。直下型地震のうち、[[南関東直下地震]]などの都市直下型地震は防災上特に重要視されている。

また、[[地震動]]が小さい割に大きな[[津波]]が起こる地震を[[津波地震]]という(例:[[1896年]]の[[明治三陸地震]] M8.2、最大震度2~3<ref>[http://www.seisvol.kishou.go.jp/eq/higai/higai-1995.html 過去の地震・津波被害] 気象庁</ref>)。[[深発地震]]は深さによる分類、[[群発地震]]は地震の継続パターンによる分類である。

逆断層型、正断層型、横ずれ断層型といった分類は、断層型地震(内陸地殻内地震)にのみ適用される考え方ではなく、ほとんどすべての地震に適用される<ref group="注">例外として、火山の火道が圧縮されたり、爆発・爆縮によって発生する地震はこの限りでない。</ref>。これは、地震の際にずれ動く面は上記の分類に関係なく「断層」と呼ぶためである。海溝型地震は逆断層型、海嶺などで起こる地震は正断層型が多い。内陸地殻内地震は地下の応力場によってさまざまなタイプがみられる。

=== プレート間地震 ===
2つ以上のプレートが接する場所では、プレート同士のせめぎ合いによって地震が発生する。このようなタイプの地震を'''プレート間地震'''あるいは'''プレート境界型地震'''と呼ぶ。海溝で起こるものが多いため'''海溝型地震'''とも呼ばれるが、海溝よりも浅いトラフで起こるものも含まれ、また後述の通りその他の場所で起こるものも多数ある。

プレート同士の境界は、収束型(海溝と衝突型境界に細分される)、発散型、すれ違い型(トランスフォーム断層)の3種類に分けられる。発散型やすれ違い型は、地震が起こる範囲がプレート境界の周辺だけに限られ、震源の深さもあまり深くない。一方、収束型のうち海溝はしばしば規模の大きな地震を発生させ、衝突型は地震が起こる範囲が広く震源が深いことも多い。

; 海溝型地震
: [[海溝]]や[[トラフ (地形)|トラフ]]では、海洋プレートが大陸プレートの下に[[沈み込み]]、両者の境界が応力により歪みを受け、[[ばね]]のように弾性力を蓄え、やがてそれが跳ね返る時に地震が起こると考えられている。これを海溝型地震と呼んでいるが、1923年の[[関東地震]]や想定される[[南関東直下地震]]のように、海溝から離れた深いところにまで震源域は広がっている。跳ね返りで発生するといっても、実際は2つの地盤の面(プレート境界面)がずれる断層運動によって起こるものである。
: 海溝型地震は、海溝よりも大陸プレート寄りの部分で発生する。1つの細長い海溝の中では、いくつかの領域に分かれて別々に大地震が発生する。地震の規模はM7~8と大きくなることがままあり、稀に複数の領域が同時に動いて後述のようにM9を超える[[超巨大地震]]となるケースもある。1つの領域では、およそ数十~数百年ほどの周期で大地震が繰り返し発生する。規模が大きい海溝型地震が[[海洋]]の下で発生した場合、[[津波]]が発生することがある。震源断層は[[海洋プレート]]と[[大陸プレート]]の境界そのものである。震源域が広く規模が大きいため、被害が広範囲にわたることがある。
: 発生しやすい場所は、[[チリ]]、[[ペルー]]、[[メキシコ]]、アメリカの[[アラスカ]]、[[アリューシャン列島]]や[[千島列島]]、[[日本]]、[[フィリピン]]、[[インドネシア]]、[[パプアニューギニア]]、[[ソロモン諸島]]、[[フィジー]]、[[トンガ]]、[[ニュージーランド]]などの沖合いや海岸付近である。いずれも沿岸に海溝があり、大きな海溝型地震が発生する。
: 例として、2004年の[[ジャワ海溝]]における[[スマトラ島沖地震 (2004年)|スマトラ島沖地震]]や日本付近では2003年9月に発生した[[千島海溝]]における[[十勝沖地震]](Mw8.3、最大震度6弱)や2011年3月に発生した[[三陸沖]]の[[日本海溝]]における[[東北地方太平洋沖地震]](Mw9.0、最大震度7)、また近い将来の発生が指摘されている[[駿河トラフ]]における[[東海地震]]が例として挙げられ、東南海・南海沖の[[南海トラフ]]、宮城県沖の日本海溝、根室沖の千島海溝などでも発生する。[[関東大震災]]の原因となった[[関東地震]](M7.9)も[[相模トラフ]]がずれ動いた地震であり、海溝型地震に含まれる。
: 前述のスマトラ島沖地震や東北地方太平洋沖地震、過去に幾度も発生した南海トラフの巨大地震では、複数震源領域で短時間のうちに断層(プレート境界面)の破壊が起きる[[連動型地震]]となったため、広範囲における大規模な地震に発展している。また、大きな海溝型地震の後にはその震源域から離れた場所で内陸地殻内地震や海洋プレート内地震、または他の海溝型地震を誘発することがある([[誘発地震]])。
: この他、東北地方太平洋沖地震発生の引き金として、[[海底活断層]]や日本海溝から北米プレートの下に沈み込んでいる[[海山]]の関与が指摘されている<ref>[http://www.saga-s.co.jp/news/global/corenews.0.2051558.article.html 海底活断層が起こした可能性も 東日本大震災](佐賀新聞 2011年09月23日)</ref><ref>[http://www.iza.ne.jp/news/newsarticle/event/disaster/531018/ 壊れた「留め金」…海底の山の破壊が大震災誘発か](産経新聞 2011年10月8日)</ref>。1994年に発生したインドネシアの地震は海山が原因とされているが、海底活断層についてはこれまで地下深くで発生する海溝型地震への直接の関与は考えられていなかった。
; 衝突型境界で起こる地震
: 衝突型境界では、プレート同士が激しく衝突し合い、境界部分では強い圧縮の力が働いて地震が発生する。強い力によってプレートが砕け、その破片同士がずれたり、付加体がずれたりして地震が起こる。
: 大陸プレート同士が押し合い衝突している[[ヒマラヤ山脈]]・[[パミール高原]]・[[チベット高原]]や[[日本海]]東縁部などが主な発生地である。
: 日本付近での例は、[[日本海東縁変動帯]]域を震源とする地震で、1983年5月の[[日本海中部地震]](M7.7、最大震度5)、1993年7月の[[北海道南西沖地震]](M7.8、最大震度6)などが例である。
; 発散型境界で起こる地震
: 発散型境界でも、マグマの上昇やプレートの軋みなどによって地震が発生する。主に、海洋中央部の[[海嶺]]で発生し、地震の規模はそれほど大きくない。
: [[東太平洋海嶺]]、[[オーストラリア南極海嶺]]、[[中央インド洋海嶺]]、[[南西インド洋海嶺]]、[[大西洋中央海嶺]]など各地の海嶺で地震が発生する。[[アイスランド]]やアフリカの[[大地溝帯]]では、陸上にある海嶺([[地溝]])の影響で正断層型の地震が発生する。
; すれ違い型境界(トランスフォーム断層)で起こる地震
: トランスフォーム断層では、プレートのすれ違いによって地震が発生する。断層のタイプは横ずれ断層型となる。
: 主な発生地には、トルコの[[北アナトリア断層]]やアメリカ西海岸の[[サンアンドレアス断層]]などがある。
: 発生例としては、1906年4月の[[サンフランシスコ地震]](M7.8)などが挙げられる。

=== 内陸地殻内地震 ===
{{main|断層}}
海洋プレートが沈み込んでいる大陸プレートの端の部分では、海溝から数百km離れた部分まで含む広い範囲に海洋プレートの押す力が及ぶ。その力はプレートの内部や表層部にも現れるため、プレートの表層部ではあちこちでひび割れができる。このひび割れが断層である。

周囲から押されている断層では、押された力を上下に逃がす形で山が高く、谷が深くなるように岩盤が動く(逆断層)。また、大陸プレートの一部分では、火山活動によってマグマがプレート内を上昇し、プレートを押し広げているような部分がある。また、周囲から引っ張られている断層でも、引っ張られた力を上下に逃がす形で山が高く、谷が深くなるように岩盤が動く(正断層)。また、押される断層・引っ張られる断層であっても、場所によっては断層が水平にずれ、岩盤が上下に動かないこともある(横ずれ断層)。多くの断層は、正断層型・逆断層型のずれ方と、横ずれ断層型のずれ方のどちらかがメインとなり、もう一方のずれ方も多少合わさった形となる。

このようなタイプの地震を'''内陸地殻内地震'''あるいは'''大陸プレート内地震'''と呼ぶ。[[伊豆半島]]や[[ニュージーランド]]などは海洋プレート上に位置しているが、これらの場所で起こる内陸地殻内の地震もこのタイプの地震として扱われることがある。このタイプの地震では地表に断層が出現しやすいため、'''断層型地震'''、'''活断層型地震'''などとも呼ぶが、プレート間・大陸プレート内・海洋プレート内地震は全て断層で発生することに注意する必要がある。内陸の断層は都市の直下や周辺にあることも少なくなく、'''直下型地震'''とも呼ぶが、関東地震のように陸地の直下を震源とする海溝型地震もあるため、それと区別する意味で「陸域の浅い場所を震源とする地震」のような言い方もされる。

地震の規模は活断層の大きさによるが、多くの断層はM6~7、大きいものではM8に達する。海溝型地震と同じように、長い断層はいくつかの領域に分かれ、別々に活動する。同一の活断層での大きな地震の発生は、数百年から数十万年に1回の頻度とされている。都市の直下で発生すると甚大な被害をもたらすことがあるが、大きな揺れに見舞われる範囲は海溝型地震と比べると狭い領域に限られる。初期微動を検知するという原理上、ごく浅い場所で発生したものは[[緊急地震速報]]が間に合わないこともある。

1976年7月の[[唐山地震]](M7.8)、1995年1月の[[兵庫県南部地震]](M7.3、最大震度7)や2000年10月の[[鳥取県西部地震]](M7.3、最大震度6強)、2004年10月の[[新潟県中越地震]](M6.8、最大震度7)や2007年3月の[[能登半島地震]](M6.9、最大震度6強)、新しいものでは[[2008年]][[6月14日]]に発生した[[岩手・宮城内陸地震]](M7.2、最大震度6強)や2010年1月の[[ハイチ地震]](Mw7.0)などが該当する。

[[アメリカ西海岸]]、[[ニュージーランド]]、[[日本]]、[[中国]]、[[台湾]]、[[フィリピン]]、[[インドネシア]]、[[アフガニスタン]]、[[イラン]]、[[トルコ]]、[[ギリシャ]]、[[イタリア]]、[[スイス]]などに活断層が密集しており、大きな断層型地震が頻発する。

このタイプの地震はしばしば甚大な被害をもたらすため、将来の地震発生予測を目的に、1980年以後日本全土の活断層が調査され、危険な断層を順次評価している。兵庫県南部地震の前に公表された活断層の地図には他の大断層類と同時に「危ない断層」として有馬・高槻・六甲断層帯が危険と表示されていた。この調査作業は2009年現在も継続して続けられている。

一方、ヨーロッパ中部・北部、アメリカ中部、オーストラリアなどには、過去の[[造山運動]]に伴ってできた断層があるが、その中には現在も動いている活断層がある。このような断層は、時々動いて最大でM4~5程度の地震を起こし、稀に被害が出ることもある。また、そのような地域でも[[ニューマドリッド断層帯]]のように活断層が存在し、頻繁に活動している場合がある。

=== 海洋プレート内地震 ===
沈み込みの運動をしている海洋プレートでも地震が発生する。このようなタイプの地震を'''海洋プレート内地震'''あるいは'''プレート内地震'''と呼ぶ。単にプレート内地震と呼ぶときはほとんどの場合このタイプを指し、大陸プレート内地震は含まれない。プレート間地震と合わせて'''海溝型地震'''と呼ぶこともある<ref>[http://www.j-shis.bosai.go.jp/subduction-zone-eq-and-active-flts-eq 海溝型地震と活断層型地震] - 防災科学技術研究所</ref>。海洋プレートにおける地震は大きく以下の2種類に分けられる。「沈み込んだ海洋プレート」では震源が深くなる傾向にあり、「これから沈み込む海洋プレート」では浅くなることが多い。

; 沈み込んだ海洋プレート内で起こる地震
: 海溝を経て大陸プレートの下にもぐりこんだ海洋プレートは、[[マントル]]の中を沈み込んでいる途中で割れたり、地下深部で[[スタグナントスラブ]]となって大きく反り返って割れたりして、地震を発生させることがある。海洋プレートが沈み込んだ部分である[[スラブ]](板=プレート)の中で発生するので、'''スラブ内地震'''と呼ばれる。また、震源が深いことから'''[[深発地震]]'''とも呼ばれる。
: 一般に[[震源]]が深く、したがって震源と[[震央]]の距離は長い場合が多いにもかかわらず、規模が大きなものは被害としては侮れない。また深い分、広範で最大震度に近い揺れに見舞われることにもなる。地震波の伝わりやすさは、プレートの位置関係やマントルの深さなどでそれぞれ異なるため、震源から離れた場所で揺れが大きくなる[[異常震域]]が発生しやすいのも特徴である。
: [[20世紀]]末以降の例では、1987年12月の[[千葉県東方沖地震]](M6.7、深さ50km、最大震度5)、1992年2月の浦賀水道の地震(M5.7、深さ92km、最大震度5)、1993年1月の[[釧路沖地震]](M7.5、深さ101km、最大震度6)や2003年5月の[[三陸南地震|宮城県沖の地震]](M7.0、深さ71km、最大震度6弱)のような被害事例が見られる(注:2003年9月17日に[[気象庁]]は[[マグニチュード]]算出方法が改訂し、これにより過去の地震も修正された。ここではそのマグニチュードを用いている)。
: 福島県沖や茨城県沖で頻繁に発生する地震のほか、2001年3月の[[芸予地震]]もこのタイプである。
; これから沈み込む海洋プレート内で起こる地震
: 海洋プレートが陸地側に潜り込んだ歪みを解消するため陸地側プレートが反発した時に、プレート境界型地震が起こる。歪みはこれから沈み込む海洋プレート側(海溝よりも更に沖側)にもたまっており、海底が隆起している場合がある(アウターライズ・海溝上縁隆起帯)。この歪みはプレート境界型地震の発生によって解消されるとは限らず、プレート境界型地震の前後などに、解消されなかった歪みによってずれや割れが生じ、地震を発生させることがある。アウターライズ(海溝上縁隆起帯)で発生するため、主に'''アウターライズ地震'''と呼称される(なお、こちらもスラブ内地震とする場合がある)。
: 一般に反り返った先のもっとも高い(浅い)場所が[[張力]]を受けて破壊される正断層型の地震が多い。これとは逆に震源が深い場合は[[圧力]]が働き逆断層型となる。遠方の海域で発生するため、陸地において地震の揺れそのものによる被害は少ないことがほとんどであるが、1933年3月の[[昭和三陸地震]]や2007年1月の[[2007年千島列島沖地震|千島列島沖の地震]]のようにM8を超える地震がしばしば発生し、海溝型地震に匹敵する津波災害を引き起こすことがある。また、大きなプレート境界型地震の後に発生する場合もあることから警戒を要するものである。

=== 火山性地震 ===
海溝の周辺の[[火山弧]]、[[ホットスポット (地学)|ホットスポット]]、[[海嶺]]、[[ホットプリューム]]の噴出地域では、マグマの移動や熱せられた水蒸気の圧力、火山活動に伴う地面の隆起や沈降が原因となって地震が発生する。これらの地震を'''[[火山性地震]]'''という。火山性地震は断層の動きだけでは説明できない部分があるので、上記の3分類とは分けて考えることが多い。地震動も上記の地震とは異なる場合がある。

火山性地震は地震動の性質から2つのタイプに分けられる。P波とS波が明瞭で、一般的な断層破壊による地震と大差がないA型地震、および紡錘型の波形を持つB型地震である。B型地震はさらに周期の違いによってBL型地震とBH型地震に分けられる。広義では火山性微動も地震に含む。

また、火道の圧縮やマグマの爆発・爆縮によって、一般的な断層破壊では見られない特殊な発震機構(メカニズム)を持つ地震も起こりうる。

=== その他 ===
; 誘発地震
: 人為的な原因によって引き起こされる地震。
;; 大質量の移動による誘発
:: [[超高層建築物]]・[[ダム]]の建設、地面の掘削・造成、石炭・石油や天然ガスなどの[[採掘]]が地下構造を変え、地震を誘発することがある。また、ダムの貯水でも地下の岩盤における[[間隙水圧]]・[[応力]]が変化して地震を誘発することがある。
:: [[1940年]]には、[[アメリカ合衆国|アメリカ]]の[[フーバーダム]]付近でM5の地震が発生した。また、[[インド]]・[[マハラシュトラ州]]西部の[[コイナダム]]付近では、[[1962年]]の貯水開始後から[[地鳴り]]と小さな地震が発生し、[[1967年]][[12月10日]]にはM6.3の地震が起こり180人が死亡、およそ2000人が負傷した。同時期にはダムは最高水位に達しており、貯まった水の[[水圧]]によって誘発されたものだとされている<ref>[http://homepage2.nifty.com/kasida/environment/yuuhatu-jisin.htm ダムが地震を起こす] 週刊プレイボーイ2003年7月8日号</ref>。
;; 電流による誘発
:: 地中に電流を流すことで地震が誘発されると言う実験結果がある。[[ソビエト連邦]]が[[キルギス]]の[[天山山脈]]で、2.8kAの電流を百回以上地下に流し込む実験を行ったところ、約2日後から地震が増え、数日のうちに収まるという現象が起こった<ref>[http://www.geocities.jp/semsweb/Uyeda_070309.html 上田誠也「地震予知研究の歴史と現状」|学士会会報 2007-IV No.865]</ref>。
;; 流体注入による誘発
:: 水分やガスといった流体が地中に注入されることで地震が誘発されることがある。なお、自然界でも同様の現象が発生している([[地震#地震発生のきっかけ|後述]])。
:: [[ロッキー山脈]]のアメリカ軍の兵器工場で、1962年3月から深さ3670メートルの地下に放射性の廃水を廃棄し始めたところ、1882年以来80年間も地震が全くなかった場所に地震が発生し始めた。注入量や圧力に比例するように地震の数が増減した<ref name="shima">[http://shima3.fc2web.com/sekou9701damzisin.htm 島村英紀「人間が起こした地震」]</ref>。また、2007年12月に[[スイス]]の[[バーゼル]]で[[地熱発電]]に利用する蒸気を発生させるために地下5000メートルの[[花崗岩]]層に熱水を注入したところ、最大M3.4の地震が2度発生した。この地域では以前から有感地震が発生していた<ref>[http://www.excite.co.jp/News/odd/00081168364152.html 地震続発で地熱発電計画にストップ バーゼル]</ref>。同様に、鉱山内のガス流体による地震の誘発作用も示唆されている<ref>[http://china.jst.go.jp/D/W0942A/08A0704201.html 「鉱山地震活動、ガス爆発およびこれらと震源物理研究との関係の重要性」]</ref>。また、[[シェールガス]]採掘のために地中に注入された水が引き金となった事が報告されている<ref>[http://science.slashdot.org/story/11/11/03/1437255/minor-quakes-in-the-uk-likely-caused-by-fracking Minor Quakes In the UK Likely Caused By Fracking]記事:2011年11月03日 閲覧:2011年11月08日</ref>。

;地震以外の発振現象
:地震とは異なり、断層のずれを伴わずに地表に揺れを引き起こす発振現象。
;; 氷震
:: [[氷河]]の運動によって、自然地震に似た発振現象([[氷震]])が発生している<ref>[http://www.nikkei-science.com/topics/bn0901_1.html NEWS SCAN 2009年1月号:日経サイエンス「氷河の健康状態を診断する新手法」]</ref>。
;; 人工震源
::{{Main|人工地震}}
:: 主に[[爆弾]]の爆発などがある。土木工事などに使われる[[発破]]は地震波を発生させるが、「P波に比べてS波が小さい」、「表面波が卓越する」、「すべての観測点で押し波となる」などの特徴があり、自然地震との判別は可能である。核爆発によるものは、代表的な人工震源のひとつである。

== 地震発生のきっかけ ==
地震発生までのメカニズムは徐々に明らかになっているが、地盤や岩盤に溜まった応力の解放を促している'''引き金'''が何であるかはほとんどが謎のままになっていて、はっきりとした特定はなされておらず、様々な説が展開されている。この引き金に関しては、[[相関]]性の比較により[[統計学]]的に相関を見出すことは可能であるが、それが[[因果性|因果関係]]であるかを同定するのは地震学的な研究に頼るもので、分野が少し異なる。

; 水分の流入
: [[兵庫県南部地震]]が[[フィリピン海プレート]]から生じた水によって誘発されたという説がある<ref>[http://www.anago.co.jp/president/great_hanshin/cause/cause.htm 「フィリピン海プレートの水分が阪神淡路大震災を誘発か?」]1999年3月9日付神戸新聞</ref>。また[[東北大学]]によれば、[[新潟中越沖地震]]や<ref>[http://www.yomiuri.co.jp/feature/fe7600/news/20070807it01.htm 中越沖地震、直下のマグマが原因か] 2007年8月7日付読売新聞</ref>、[[岩手・宮城内陸地震]]など複数の地震は断層直下のマグマが冷えたことで発生した水分が潤滑油の役割を果たし地震を発生させたとしている<ref>[http://www.yomiuri.co.jp/science/news/20091024-OYT1T00028.htm 岩手・宮城地震、水が断層滑らす?…東北大分析]2009年10月24日付読売新聞</ref><ref>[http://www.yomiuri.co.jp/e-japan/miyagi/news/20100117-OYT8T00100.htm 岩手・宮城内陸地震 断層に入った水原因か]2010年1月17日付読売新聞</ref>。7つの火山島からなる[[アゾレス諸島]]では、雨が降ると2日後に小さな地震が起こったり<ref name="shima"/>、鉱山の水没域では、雨水が流れ込み地震が誘発されることがあったりする<ref>[http://www.ritsumei.ac.jp/se/~ogasawar/Research/Ikuno_rain_J.pdf 立命館大学「水没した1km深鉱山で地下水変化に誘発された地震」]</ref>。
; 潮汐力
: [[太陽]]や[[月]]との[[潮汐]]が発生の引き金になるとの指摘もある。満月と新月時に強まった潮汐力が地震を誘発する可能性が指摘されており<ref>[http://www.sciencemag.org/cgi/content/abstract/1103961v1 Earth Tides Can Trigger Shallow Thrust Fault Earthquakes]</ref><ref>[http://plaza.harmonix.ne.jp/~frisky/sub/eq.html 地震と潮汐力の関係]</ref>、防災科学技術研究所は、スマトラ島沖では[[スマトラ島沖地震 (2004年)|2004年の地震]]の8年前から潮汐力が強まった時間帯に地震が集中していたため、歪みが溜まっている地域では潮汐力が地震の引き金になっている可能性が高いとしている<ref>[http://www.yomiuri.co.jp/science/news/20100129-OYT1T00611.htm 地震、月や太陽の引力が「最後の一押し」科学 YOMIURI ONLINE(読売新聞)]</ref>。
; 地震
: 遠く離れた場所で発生した地震が時間をおいて別の地震を誘発する可能性が指摘されている<ref>[http://www.natureasia.com/japan/nature/updates/index.php?i=63895]閲覧には登録が必要</ref>。
{{Main|誘発地震}}
<!--; その他
: [[太陽嵐]]による[[太陽風]]によって地球に蓄積した[[モノポール]]や<ref>[http://www.menokami.jp/suisei.html なぜ彗星と地震なのか]日本地震予知協会</ref>、宇宙から地球に降り注いでいる[[宇宙線]]が引き金になる可能性も示唆されている<ref>2008年11月15日放送「[[博士も知らないニッポンのウラ]]」039より。</ref>。-->

== 地震の原因論とメカニズム論の展開 ==
=== 神話 ===
日本では古来より「地中深くに大[[ナマズ]]が存在し、その大ナマズが暴れることにより大地震が起きる」という俗説が信じられていた。その為なのか、一部の人々には今でもナマズが暴れると大地震が来ると信じられている。だが、ナマズが地震を予知できる根拠は見つかっていない。江戸時代には[[安政の大地震]]を期に[[鯰絵]]と呼ばれる[[錦絵]]が流行するなど、日本人にとって地震とナマズが身近な関係にあったことが伺える。また、[[鹿島神宮]]にはこの大ナマズを抑えるという[[要石]]があり、地震の守り神として信仰されている。地震避けの呪歌に、[[万葉集]]の歌を使った「ゆるぐともよもや抜けじの要石鹿島の神のあらむ限りは」(要石は動きはしても、まさか抜ける事はないだろう、[[武甕槌神]]がいる限りは)というものがある。

[[北海道]]の[[アイヌ民族]]には、「地下には巨大な[[アメマス]]が住んでいる。これが暴れて地震が起きる」という、日本とよく似た伝承があった。そこで地震が発生すれば、地震鎮めの呪いとして[[囲炉裏]]の灰に小刀や火箸を刺し、アメマスを押さえつけるまねごとをした。

中国では古来から、[[陰陽説]]の考え方を背景にして、地震とは陰の性質を持った大地から陽の性質を持った大気が出てくるときに起こるものという説明があった。また[[福建省]]では、地震を起こすのは[[ネズミ]]であると言う神話上の伝承が存在する。

[[北欧神話]]においては地底に幽閉された[[ロキ]]が、頭上から降り注ぐ蛇の毒液を浴びたときに震えて地震が起きるとされている(詳細はロキを参照のこと)。[[ギリシア神話]]では[[ポセイドン]]が地震の神とされた。

=== 科学的探究 ===
[[古代ギリシア]]では、自然哲学者[[アナクシメネス]]が[[土]]が大地の窪みにずり落ちることが原因だと考えた。[[アナクサゴラス]]は地下で激しく[[水]]が流れ落ちることを原因と考えた。その後、[[アリストテレス]]は[[四元素説]]を基に、地震は地中から蒸気のような[[プネウマ]](気、空気)が噴出することで起こると説明した。これらを受けて、[[セネカ]]は地下での蒸気の噴出によって空洞ができ、そこの地面が陥没するときに地震が起こるという説を立てた。時は変わって、[[アラビア]]では[[イブン=スィーナー]]が、地面が隆起することが原因だとする考えを示した。

18世紀には、[[1755年リスボン地震|リスボン地震]]をきっかけに[[ジョン・ミッチェル (天文学者)|ジョン・ミッチェル]]が地震の研究を行い、火山の影響で地中の水蒸気が変化を起こすことが原因という説を発表した。

19世紀末には、[[お雇い外国人]]として[[日本]]にいた[[ジョン・ミルン]]や[[ジェームス・アルフレッド・ユーイング]]が地震を体験したことがきっかけとなり、[[日本地震学会]]が設立され、[[地震計]]の開発や地震の研究が進み始めた。地震の波形から震源を推定する方法が発見されたり、[[アンドリア・モホロビチッチ]]が[[モホロビチッチ不連続面]]を発見して地球の内部構造の解明の足がかりとなったりした。ミルンは、イギリスで地震の研究を進めて同国に近代地震学が確立された。現在イギリスには世界中の地震の観測情報を集積している[[国際地震センター]] (ISC) が設置されている。

また20世紀に入って、[[リチャード・ディクソン・オールダム]]が地球の[[核 (天体)|核]](コア)を発見、[[ベノー・グーテンベルグ]]が[[グーテンベルク不連続面]]を発見するなどし、[[地球物理学]]が次第に進展するとともに、[[アルフレート・ヴェーゲナー]]の[[大陸移動説]]から発展した[[マントル対流説]]や[[海洋底拡大説]]が[[プレートテクトニクス]]にまとめられ、地震の原因として[[断層地震説]]と[[弾性反発説]]が定着した。

ただ、断層地震説と弾性反発説によって一度否定された[[岩漿貫入]]などは、2説を補完する説として考える学者もいる。また、[[地球空洞説]]に原因を求めるなど、これらとはまったく異なる説を展開する学者や思想も、少数ながら存在している。

===その他===
*仏教では、地震は傲慢と不平が原因で起こされる自然災害であり、自然災害が起きるのを防ぐには戒定慧を勤修し、三毒を息滅することが必要だと教えている。

== 地震動・地震波と揺れ ==
[[ファイル:Sisma three components.jpg|thumb|200px|地震の波形。■:東西動成分、{{color|blue|■}}:南北動成分、{{color|red|■}}:上下動成分。]]
[[ファイル:Ondes P et S 2d 30.gif|thumb|200px|P波とS波の伝わり方を示したアニメーション]]
地表では、P波による揺れが始まってからS波が到達するまでは、[[初期微動]]と呼ばれる比較的小さい揺れに見舞われる。その後、S波が到達した後は[[主要動]]と呼ばれる比較的大きい揺れとなる。震源から数十km以上と離れている場合にはこのような揺れの変化が感じられるが、震源が近い場合はP波とS波がほぼ同時に到達するため分からない。また震源から近い場所では、P波が到達する前後にレイリー波も到達し、同じく揺れを引き起こす。S波は液体中を伝播しないため、海上の[[船]]などでは、P波のみによって発生する'''[[海震]]'''と呼ばれる揺れに見舞われる。

被害を引き起こすような揺れのもとは主にS波だが、レイリー波、ラブ波、P波も振幅や周期によっては被害を引き起こすような揺れとなる。

地震波/地震動の周期は、被害を受ける構造物と一定の関係性がある。構造物にはそれぞれ、[[固有振動]]周期の地震波に[[共振]]しやすい、周波数が違うと曲げ・ねじれ・伸縮などの変形の「型」も変わるといった、地震動を受けた際の振動特性があり、[[地震工学]]や[[建築工学]]においては重要視される。[[構造計算]]においては、さまざまな固有振動周期や減衰定数をもつ構造物の[[応答スペクトル]]を解析して、地震動に対する構造物の特性をみる。

例えば、[[日本家屋]]のような[[木造住宅]]は周期1秒前後の[[短周期地震動]]が[[固有振動]]周期にあたるため、周期1秒前後の地震動によって[[共振]]が発生し非常に強く建物が揺さぶられ、壊れやすく被害が拡大しやすい。一方、[[高層建築物]]は周期5秒以上の[[長周期地震動]]が固有振動であり、地震波が堆積平野を伝わる過程で増幅しやすい[[長周期地震動]]によって、平野部の高層建築物の高層階では大きな被害が発生する。このほかに、M9を超えるような巨大地震の際に観測される、[[超長周期地震動]]または地球の[[自由振動]]と呼ばれる周期数百秒以上の地震動がある。この超長周期地震動の中には[[地球]]の固有振動周期に当たる地震動もあり、地球全体が非常に長い周期で揺れることもある。

地下の構造、特に地面に近い表層地盤の構造や地下のプレートの構造によって、地震動全般に対する揺れやすさ、揺れやすい周期、あるいは地震波の伝わり方が異なる。そのため地震の際、震度が震央からの距離に完全に比例して、きれいに同心円状に分布することはほぼない。稀に震央と異なる地域で揺れが最も大きくなることがあり、[[異常震域]]と呼ばれる。一般的に、地表の[[含水率]]や[[間隙率]]が高い[[泥]]質地盤が最も揺れやすく、礫が多くなり岩盤に近くなるほど揺れにくくなる。また、[[完新世]](1万年前以降)に堆積した[[沖積層]]など新しい層に厚く覆われていると揺れやすく、[[洪積層]]([[更新世]]、258万年~1万年前)やそれ以前([[新第三紀]]かそれ以前)の層に覆われていると揺れにくい傾向にあるが、一概には言えず、厳密には[[地盤調査]]による[[N値 (ボーリング調査)|N値]]や[[基盤岩]]深度などから推定する。

また、多くの地震計は周期0.2~0.3秒前後の地震動を感知しやすいため、周期0.2~0.3秒で大きく周期1秒で小さい地震では震度に比べて被害が軽かったり、逆に、周期0.2~0.3秒で小さく周期1秒で大きい地震では震度に比べて被害が甚大だったりといったことが起こる。ただし、これには地震計の設置場所と地下構造の問題もあるとされる[http://www.kz.tsukuba.ac.jp/~sakai/myg.htm]。

地震の揺れの[[速度]]を表す単位として、カイン(kine, [[メートル毎秒#センチメートル毎秒|センチメートル毎秒]])がある。また、地震の揺れによる[[加速度]]を表す単位として、[[ガル]](gal, [[センチメートル毎秒毎秒]])がある。1秒間に1カインの加速度が1ガルである。

地震動や地震波は[[地震計]]により観測される。揺れの周期や[[感度]]、[[振幅]]などにあわせてさまざまな種類のものがあり、担当機関でもいくつかの種類の地震計を使い分けている。日本では[[気象庁]]や[[防災科学技術研究所]]が地震計を多数設置していて観測網を作っている。これらは震度を算出したり、震源の位置や規模を推定することに利用されている。

== 主な地震帯と地震の頻度 ==
[[ファイル:Quake epicenters 1963-98.png|thumb|300px|1963年から1998年に発生した地震の分布図。地震の震央の分布にはっきりしたパターンがある。]]
主な地震の震源を地図にして地球の表面を概観すると、プレートテクトニクス理論における「[[環太平洋造山帯]]」や「[[アルプス・ヒマラヤ造山帯]]」の周辺は地震が特に多い地域があることが分かる。前述の2つの造山帯も含めた[[新期造山帯]]で最も地震が多く世界の地震活動の大部分を占める。このほか、ヨーロッパ西部やアジア北部などの[[古期造山帯]]でも比較的多く地震が発生する。

これらの地域は造山帯または地震帯([[火山]]に着目した場合火山帯とも呼ぶ)と呼ばれ、地殻や地面の活動(移動)が活発で、地震も活発である。しかし、この地図はあくまで一定期間に発生した地震を集計したものであり、「地震の起こりやすさ」を表したものである。この地図で地震が少ない地域でも、絶対に地震が発生しないわけではない。

ただし、地震の多い地域と、地震による被害が大きい地域は異なる。地盤の揺れやすさ、[[人口密度]]の大小、建造物の強度、社会情勢などによって被害や救助復旧の様子が異なるためである。一方、同じ地域においても、地震が発生する時間や時期などによっても被害は異なり、例えば調理を行う食事時間前や暖房を多く使う時間帯においては[[火災]]の多発、大都市では平日昼間における[[帰宅困難者]]の発生などが挙げられる。また、地震の規模が大きくなるほど断層の長さが長くなり、被害地域が広くなる傾向にある。津波が発生した場合は、揺れが小さい沿岸部や揺れが全くなかった遠隔地に津波が押し寄せ被害をもたらす。[[ハワイ諸島]]などは太平洋の中心にあって周囲に島が少ないため、環太平洋各地の遠隔地津波を受けやすいことで知られる。

{| class="wikitable" style="float:right"
|-
! colspan="2" style="background:#ccccff" | 世界の年間平均地震発生回数
|-
! マグニチュード
! 回数
|-
! 8.0~
| style="text-align:right" | 1 <small>注1</small>
|-
! 7.0~7.9
| style="text-align:right" | 17 <small>注2</small>
|-
! 6.0~6.9
| style="text-align:right" | 134 <small>注2</small>
|-
! 5.0~5.9
| style="text-align:right" | 1,319 <small>注2</small>
|-
! 4.0~4.9
| style="text-align:right" | 13,000 <small>注3</small>
|-
! 3.0~3.9
| style="text-align:right" | 130,000 <small>注3</small>
|-
! 2.0~2.9
| style="text-align:right" | 1,300,000 <small>注3</small>
|-
| colspan="2" style="font-size:small" | [http://neic.usgs.gov/neis/eqlists/eqstats.html USGSの資料]による。<br />注1:1900年以降の平均。<br />注2:1990年以降の平均。<br />注3:推定。
|}
世界では、1年間にM5以上の地震が平均約1,500回、M2以上の地震が平均145万回発生している。数の上では、世界で発生する地震の1割程度が日本付近で発生しているといわれ、また1996年から2005年の期間では世界で発生したM6以上の地震の2割が日本で発生しているとの統計があり[http://www.bousai.go.jp/hakusho/h18/BOUSAI_2006/html/zu/img/zu1_1_01.jpg]、客観的に見ても日本は地震の多い国と考えられる。

地震の発生の頻度が過去と比べて増加したかどうかということは、局地的に見ることはできても、全世界的に見ることは現状では難しい。地震の発生数のデータは、地震計の精度の向上や観測点のネットワークの状況などに左右される。世界的に見ても目が細かい日本の[[高感度地震観測網]]でも[[1990年代]]後半以降のデータであり、世界を見ても微小地震・極微小地震を捉えられるような観測網は少なく、海底となればその傾向は顕著である。

=== 主な活断層・海溝 ===
防災上、地震を引き起こす可能性の高い活断層の存在は注目される。日本では主要な数百の活断層の位置と再来間隔や規模などが調査・発表されている。活断層と同様に[[活褶曲]]も地震を発生させうるほか、活断層が無い地域に新たに断層が発生する可能性も否定できない。そのため、活断層の調査を中心とした地震防災に対する批判も存在している。

地球上の活断層([[地溝]]・[[海溝]]などを含む)のうち、主なものを挙げる。これらは周期的に大地震を発生させると考えられている。このほか、地震活動が活発で多くの活断層を擁する[[歪集中帯]]と呼ばれる地域がある。

; 断層
{{Main|断層#代表的な活断層の例}}
* [[糸魚川静岡構造線]](日本、[[本州]]中部)
* [[中央構造線]](日本西部 <small>※活断層部分のみ</small>)
* [[アルペン断層]]([[:en:Alpine Fault|en]])([[ニュージーランド]][[南島]])
* [[カラヴェラス断層]]([[:en:Calaveras Fault|en]])(アメリカ、[[サンフランシスコ・ベイエリア]])
* [[ヘイワード断層帯]]([[:en:Hayward Fault Zone|en]])(アメリカ、[[サンフランシスコ湾]]東岸)
* [[サンアンドレアス断層]](アメリカ、[[カリフォルニア州]])…[[1906年]][[サンフランシスコ地震]]
* [[ニューマドリッド断層帯]](アメリカ中部 ※古期造山帯)
* [[グレートグレン断層]]([[:en:Great Glen Fault|en]])(グレートブリテン島、[[スコットランド]] ※古期造山帯)
* [[北アナトリア断層|アナトリア断層帯]]([[トルコ]]北部)…[[イズミット地震 (1719年)|1719年]]・[[イズミット地震 (1999年)|1999年イズミット地震]]
* [[スマトラ断層]](インドネシア、[[スマトラ島]])
; 海溝・沈み込み帯
{{Main|海溝#主な海溝}}
* [[チリ海溝]]([[チリ]]西岸)…[[1960年]]・[[2010年]][[チリ地震]]
* [[ペルー海溝]]([[ペルー]]沿岸)…[[2001年]]・[[2007年]][[ペルー地震]]
* [[中央アメリカ海溝]]([[:en:Middle America Trench|en]])(中央アメリカ西岸)…[[1985年]][[1985年メキシコ地震|メキシコ地震]]
* [[カスケード沈み込み帯]]([[:en:Cascadia subduction zone|en]])([[北アメリカ]]西海岸沖)…[[1700年]][[カスケード地震]]<ref>[http://www.aist.go.jp/aist_j/press_release/pr2003/pr20031121/pr20031121.html 北米西海岸で西暦1700年に発生した巨大地震の規模を日本の古文書から推定]([[産総研]])</ref>
* [[アリューシャン海溝]]…[[1946年]]・[[1957年]]・[[1965年]][[アリューシャン地震]]、[[1964年]][[アラスカ地震]]
* [[千島海溝]]([[北海道]]南東沖・[[千島列島]]南岸)…[[1952年]]・[[2003年]][[十勝沖地震]]、[[1894年]]・[[1973年]][[根室半島沖地震]]、[[2006年]]・[[2007年]][[千島列島沖地震]]
* [[日本海溝]]([[東北]]・[[関東]]太平洋沖)…[[1896年]]・[[1933年]][[三陸沖地震]]、[[1936年]]・[[1978年]][[宮城県沖地震]]、[[2011年]][[東北地方太平洋沖地震]]
* [[相模トラフ]]([[相模湾]]沖)…[[1703年]]・[[1923年]][[関東地震]]
* [[駿河トラフ]]([[駿河湾]]沖)…[[1854年]][[東海地震]]
* [[南海トラフ]]([[紀伊半島]]・[[四国]]沖)…[[1854年]]・[[1946年]][[南海地震]]、[[1854年]]・[[1944年]][[東南海地震]]
* [[スンダ海溝]]([[ミャンマー]]沖~スマトラ島南岸)…[[2004年]]・[[2005年]]・[[2007年]]・[[2010年]][[スマトラ島沖地震]]
* [[ジャワ海溝]]([[ジャワ島]]南岸)…[[2006年]][[ジャワ島南西沖地震|ジャワ島沖地震]]
* [[ケルマデック海溝]]([[ケルマデック諸島]]東岸)

=== 地震の周期性 ===
[[プレート]]や地表の動きが数百年程度の間、長期的に見て一定であれば、それぞれのプレートの境界や[[断層]]で起こる地震は一定の周期で起こると考えられており、歪みの蓄積と解放というサイクルを繰り返す。実際に、プレートの境界で起こる[[南海地震]]、[[東南海地震]]、[[東海地震]]、[[宮城県沖地震]]などでは周期性があるとされているほか、[[北アナトリア断層]]の諸地震などでも周期性が確認されている。

周期性のある地震は、一般的に[[固有地震]]といい、現在のところマグニチュード4程度以上、再来周期数年以上の地震で発見されている。過去数十年の地震であれば観測記録から分かるが、古い地震については津波堆積物の分析をしたり、古い文献を参考にしたりして推定している。

プレートの境界においては50年~300年程度<ref group="注">たとえばM8級の[[東海地震]]や[[南海地震]]は100年~150年周期で発生するとされるが、500年以上の長い周期でM8.5~9の[[東海・東南海・南海連動型地震|連動型超巨大地震]]の発生も指摘されている([http://www.agu.org/cgi-bin/SFgate/SFgate?language=English&verbose=0&listenv=table&application=fm06&convert=&converthl=&refinequery=&formintern=&formextern=&transquery=m.%20nakamura%20ando&_lines=&multiple=0&descriptor=%2fdata%2fepubs%2fwais%2findexes%2ffm06%2ffm06%7c787%7c5637%7cThe%20Assumed%20Aseismic%20Subduction%20and%20the%20Necessity%20of%20Ocean-Bottom%20Crustal%20Deformation%20Measurements%20at%20the%20Ryukyus%2c%20Japan%7cHTML%7clocalhost:0%7c%2fdata%2fepubs%2fwais%2findexes%2ffm06%2ffm06%7c38686127%2038691764%20%2fdata2%2fepubs%2fwais%2fdata%2ffm06%2ffm06.txt The Assumed Aseismic Subduction and the Necessity of Ocean-Bottom Crustal Deformation Measurements at the Ryukyus, Japan] M Nakamura, M Ando, T Matsumoto, M Furukawa, K Tadokoro, M Furumoto, AGU, 2006)。[[チリ地震]]や[[スマトラ島沖地震]]はこうしたタイプの地震であったと認識されている。</ref>(または1000年程度<ref group="注">纐纈一起(2011)は、断層のずれとひずみ量の計算から、東北沖の巨大地震の周期を400-600年(中心を438年)とした{{要出典|date=2011年10月}}。</ref>)、断層においては数百年~数十万年と、地震の周期はそれぞれ異なる。そのため、周囲のプレートの境界や断層での歪みの影響を受け、それぞれのサイクルで、歪みのかかり具合が毎回異なり、地震の周期が多少ずれることも考えられる。このずれの推定は、現在の長期的地震予知における大きな課題の1つとなっている。

1つの周期をもって繰り返し起こる一連の地震の活動のなかには、大きく分けて、歪みの蓄積、[[前駆的地震活動]]、静穏化([[地震空白域|空白域]]の形成もその一種)、[[前震]]、[[本震]]、[[余震]]などがある。このサイクルには規則性があると考えられており、観測によって現在どのような活動に当たる時期かを知ることで、[[地震予知]]に役立てようという動きがある。

専門家の中には、[[1995年]]の[[兵庫県南部地震|阪神大震災]]などを例として、「[[西日本]]([[西南日本]])は地震の"活動期"に入っているのではないか」と推測している者もいる。これは、過去の資料から西日本で周期的に発生している[[南海地震]]や[[東南海地震]]の前後で西日本の地震活動に変化があり、現在そのパターンのうち"活動期"にあるとするものである([[西日本地震活動期説]]参照)。ただ、判断するための資料が少ないと指摘する声もあり、これを否定する専門家もいる。

== 地震による被害と対策 ==
[[ファイル:柏井ビル倒壊の推移Img335 b.jpg|thumb|200px|[[阪神・淡路大震災]]により傾いたビル。この後完全に倒壊した。]]
[[ファイル:Kitchen after earthquake, Inangahua 1968.jpg|thumb|200px|地震により激しく揺さぶられ散乱した食器類。1968年ニュージーランドにて]]
[[ファイル:Hanshin-Awaji_earthquake_1995_346.jpg|thumb|200px|阪神・淡路大震災時の消火活動]]
[[ファイル:Marina Post-Tsunami Slum Chennai 1.jpg|thumb|200px|[[スマトラ島沖地震]]の津波により家を失った人たちのスラム街。2005年インド・チェンナイにて]]
[[ファイル:Chuetsu earthquake-Yamabe Bridge.jpg|thumb|200px|[[新潟県中越地震]]で被害を受けた道路と橋、地震後]]
[[ファイル:Chuetsu earthquake-Yamabe Bridge 1 year later.jpg|thumb|200px|新潟県中越地震で被害を受けた道路と橋、復旧後]]
{{main2|日本の地震対策については「[[日本における地震対策と体制]]」を}}

=== 震災 ===
{{main|震災}}
大規模な地震が発生した場合、その[[災害]]を'''[[震災]]'''(しんさい)と呼ぶ。特に激甚な震災は'''[[大震災]]'''と呼んで、地震とは別に固有の名称が付けられることがある。例えば[[関東大震災]]、[[阪神・淡路大震災]]、[[東日本大震災]]などである。しかし「関東大震災」の命名者は不明、「阪神・淡路大震災」「東日本大震災」は報道機関が使用し始めたものを基に[[閣議]]で決められたもので、「震災名」を付ける制度は作られていない(地震名は気象庁が命名する)。[[新潟県中越地震]]では、新潟県が独自に「新潟県中越大震災」という呼称をつけている。

=== 地震による主な被害 ===
; 人的被害
: 建物・家具の倒壊等による[[怪我]]および[[生命]]への危険。
: 被災、家族・親せきや友人の死去、避難生活、生活の変化などによる、[[ノイローゼ]]や[[急性ストレス障害]]・[[心的外傷後ストレス障害]](PTSD)、[[うつ病]]などの心理的被害。震災が社会的にクローズアップされると、直接被災していなくても災害特有の障害に陥る場合がある。([[災害心理学]]も参照)
; 建造物への被害
: 揺れによりまず[[柱]]・[[梁 (建築)|梁]]・[[壁]]・[[基礎]]等のひび割れが生じ、地震耐力(耐震強度)が低下すると自重とさらなる揺れによって損壊、倒壊・崩壊に至る。致命的な被害がない場合でも、強度が低下して地震や荷重に弱くなることがある。余震の多発により、本震から時間が経ってからも被害が拡大する例が多い。
: 地震により[[窓]][[ガラス]]や[[扉]]といった建具、[[ブロック塀]]、壁面のタイル等が破損・変形・落下・飛散することもある。
: 屋内ではテレビや冷蔵庫といった[[電気製品]]、書棚などの[[家具]]や[[食器]]類、置物などが転倒・落下・飛散することがある。
: [[高層建築物|高層ビル]]では長周期地震動による大きな揺れを生じることがある。[[エレベータ]]では地震感知器以外の安全装置が地震動により誤作動し閉じ込められる場合があり、大規模地震により大量の閉じ込めが発生して救援が遅れることが懸念されている。
: 体育館やプール、展示場などの大規模施設では[[天井]]や[[屋根]]が破損・落下することがある。
; 火災の発生
: 電気設備・都市ガス設備等破損により火災が発生することがある。停電復旧時の通電火災、強風を伴った場合の[[火災旋風]]が発生する場合もある。
; 地盤・斜面への被害
: 地震動によって、落石、[[地割れ]]や地盤の緩みが起こるほか、傾斜地や傾斜した地層、崖などではずれや凹凸が生じる。斜面では[[がけ崩れ]]、[[地滑り]]が発生する。地震の規模が大きい場合には[[山体崩壊]]を伴う。沖積地の砂質地盤では[[液状化現象]]や[[側方流動]]が発生することがある。河川ではがけ崩れや地滑りにより[[河道閉塞]](せき止め湖・天然ダム)が生じ、時間をおいて[[土石流]]を発生させる。寒冷地では[[雪崩]]も発生する。また、大地震後しばらくは地盤の緩みによって降雨等による土砂災害が発生しやすくなる。
; 津波の被害
: 家屋や建造物の流失、人的被害、滞留した水やゴミによる衛生環境の悪化、漁場や[[港湾]]への被害、田畑や防風林への[[塩害]]など。
; ライフラインへの影響
: (水道)取水設備・浄水設備・水道管の破損等により断水を生じることがある。ビルでは停電による送水ポンプ停止で断水となる場合もある。
: (電気)[[発電所]]・[[変電所]]の停止、鉄塔の倒壊、[[電線路|送電線]]の切断などにより停電を生じることがある。
: (ガス)都市ガスの場合、マイコンメーターの作動により地域単位で供給が遮断されることがある。また、ガス管の破損により供給が停止することがある。
: (交通)安全確認のため鉄道では運転見合わせ、高速道路などの道路では速度規制・通行規制などが行われる。地震により鉄道施設・道路施設そのものが故障・寸断されている場合には復旧に時間がかかる。都市部では[[公共交通機関]]の麻痺による大量の[[帰宅困難者]]が発生することがある。また、山間部・離島や沿岸部で土砂災害や津波によって陸上交通や港湾・飛行場が被害を受け集落が孤立することがある。
: (通信)通信施設・[[通信線路|電話線・通信系統]]そのものの損傷、あるいは安否確認・問い合わせ等の通信の殺到による回線の[[輻輳|パンク]]によって通信に重大な支障を生じる。情報源が乏しくなったり情報の錯綜・混乱を生じることがあり、災害に関する情報や生活に必要な情報が入手しづらくなったり、デマや流言が広まりやすくなる。また他方では、地震による被害の過大報道・誤報や誤った認識などによる[[風評被害]]が発生する場合もある。
; 物資の不足や生活環境への被害
: [[食糧]]・[[飲料水|水]]や生活物資の不足。家屋被害による居住場所不足、トイレ不足。
: 物資不足による価格高騰、[[闇市|ヤミ市]]の出現
; [[医療]]サービス、[[公共]]サービス、[[行政]]サービスなどの低下、機能停止。
; その他の経済的損失
: 農地への被害。商品や工場への被害。[[寡占]]商品が被害を受けた場合の経済全体への影響。
; 文化的被害
: [[文化財]]や[[天然記念物]]、[[景観]]などへの被害。文献や[[史料]]の損傷、紛失。
; 衛生状態の悪化
: 水やごみによる[[衛生]]環境の悪化、[[感染症]]の流行。
; 治安の悪化、犯罪の増加、災害時犯罪の発生
: [[スーパーマーケット]]や[[デパート]]などの店舗で食料品や生活物資などが[[窃盗]]・[[略奪]]される。支援物資の奪い合い、[[暴動]]などが発生し、[[治安]]が悪化(多くの国では近年も震災後の暴動・略奪などがしばしば発生しているが、日本では関東大震災以来、90年近くにわたって自然災害後の極度の治安悪化は起こっていない)。
: 震災を利用した[[詐欺]]、混乱に乗じた被災家屋や金融機関からの窃盗などの[[犯罪]]。
: [[刑務所]]や[[拘置所]]が崩壊すると、[[受刑者]](収容者)が脱走し、治安の悪化が進行([[ハイチ地震 (2010年)|ハイチ地震]]や[[チリ地震 (2010年)|チリ地震]]など)。

長期的に見て、地震による被害は縮小する傾向にある。これは、建造物の耐震化や地震に強い社会基盤の形成、さらに地震に関する知識や防災意識の浸透によるものが大きい。日本でも地震の被害は1948年に発生した[[福井地震]]の頃まで、人口の増加と産業の発展に比例して増加した部分もあったが、その後は住宅の耐震性・耐火性の向上とともに揺れに起因する被害は減少してきている。世界的にも、地震被害の多い地域では耐震化や防災体制の構築により被害が減少している地域もあるが、途上国を中心にいまだに有効な対策がとられていない地域も多く存在する。

地震は自然現象であり、現在の技術では押しとどめることはできないが、事前に備えておけば被害を大幅に小さくすることは可能であり、地震による災害を[[人災]]とする考え方もある。この「努力と事前対策により、想定される被害を可能な限り減らす」、すなわち「'''減災'''」の考え方を広めようという運動が2008年頃から行なわれている。
{{See also|減災}}

=== 救助と救援・復興 ===
大規模な地震が発生したときには、自分たちの出来る範囲で避難・[[救助]]・救援を行うことが救命率向上につながる。その際には、組織化されノウハウを蓄積している[[消防団]]や[[自治会]]などの[[地域コミュニティ|コミュニティ]]が大きな担い手となる。これは、公設の機関である[[消防]]・[[警察]]・[[海上保安庁]]・[[自衛隊]]なども救助・救援を行うがその能力は限られ、一刻を争う避難誘導や[[救急医療|救急]]の人員が不足するためである。地震災害の規模が大きければ大きい程、救助・救援が到達するのが遅くなる傾向にある。また通信が途絶したり夜間であったりといった、救助・救援を必要とする場所の把握が困難になる事態が発生することもあり、捜索に時間がかかる場合もある。

このような大震災が発生した場合は、国内の被災していない地域や国外より救援が来る場合もある。国連機関である[[国際連合児童基金|UNICEF]]や[[国際連合世界食糧計画|WFP]]、国際NGOである[[国境なき医師団]]、国家単位では各国の[[赤十字社|赤十字]]や日本における[[国際緊急援助隊]]などの救助隊・救援隊が、人的・物的・資金面での[[人道支援]]を行う。20世紀後半からは先進国を中心に[[災害ボランティア]]による救助・救援活動が目立ってきている。救助活動や安否確認、医療のほか、避難生活の支援、復旧活動などに、物資や金銭を送ったり、実際に出向いたりといった形で支援が行われる。日本では、「[[ボランティア元年]]」と呼ばれた[[阪神・淡路大震災]]の際に社会的運動として広がりを見せた後、[[新潟県中越地震]]、[[東日本大震災]]などで活発化した。ボランティアの受け入れ態勢不備やトラブルなどが発生したこともあるが、次第に改善されてきている。

地震災害の際の特徴として、余震により救助・救援が妨げられることが挙げられる。また、建物の中に人が閉じ込められることが多い地震被災地において、[[災害救助犬]]も多く活動している。

救助以外の行政の役割として、[[避難所]]や[[仮設住宅]]の確保、物資の提供や仕分け、情報の提供などが挙げられる。また、復興に際しては住宅再建の[[補助金]]提供などの役割を担う。

大震災に伴う地すべりや津波による浸水などによって集落単位で壊滅的な被害が発生した場合、その地域を居住に適さない危険な地域として規制し、残った住民の集団移転を行う場合がある。1970年[[アンカシュ地震]]の[[ユンガイ]]、1896年[[明治三陸地震]]・1933年[[昭和三陸地震]]の際の岩手・宮城沿岸の一部集落などが例であるが、生活との折り合いや費用の問題等で紛糾する場合がある。また、都市型震災の後に多くみられるが、大震災の原因が住居環境によるものであった場合、[[区画整理]]などの大型事業によって地震に強い[[防災まちづくり]]を実施することがある。

=== 地震発生後の対策 ===
被害の拡大を防ぐために、地震や津波の情報を迅速に伝達することも重要とされる。日本では、国内4,000地点以上に網羅された観測網により微小地震や震度を自動収集していて、気象庁が発生後数分以内での速報を行い、NHKと民間放送事業者がテレビ・ラジオで国民に広く伝えている。観測された震度の大きさによって報道体制を変えており、受け取る側でも、警察・消防・内閣などの公的機関が震度の大きさによって対応を決める。なお、NHKを中心とした一部のテレビ・ラジオでは津波警報発表時や[[東海地震関連情報|東海地震警戒宣言]]発表時に受信機を強制起動する[[緊急警報放送]]を行っているが、普及率は低い。

それ以外にも、同報系[[市町村防災行政無線]]により屋外[[スピーカー]]で津波情報や地震に対する警戒を広域に呼びかける手法も、屋外にいる者に発する主要な警告手段として広く用いられる。特に早急な避難が必要な津波の場合には、消防・消防団・警察などが地域を巡回しながら緊急車両のサイレンや拡声器などで避難を呼びかける。また、[[感震計]]により強い揺れを観測した際に自動的に警告を発する手法もある。

なお、観測網が整備されている場合に可能な地震の揺れが到達する前の対策([[地震警報システム]])として、日本では[[鉄道]]での[[ユレダス]]、テレビ・携帯電話・専用受信機などでの[[緊急地震速報]]が運用されている。これと似たシステムが、アメリカ・カリフォルニア州南部やメキシコ・メキシコシティ周辺部でも運用されている。また、常時インターネット環境にある場合に効果が高い[[P2P地震情報]]などもある。

大地震直後の[[電話]]などの[[輻輳|通信の混雑]]への対策として[[災害用伝言ダイヤル]]の設置などが行われている。[[携帯電話]]・[[PHS]]においても[[災害用伝言板サービス]]等の同様の[[World Wide Web|ウェブ]]上サービスがある。自治体や民間が協力して[[臨時災害放送局]]を設置し、被災者への情報提供が行われた例もある。また[[1990年代]]から普及した[[電子メール|メール]]、[[2010年代]]に普及した[[リアルタイム・ウェブ]]([[ソーシャル・ネットワーキング・サービス|SNS]]や[[ブログ]]・[[ミニブログ]]などの、誰もが即時発信即時共有できる情報)は生活情報や被災情報のやり取りに活用されていて、情報伝達の高速化をもたらした。しかし、震災後には情報が錯綜したり[[噂|デマ・流言]]が発生しやすく、一定の社会的信頼を有する[[報道機関]]に比べると[[口承]]・[[インターネット]]の信頼性は低いため、災害時においては各人が情報の真偽を見分ける[[メディア・リテラシー]]の必要性が高まる。

=== 地震発生前の対策 ===
[[ファイル:Kashiwa dai7 elementary school 001.jpg|thumb|right|200px|[[筋交い|筋交い(ブレース)]]による耐震補強を行った小学校の校舎。学校など[[公共]]性の高い建築物では、法規や社会的要求により高い耐震性が求められる。]]
{{seealso|土木工学|Category:建築構造}}
地震被害を防ぐ最も重要な対策の1つが、建造物の'''[[耐震]]性'''を高めることである。各国は建築関連法規により建築物の耐震性を規定しているが、地震経験の多寡によりその厳しさは異なる。日本では[[建築基準法]]とその関連法令による'''[[耐震基準]]'''([[1981年]](昭和56年)[[6月]]施行の「新耐震基準」が現行の基準であって、想定される地震動に対し概ね妥当な強度を保持できると考えられている)がこれに該当し、大地震の際などに数回改定されていて、新築建造物はこれを満たして建設しなければならない。ただ、既存の建物は建てた時に適法でも後の法改正により[[既存不適格]]となったものがあり、これは一部を除いて[[耐震補強]]を行うのは任意である。また、[[消防法]]や[[都市計画法]]にも地震防災に関係する規定が含まれる。

また、[[原子力発電所]]など揺れによる災害の危険性が高い建造物については、建設の前の[[環境アセスメント]]の段階で、地盤の強度や周囲の断層の位置・活動度などを調査し、なるべくリスクの低い場所に立地するような対策が取られている。これについては、調査が十分に行われない可能性、未知の断層や新たな断層が発生する可能性があるほか、日本では[[東日本大震災]]による[[福島第一原子力発電所事故|福島原発事故]]後に津波に対する耐性が問題となって休止・再稼働停止する原発が相次いでいる。

企業では、[[リスクマネジメント]]や[[事業継続マネジメント]](BCM)などを通じた業務継続のための対策や経済的影響への対策も必要となる。保険業界や企業を中心に、被害リスクを予め算定する[[地震PML]]という手法も普及している。

市民が行う対策としては、[[防災訓練]]や[[防災用品一覧|防災用品]]([[非常食]]や[[非常袋]]など)の準備などが代表的なものとして挙げられる。また、過去の災害の例を学んだり体験談を聴いたりすることも有用であるとされ、教育や地域において講演会として行われたり、[[本|書籍]]となったり、[[インターネット]]上で公開されたりしている。地震への防災や備えの目安として、避難場所や経路を記した防災地図、地盤の揺れやすさや地震動に見舞われる確率の地図なども自治体により作成されており、活用が可能である。地震被害からの復旧のために[[地震保険]]も用意されている。

== 過去に発生した地震 ==
{{現在進行|section=1}}
[[ファイル:Sanfranciscoearthquake1906.jpg|thumb|200px|[[サンフランシスコ地震|1906年サンフランシスコ地震]]後の町の様子。建物が崩れ、煙が上がっている。]]
[[ファイル:US_Navy_050102-N-9593M-040_A_village_near_the_coast_of_Sumatra_lays_in_ruin_after_the_Tsunami_that_struck_South_East_Asia.jpg|thumb|200px|[[スマトラ島沖地震]]による津波に襲われたスマトラ島の町の様子。水や流木が町のほとんどを覆っている。]]
{{Main2|過去に発生した世界中の地震の詳細なリスト、規模や被害による順位|地震の年表}}
有史以来、世界各地で無数の地震が発生している。その中で、多くの被害を出した地震も多数発生している。日本では、1960年以降に[[気象庁が命名した自然現象の一覧#地震|気象庁が正式に命名した地震]]が、現在約30個あるほか、それ以前にも多数の被害地震が発生している。また世界では、1980年から1999年までの20年間で、1年当たり平均約7,400人(うち日本は280人)が地震により亡くなっている[http://www2.ttcn.ne.jp/~honkawa/4380.html]。

日本およびその周辺の地震、震災など[[古地震]]として多く取り上げられる地震として、[[1923年]]の[[関東地震]]([[関東大震災]])がある。この地震では、日本の歴史上最多となる10万人以上の死者を出し、首都[[東京]]を含む広い範囲に被害を与え、[[火災]]の被害も大きかった。[[1995年]]の[[兵庫県南部地震]]([[阪神・淡路大震災]])は都市部を襲った地震の典型例であり、その後の[[建築基準法]]の見直しや防災意識の変化などに大きな影響を与えた。[[2004年]]の[[新潟県中越地震]]では震災後の避難生活に関する問題が大きく取り上げられるようになった。[[2011年]]の[[東北地方太平洋沖地震]]([[東日本大震災]])は津波によって東日本の太平洋側の広い範囲に被害を与え、[[福島第一原子力発電所事故|原発事故]]等の新たな問題も発生した。また世界的には、津波により多くの死者を出した[[2004年]]の[[スマトラ島沖地震 (2004年)|スマトラ島沖地震]]などがある。

人類史上、死者が最も多かった地震は、[[1556年]][[1月23日]]に[[中華人民共和国|中国]] [[陝西省]]で発生した[[華県地震]]で、約83万人が死亡した。これは2番目に多い[[唐山地震]]の公式統計による死者数の3倍以上である。また、人類史上、最も規模が大きかった地震は、[[1960年]][[5月22日]]に[[チリ]]西岸で発生した[[チリ地震]]で、マグニチュードは[[モーメントマグニチュード]](Mw)で9.5だった。

== 地震予知 ==
{{main|地震予知}}
地震の発生を事前に予知することで、被害を軽減する試みも、古くから行われてきた。従来の地震学の知識をもとにした、数十年~数百年単位での長期的な発生予測は公式に大掛かりなものが行われている。一方、数ヶ月~数時間単位で正確に予知することは、従来の知識からでは難しく、一般的にも困難とされている。

地震の予知と言っても、さまざまな範囲や形式があり、大きく長期予測と短期予測に分けられる。存在が判明している断層やプレートの沈み込み帯等においては、地質調査と文献の被害資料等から'''長期的な発生確率'''やその規模などを予測する手法が確立されている。期間が長いため精度の保証はできないが、ある程度の精度はあると考えられている。ただ、これを実際の地震対策に結び付けられる点はあまり多くない。

一方、短期予測に関しては、多種多様な手法が試みられている。有名なものでは、ギリシャの[[VAN法]]、[[前震]]の検知([[中華人民共和国|中国]]の[[海城地震]]で成功した)などがあるが、常に利用できる手法ではない。また、[[東海地震]]発生直前に発生すると予想されている[[プレスリップ]](前兆すべり)を検出する方法もある。一方で、現時点では科学的根拠に乏しい[[宏観異常現象]]による地震予知も試みられている。

また、仮に地震予知の手法が確立された場合、それを誰がどのように行い、いつどのように発表するかということも、現状では[[東海地震]]における[[地震防災対策強化地域]]など限られた地震・地域においてしか定まっておらず、混乱が発生する事態も考えられる。

== 地球以外での「地震」 ==
地球以外の天体においても、地球の地震に相当する、地殻の振動現象が発見されている。

月で発生する地震は[[月震]]と呼ばれ、1969年から1977年までの通算8年余りの間観測が行われた。

== その他 ==
* [[132年]]に、[[後漢]]の[[張衡 (科学者)|張衡]]が[[地震計]]の一種である「[[候風地動儀]]」を発明したとされる。口に玉をくわえた八匹の竜が八方向を向いており、[[中国]]のどこかで地震が起きると、その方向の竜が玉を落とす仕掛けになっていたという。
* 地震に関する日本最古の記録として、[[416年]]([[允恭天皇|允恭]]5年)と[[599年]]([[推古天皇|推古]]7年)に発生した地震のことが[[日本書紀]]に記されている。
* [[菅原道真]]は[[870年]]([[貞観 (日本)|貞観]]12年)に[[対策|方略試]]という当時最高峰の[[国家試験]]を受けたが、そのうちの一問が「地震ヲ弁ズ」(「地震について述べよ」の意か)というものであった。道真の答案は『菅家文草』によって読める。
* [[江戸時代]]後期に[[佐久間象山]]が[[日本]]で初となる地震を予知をする機器「地震予知器」を開発した。[[安政江戸地震]]を機に、大地震の予兆について人々から聞いた話を元に作られた道具で、磁石の先端に火薬が付けられ、その火薬が落ちると大地震が来ると言われている。科学的根拠は皆無とされている。

== 脚注 ==
{{脚注ヘルプ}}
=== 注釈 ===
<div class="references">{{reflist|group=注}}</div>

=== 出典 ===
<references />

== 関連項目 ==
{{sisterlinks|commons=Category:Earthquakes}}
* [[海震]]
* [[月震]] - [[日震]]
* [[緊急地震速報]]
* [[核実験]] - 核実験により、人工地震が発生する
* [[E-ディフェンス]] - 世界最大の震動破壊実験施設
* [[構造計算書偽造問題]]
* [[地震の年表]]
** [[地震の年表 (日本)]]
* [[防災の日]]
* [[防災訓練]]
* [[避難訓練]]
* [[予知]]
* [[宏観異常現象]]
* [[太陽黒点]]
* [[海洋研究開発機構]]
* [[活断層]]
* [[耐震]] - [[免震]]
* [[自然災害]]
* [[日本地震学会]]
* [[日本自然災害学会]]
* [[外側地震帯]]
* [[地震酔い]]

== 参考文献 ==
* {{Cite book|和書
| author = [[国立天文台]]編
| year = 2007
| title = [[理科年表]] 平成20年
| publisher = [[丸善]]
| id = ISBN 978-4-621-07902-7
}} - 過去の地震のデータ
* {{Cite book|和書
| author = [[震災予防調査会]]編
| year = 1904
| title = 大日本地震史料
| publisher = 丸善
}} - 日本における幕末までの地震史料の集大成。416年から1865年までの約2,000の地震を集めている。後に『付録大日本地震資料目録』も刊行された。
* {{Cite book|和書
| author = [[宇佐美龍夫]]
| year = 1996
| title = 新編日本被害地震総覧 : 416-1995
| edition = 増補改訂版
| publisher = [[東京大学出版会]]
| id = ISBN 4-13-060712-X
}}
<!--
* {{Cite book|和書
| author = [[宇佐美龍夫]]
| year = 2003
| title = 日本被害地震総覧 : 「416」-2001
| edition = 最新版
| publisher = [[東京大学出版会]]
| id = ISBN 4-13-060742-1
}} -->
* {{Cite book|和書
| author = 震災予防協会-理事長 那須信司編
| year = 1977
| title = 大地震の前兆に関する資料-[[今村明恒]]博士遺稿-
| publisher = [[古今書院]]
| id =
}} - 地震周期説を唱え、関東大震災と昭和21年南海大地震を明確に予言した[[今村明恒]][[東京帝国大学]]地震学教室教授の遺稿。東海地震などの連動についても明確に論考している古典。地震と火山の関係についても論考している。

* {{Cite web
|url=http://www.seismo.ethz.ch/gshap/ict/india.html
|title=A Probabilistic Seismic Hazard Map of India and Adjoining Regions
|author=S C Bhatia, M Ravi Kumar and H K Gupta
|publisher=Global Seismic Hazard Assessment Program
|accessdate=2006-08-14
}}
* {{Cite web
|author=[[鈴木善次]]
|url=http://www.shinko-keirin.co.jp/kori/science/ayumi/ayumi20.html
|title=第20回 地震とは何か
|work=科学の歩みところどころ
|publisher=[[新興出版社啓林館]]
|language=
|accessdate=2008-05-02
|accessyear=
}}

== 外部リンク ==
'''日本語'''
* [http://www.jma.go.jp/jma/ 気象庁]
** [http://www.jma.go.jp/jp/quake/ 気象庁 防災気象情報 地震情報] - 地震速報+震源・震度に関する情報+各地の地震情報
** [http://www.seisvol.kishou.go.jp/eq/ 気象庁 気象統計情報 地震・津波] - 地震・津波に関する最新情報および資料等
** [http://www.jma.go.jp/jma/kishou/know/jishin.html 気象庁 気象等の知識 地震・津波] - 地震や津波に関するメカニズム・観測・情報+過去の地震災害+東海地震などの解説
** [http://www.mri-jma.go.jp/Publish/Technical/DATA/VOL_26/26.html 地震前兆現象のデータベース] 地震火山研究部
* [http://www.bousai.go.jp/jishin/chubou/ 中央防災会議] - 内閣総理大臣や閣僚、指定公共機関の代表者、学識経験者らで構成
* [http://www.jishin.go.jp/main/ 地震調査研究推進本部] - 文部科学省の特別の機関
* [http://cais.gsi.go.jp/YOCHIREN/ccephome.html 地震予知連絡会] - 省庁の代表者や学識経験者で構成
* [http://www.bosai.go.jp/ 独立行政法人 防災科学技術研究所]
* [http://www.hinet.bosai.go.jp/ Hi-net(高感度地震観測網)]([http://www.hinet.bosai.go.jp/i/ 携帯版])
* [http://www.gsj.jp/HomePageJP.html 独立行政法人 産業技術総合研究所 地質調査総合センター]
** [http://unit.aist.go.jp/actfault-eq/ 独立行政法人 産業技術総合研究所 活断層・地震研究センター]
** [http://riodb02.ibase.aist.go.jp/activefault/ 活断層データベース] - 日本の主な活断層の平均変位速度などのパラメータ+それらの算出根拠の調査データ
* [http://wwwsoc.nii.ac.jp/ssj/ 日本地震学会]
* [http://www.eri.u-tokyo.ac.jp/index-j.html 東京大学地震研究所]
** [http://wwweic.eri.u-tokyo.ac.jp/index-ja.html 東京大学地震研究所 地震予知情報センター]
** [http://wwweic.eri.u-tokyo.ac.jp/EIC/webSEIS/SEIS_J.html webSEIS] - 最近の地震情報やこれまでの地震活動の検索をすることができる
* [http://www.adep.or.jp/ 地震予知総合研究振興会]
* [http://weathernews.jp/quake/ 直近7日間の「地震情報」] 提供[[ウェザーニュース]]
* [http://iisee.kenken.go.jp/utsu/ 世界の被害地震の表(古代から2006まで)]のデータベース、[[建築研究所|独立行政法人建築研究所]]
* [http://www.e-pisco.jp/r_quake/mt/mt_index.html 大気イオン地震予測研究会e-PISCO 全国の地震活動・M-T図] - 日本全国のM-T図(過去90日分)と震源分布図(同30日分)を閲覧できる
* [http://saigai1.com/ 災害時に役立つ情報をみんなで集めるウィキ] みんなの力で被災地へ有用な情報を届ける。
* [http://www.bousai.go.jp/ 内閣府防災情報]
** [http://www.bousai.go.jp/oshirase/h17/yureyasusa/ 「地盤のゆれやすさ全国マップ」] - PDF
** [http://www.bousai.go.jp/panf/saigai.html 「わが国の災害対策」] - PDF
* [http://www.real-time.jp/ 特定非営利活動法人リアルタイム地震情報利用協議会] - 緊急地震速報に関する研究調査や普及活動
***[http://ameblo.jp/kojp0903ajaj/ ニューステロップと同じ速さ]‐緊急地震速報情報と地震情報を提供している。

'''英語'''
*[http://earthquake.usgs.gov/ アメリカ地質調査所 (USGS) 地震]
**[http://earthquake.usgs.gov/eqcenter/recenteqsww/ USGS Latest Earthquakes in the World] - 過去7日間の世界の地震
***[http://earthquake.usgs.gov/earthquakes/recenteqsww/Quakes/quakes_big.php Latest Earthquakes M5.0+ in the World] - M5.0以上の地震
**[http://earthquake.usgs.gov/regional/world/historical.php USGS Historical Worldwide Earthquakes] - 世界の過去の主要な地震の表
***[http://earthquake.usgs.gov/earthquakes/world/historical_mag_big.php Sorted by Magnitude, Magnitude 6.0 and Greater] - M6.0以上の地震
*[http://www.iris.edu/hq/ 地震学研究機関連合 (IRIS)]
**[http://www.iris.edu/seismon/ IRIS seismic monitor] - 過去2週間の世界の地震
*[http://www.emsc-csem.org/index.php?page=home ヨーロッパ地中海地震センター (EMSC)]
*[http://www.prh.noaa.gov/ptwc/ 太平洋津波監視センター (PTWC)]
*[http://www.iaspei.org/ 国際地震学・地球内部物理学協会 (IASPEI)]
*[http://iisee.kenken.go.jp/ 国際地震工学センター (IISEE)]

{{Earthquake}}
{{プレートテクトニクス}}

{{デフォルトソート:ししん}}
[[Category:地震|*]]
[[Category:自然災害]]
[[Category:地震学]]

{{Link FA|sk}}
{{Link FA|bs}}
{{Link FA|tt}}
{{Link GA|sv}}

[[af:Aardbewing]]
[[als:Erdbeben]]
[[am:የመሬት መንቀጥቀጥ]]
[[an:Tierratremo]]
[[ang:Eorþbeofung]]
[[ar:زلزال]]
[[ast:Terremotu]]
[[az:Zəlzələ]]
[[bat-smg:Žemės kustiejėms]]
[[bcl:Linog]]
[[be:Землетрасенне]]
[[be-x-old:Землятрус]]
[[bg:Земетресение]]
[[bjn:Lindu]]
[[bn:ভূমিকম্প]]
[[br:Kren-douar]]
[[bs:Potres]]
[[ca:Terratrèmol]]
[[ckb:بوومەلەرزە]]
[[co:Terramotu]]
[[cs:Zemětřesení]]
[[cv:Çĕр чĕтренĕвĕ]]
[[cy:Daeargryn]]
[[da:Jordskælv]]
[[de:Erdbeben]]
[[diq:Erdlerz]]
[[el:Σεισμός]]
[[en:Earthquake]]
[[eo:Tertremo]]
[[es:Terremoto]]
[[et:Maavärin]]
[[eu:Lurrikara]]
[[ext:Terremotu]]
[[fa:زمین‌لرزه]]
[[fi:Maanjäristys]]
[[fiu-vro:Maavärrin]]
[[fo:Jarðskjálvti]]
[[fr:Séisme]]
[[fy:Ierdskodding]]
[[ga:Crith talún]]
[[gan:地震]]
[[gd:Crith-thalmhainn]]
[[gl:Terremoto]]
[[gu:ધરતીકંપ]]
[[he:רעידת אדמה]]
[[hi:भूकंप]]
[[hr:Potres]]
[[ht:Tranblemanntè]]
[[hu:Földrengés]]
[[hy:Երկրաշարժ]]
[[ia:Seismo]]
[[id:Gempa bumi]]
[[io:Ter-tremo]]
[[is:Jarðskjálfti]]
[[it:Terremoto]]
[[iu:ᓴᔪᑉᐱᓛᕗᖅ]]
[[jv:Lindhu]]
[[ka:მიწისძვრა]]
[[kk:Жер сілкіну]]
[[kn:ಭೂಕಂಪ]]
[[ko:지진]]
[[ksh:Äädbevve]]
[[ku:Erdhej]]
[[la:Terrae motus]]
[[lb:Äerdbiewen]]
[[li:Eerdsjók]]
[[ln:Moningí]]
[[lt:Žemės drebėjimas]]
[[lv:Zemestrīce]]
[[mk:Земјотрес]]
[[ml:ഭൂകമ്പം]]
[[mn:Газар хөдлөлт]]
[[mr:भूकंप]]
[[ms:Gempa bumi]]
[[mwl:Sismo]]
[[my:ငလျင်လှုပ်ခြင်း]]
[[nah:Tlālolīniliztli]]
[[nds:Eerdbeven]]
[[ne:भुँइचालो]]
[[nl:Aardbeving]]
[[nn:Jordskjelv]]
[[no:Jordskjelv]]
[[nv:Kéyah haʼdéísná]]
[[oc:Tèrratrem]]
[[om:Chocho'a lafa]]
[[pap:Terremoto]]
[[pl:Trzęsienie ziemi]]
[[pnb:بھونچال]]
[[pt:Sismo]]
[[qu:Pacha kuyuy]]
[[rm:Terratrembel]]
[[ro:Cutremur]]
[[ru:Землетрясение]]
[[rw:Umutingito]]
[[sa:भूकंप]]
[[scn:Tirrimotu]]
[[sh:Potres]]
[[si:භූමිකම්පාව]]
[[simple:Earthquake]]
[[sk:Zemetrasenie]]
[[sl:Potres]]
[[sn:Kundengenyeka kwenyika]]
[[so:Dhulgariir]]
[[sq:Tërmeti]]
[[sr:Земљотрес]]
[[srn:Grontapubeyfi]]
[[su:Lini]]
[[sv:Jordbävning]]
[[sw:Tetemeko la ardhi]]
[[szl:Trzyńśyńy źymje]]
[[ta:நிலநடுக்கம்]]
[[te:భూకంపం]]
[[tg:Заминларза]]
[[th:แผ่นดินไหว]]
[[tl:Lindol]]
[[tr:Deprem]]
[[tt:Җир тетрәү]]
[[ug:يەر تەۋرەش]]
[[uk:Землетрус]]
[[ur:زلزلہ]]
[[uz:Zilzila]]
[[vec:Teremoto]]
[[vi:Động đất]]
[[vls:Eirdbevienge]]
[[wa:Tronnmint d' tere]]
[[war:Linog]]
[[yi:ערדציטערניש]]
[[zh:地震]]
[[zh-min-nan:Tē-tāng]]
[[zh-yue:地震]]

2012年1月26日 (木) 12:44時点における版

地震(じしん、: Earthquake)は、地球表面の地殻の内部で、固く密着している岩盤同士が、断層と呼ばれる破壊面を境目にして、急激にずれ動くこと。これによって地震動(じしんどう)と呼ばれる大きな地面の振動が引き起こされ、一般的にはこちらも「地震」と呼ぶ。

「地震」(なゐふる)という語句は『日本書紀』にも見え、その他古文書の記録にも登場するが、これらは今日の地震学における地震動のことであり、また震度の程度を表すものでもあった[1]

地質現象(地質活動)の一種。地震に対して、地殻が非常にゆっくりとずれ動く現象を地殻変動と呼ぶ。

地震を対象とした学問を地震学という。地震学は地球物理学の一分野であり、構造地質学とも密接に関わっている。

概要

兵庫県南部地震阪神・淡路大震災)によって発生した野島断層。地震の震源となった断層のずれが波及して「地表地震断層」として現れたものである。激しい揺れを起こした断層本体(震源断層、起震断層)とは別のものであり、また地下に存在する断層のほとんどは地表から観察できないので、防災上注意しなければならない。
地震計で観測された地震動のグラフ。

地震は、断層と呼ばれる地下の岩盤のずれが動くことで発生する。断層のずれによって生じた振動は、地震波となって地中を伝わり、人間が生活している地表でも振動(地震動)が引き起こされる。断層は、地下数km~数十kmの深さにあることが多く、地表までは達しないことが多い。しかし、大きな地震の時には地表地震断層とよばれる段差が地表にも現れることがある。(特にカリフォルニアにあるサンアンドレアス断層は、日本の地震学者に地震と断層の結びつきを知らせたことで有名である。日本では阪神淡路大震災野島断層濃尾地震根尾谷断層関東大震災丹那断層などが有名。)

震源・震央・震源域

地下で断層が動いた時、最初に動いた地中の位置(地震波の発生源)を震源と呼び、地上における震源の真上の地点を震央と呼ぶ。テレビや新聞などで一般的に使用される震源は震央の位置を示している。震源だけではなく震源の周囲数m - 数百kmの範囲の断層でずれが生じ地震波を発生する。このずれの範囲を震源域と呼ぶ。

地震波

地震波は波の一種であり、地中を伝わる波(実体波)と地表を伝わる波(表面波)に大別される。実体波はさらに、速度が速いP波(たて波、疎密波)と、速度が遅いS波(横波、ねじれ波)に分けられる[2]

地震のはじめに感じられることが多い細かい震動(初期微動)はP波、地震の激しい震動(主要動)は主にS波による。P波とS波は伝わる速度が違うので、P波とS波の到達時間の差である初期微動の時間[3]が震央と観測地点との間の距離に比例する。初期微動が長い場合は、震源が遠い。加えて主要動が大きい場合は、震源が遠いにも関わらず振幅が大きいので、巨大地震の可能性が高まる。初期微動が短い場合は、震源が近い[注 1]

このようなP波とS波の違いによって、観測地点から震央までの距離や、2つ以上の観測点からは震源の位置が、3つ以上の観測点があれば震源の深さも求めることができる[注 2]。また、P波はS波の前に到達することが多いので、P波を検知したときに警報を出せば被害が軽減できることがあるため、緊急地震速報や緊急停止システム[4]で応用されている。

一つの地震からはいろいろな周期(周波数)の地震波が出るが、その成分の違いによって被害が異なる。キラーパルスと呼ばれる周期1秒程度の地震波が大きい場合は、木造・低層住宅の被害が大きくなる[注 3]

本震・前震・余震

ある程度の規模を超える地震は、地震活動に時間的・空間的なまとまりがあり、その中で最も規模が大きな地震を本震と呼ぶ。ただし、本震の区別が容易でない地震もあり、断層のずれの程度や前後に起こる地震の経過、断層の過去の活動などを考慮して判断される。他に前震余震を伴うことがある。本震の前に起こるものが前震、後に起こるものが余震である。被害をもたらすような大地震ではほぼ例外なく余震が発生し、余震により被害が拡大する例も多い。余震の発生する範囲は、震源域とほぼ重なる(発生する範囲が違うものには、群発地震連動地震誘発地震などがあり、区別される)大きな地震であるほど、本震の後に起こる余震の回数・規模が大きくなる。この余震の経過を示す法則には、「余震の大森公式」を改良したものがある。

地震の大きさを表現する指標

地震の大きさを表現する指標は主に2系統あり、それぞれいくつかの種類がある。Mは指数関数、震度は非線形関数であり、数字の大きさと実際の物理量は比例関係ではない[注 4]

  • マグニチュード (M) [注 5]は地震の規模、あるいは地震の際に放出されるエネルギーの量を表す指標である。
  • 震度階級(震度)は地表の各地点での揺れの大きさを表す指標である。単に「ある地震の震度」という場合には、その地震における全観測地点の最大震度をいう。

地震による災害

大きな地震はしばしば建造物を破壊して家財を散乱させ、火災土砂災害などを引き起こす。典型的な自然災害の1つである。科学的な予報・予知が確立されておらず、前触れもなく突然やってくるので、建造物の強度を増す・震災時の生活物資を備蓄する・避難計画をしっかり立てるなどの対策をとり(防災と減災)、「いつ来てもいいように」備えるのが一般的である。また、海域で発生する大規模な地震は津波を発生させ、震源から離れたところにも災害をもたらすことがある。そのため、学術的な研究目的に加えて、津波の発生を速報する目的で、各国の行政機関や大学等によって地震の発生状況が日々監視されている。チリ地震津波以降、太平洋全域の津波警報システムが整備され、2004年スマトラ島沖地震以降は、津波の警報態勢も大きく強化されている。

地震の種類

どの地殻構造で起こるかにより地震は3種類に分けられる(後述)。また、断層のずれる方向や向きなどのパターン、空間的なまとまり、時間的なまとまりからも、地震は特徴付けられる。被害をもたらすような大きな地震の多くは、既に存在する断層が数十万年から数十年に1回の活動期を迎えた時に発生する、周期的な固有地震であると考えられている(固有地震説)。

メカニズム

地震の発生途中における断層面と地震のメカニズムの模式図。
2: 震央
3: 断層面の走向
4: 断層面の傾斜
5: 震源
6: 断層面のある平面
7: 破壊されている断層面
10: すでに破壊された断層面
8 + 11: 断層面 または 震源域(断層の最大破壊域)
3種類の断層。上:逆断層、中:正断層、下:横ずれ断層。
地震のメカニズム解(発震機構解)の図。地震計の観測結果を基に図に表し、断層の位置や動いた方向を解析する。

地球の表層はプレートと呼ばれる硬い板のような岩盤でできており、そのプレートは移動し、プレート同士で押し合いを続けている。そのため、プレート内部やプレート間の境界部には、が加わり歪みが蓄積している。これら岩盤内では、岩盤の密度が低くもろい、温度粘性)が高い、大きな摩擦力が掛かっているなどの理由で歪みが溜まりやすい部分がある。ここで応力(ストレス)が局所的に高まり、岩体(岩盤)の剪断破壊強度を超えて、断層が生じあるいは既存の断層が動くことが地震であると考えられている。

断層はいわば過去の地震で生じた古傷であり、地殻に対する応力が集中しやすいことから、断層では繰り返し同じような周期(再来間隔)で地震が発生する。断層の大きさは数百mから数千kmまであり、またその断層の再来間隔も数年~数十万年とさまざまである。断層の中でも、数億年~数百万年前まで動いていて現在は動いていないような断層があり、そのようなものは古断層といって地震を起こさない。一方、現在も動いている断層を活断層という[注 6]。日本だけでも約2,000の活断層がある[5]。ただし、活動の有無を判別するのが難しい断層もあり、古断層といわれていた断層が動いて地震を起こした例もあるため、防災上注意しなければならない。

岩盤内で蓄積される応力は、押し合う力だけではなく、引っ張り合う力や、すれ違う力など様々な向きのものが存在し、それによって断層のずれる方向が変わる。押し合う応力は断層面の上側が盛り上がる逆断層、引っ張り合う応力は断層面の下側が盛り上がる正断層、すれ違う応力はほぼ垂直な断層面の両側が互い違いに動く横ずれ断層を形成する。

地震の始まりは、岩盤内部の一点から破壊が始まり、急激に岩盤がずれて歪みを解放し始めることである。破壊が始まった一点が震源であり、破壊されてずれた部分が断層となる。このずれた部分は、地震波を解析する段階では便宜的に平面(断層面または破壊面と呼ぶ)と仮定し、断層面の向き(走向)や断層面の鉛直方向に対する角度(傾斜)、震源の位置、地震の規模などを推定する。震源断層が曲がったり複数あったりする場合は、後の解析や余震の解析により推定される。

震源で始まった岩盤の破壊範囲は、多くの場合秒速2~3kmで拡大し、破壊された岩盤は、速いときで秒速数mでずれを拡大させていく。

実際の例
  • 1923年の関東地震では、神奈川県小田原直下付近から破壊が始まり、破壊は放射状に伝播して40~50秒で房総半島の端にまで至り、長さ130km、幅70kmの断層面を形成し、小田原市~秦野市の地下と三浦半島の地下で特に大きなずれを生じ、約8秒で7~8mずれた[6]
  • 1995年の兵庫県南部地震では、明石海峡の地下17kmで始まった破壊は、北東の神戸市の地下から、南西の淡路島中部にまで拡大し、約13秒で長さ40km幅10kmの断層面を形成した。

このようにして破壊が終結すると、一つの地震が終わることになる。この断層面の広さとずれの大きさは、地震の規模と関連している。多くの場合、断層面が広くずれが大きくなれば大地震となり、逆に小さな地震では破壊は小規模である。こうして一つの地震が終結しても、大地震の場合は断層面にはまだ破壊されずに残っていて、歪みをため込んでいる部分がある。それらの岩盤も、余震とよばれるやや小さめの地震によって次第に破壊が進む。これに対して初めの大地震を本震という。本震の前に発生する前震もあり、そのメカニズムについては本震を誘発するものだという説、本震に先駆けて起こる小規模な破壊だという説などがあるが、はっきりと解明されていない。

本震の後に余震が多数発生する「本震 - 余震型」や、それに加えて前震も発生する「前震 - 本震 - 余震型」の場合は、応力が一気に増加することで発生すると考えられている。一方で群発地震の場合は、応力が比較的緩やかなスピードで増加することで地震が多数発生すると考えられている[7]

地震の規模と揺れの指標

マグニチュード

ふつう、地震の規模を表す指標としては、エネルギー量を示すマグニチュードを用い、「M」と表記する。マグニチュードには算定方法によっていくつかの種類があり、地震学では各種のマグニチュードを区別するために「M」に続けて区別の記号を付ける。地震学ではモーメントマグニチュード(Mw)が広く使われる。日本では気象庁マグニチュード(Mj)が広く使われる。

他にもそれぞれの観測機関によって使用されるマグニチュードのタイプが異なる場合もあるが、その値は差異ができるだけ小さくなるように定められている。これらは最初にマグニチュードを定義したチャールズ・リヒターのものの改良版であり、基本的に地震動の最大振幅を基礎とする。モーメントマグニチュードを除き、いずれのタイプも8.5程度以上の巨大地震や超巨大地震ではその値が頭打ちになる傾向を持つ。

この弱点を改善するために、地震学では地震モーメントから算出されるモーメントマグニチュード(Mw)が地震の規模を表す指標として用いられることが多く、これを単に「M」と表記することも多い(アメリカ地質調査所(USGS)など)。

日本では、気象庁が独自の定義による気象庁マグニチュード(Mj)を発表しており、日本ではこれを単に「M」と表記することも多い。これに対し、多くの国では表面波マグニチュード(Ms)や実体波マグニチュード(Mb)のことを、単にマグニチュードと呼ぶことが多い。Mが1大きくなるとエネルギーは約32倍、2大きくなるとちょうど1000倍となる。

人類の観測史上最も大きな地震、つまりマグニチュード(Mw)が最も大きかったのは、1960年チリ地震(Mw9.5、Ms8.5)である。

ある地震のマグニチュードであっても、機関によって異なったり、複数の値を発表する場合がある。例えば東北地方太平洋沖地震のマグニチュードは9.0とされているが、これはモーメント・マグニチュードであり、従来の気象庁マグニチュードでは8.4である。なお発生直後から数度訂正されていて、気象庁マグニチュードで7.9と速報したが、後に8.4と修正し、さらにモーメントマグニチュードで8.8と発表し、最終的に9.0とした。アメリカ地質調査所(USGS)は独自にモーメントマグニチュード9.0と発表している[8]

震度

地震動の大きさを表す数値として、速度加速度変位などがある。建築物土木構造物の耐震設計の分野では応答スペクトルSI値という指標も、地震動の大きさを表す方法として広く用いられている。一般的には、被害の大きさなどを考慮して、地震動の大きさを客観的に段階付けた震度という指標が用いられる。

震度については、日本では気象庁震度階級(通称「震度」)、アメリカ合衆国では改正メルカリ震度階級ヨーロッパではヨーロッパ震度階級(EMS)、CIS諸国やイスラエルインドなどではMSK震度階級が現在使用されているほか、ほかにもいくつかの指標がある。

地震の規模が大きいほど震度は大きくなる傾向にあるが、震源域からの距離や断層のずれの方向、断層の破壊伝播速度、地盤の構造や性質、地震波の特性などによって地上の揺れは大きく異なる。水や空気が多く含まれ土壌粒子の固結が弱い柔らかい地層ほど、また新しい地層であるほど揺れが増幅され、一般的には軟弱地盤と呼ばれるような平野部や河川沿いや埋め立て地が揺れやすい傾向にあるが、地盤改良や基礎方式によって揺れを低減することが可能である。なお、俗に「キラーパルス」と呼ばれる周期0.5秒~2秒程度の地震波が大きな振幅で継続すると、一般家屋を含む低層建築物の被害が大きくなる傾向にある。

例えば東北地方太平洋沖地震は震度7とされているが、震度7は最大震度であって、公式に観測されたのは宮城県栗原市だけであり、例えば島嶼部を除く東京都では震度5強(千代田区大手町など18地点) - 震度3(奥多摩町など3地点)であった。「各市町村の震度」「各地域の震度」はその市町村・地域内に設置されている複数の観測点のうち最も揺れが大きかった値である。また、震度はその地域を代表する地点に設置された震度計が示す目安値であり、実際の土地に当てはめれば地盤の状態によって近傍の観測点に比べ最大1程度の差が生じるので、必ずしも被害状況と地点震度が一致しない場合がある。

地震の原因と種類

4種類の地震の発生場所。茶色系統が大陸系、紫色系統が海洋系で、いずれも薄い色の方がプレート、濃い色の方が地殻。

通常の地震は、既存の断層が動くこと、あるいは新たに断層が生じることが原因で起こる。地震の際に動く断層は1つとは限らず、大きな地震では震源に近い別の断層(共役断層)が同時に動くこともある。火山活動に伴う地震を火山性地震と呼ぶが、これには断層と関係が無いものも多く、通常の地震とは分けて考えることが多い。

地震を地下構造とプレートテクトニクスの観点から見た場合、大きく3種類に分けられる[9]。呼び方はそれぞれ複数ある。

  • 1.プレート同士の境界部分で発生する地震(プレート間地震プレート境界型地震海溝型地震
    • さらに「海溝型地震・衝突型境界で起こる地震・発散型境界で起こる地震・トランスフォーム断層で起こる地震」の4つに細分される。
  • 2.大陸プレートの内部や表層部で発生する地震(内陸地殻内地震大陸プレート内地震断層型地震
  • 3. 海洋プレートで発生する地震(海洋プレート内地震スラブ内地震プレート内地震
    • さらに「沈み込む海洋プレート内地震」、沈み込んだ海洋プレート内地震(深発地震)」の2つに細分される。

プレート間地震の対軸として、内陸地殻内地震と海洋プレート内地震をあわせてプレート内地震という1つの大カテゴリーに当てはめることもある。また、火山性地震を含めて4種類とする場合もある。

  • 火山性地震
    • 火山体周辺における断層破壊によって生じP波とS波が明瞭なA型地震、P波とS波が不明瞭で紡錘型の波形を生じるB型地震に大別される。

人工的な発破の振動などにより発生する人工地震も存在する。これに対して、自然に発生する地震を自然地震と呼ぶことがある。

地震を防災上の観点から分類した場合、直下型地震(内陸地震)、海洋型地震などに分けられる。直下型地震のうち、南関東直下地震などの都市直下型地震は防災上特に重要視されている。

また、地震動が小さい割に大きな津波が起こる地震を津波地震という(例:1896年明治三陸地震 M8.2、最大震度2~3[10])。深発地震は深さによる分類、群発地震は地震の継続パターンによる分類である。

逆断層型、正断層型、横ずれ断層型といった分類は、断層型地震(内陸地殻内地震)にのみ適用される考え方ではなく、ほとんどすべての地震に適用される[注 7]。これは、地震の際にずれ動く面は上記の分類に関係なく「断層」と呼ぶためである。海溝型地震は逆断層型、海嶺などで起こる地震は正断層型が多い。内陸地殻内地震は地下の応力場によってさまざまなタイプがみられる。

プレート間地震

2つ以上のプレートが接する場所では、プレート同士のせめぎ合いによって地震が発生する。このようなタイプの地震をプレート間地震あるいはプレート境界型地震と呼ぶ。海溝で起こるものが多いため海溝型地震とも呼ばれるが、海溝よりも浅いトラフで起こるものも含まれ、また後述の通りその他の場所で起こるものも多数ある。

プレート同士の境界は、収束型(海溝と衝突型境界に細分される)、発散型、すれ違い型(トランスフォーム断層)の3種類に分けられる。発散型やすれ違い型は、地震が起こる範囲がプレート境界の周辺だけに限られ、震源の深さもあまり深くない。一方、収束型のうち海溝はしばしば規模の大きな地震を発生させ、衝突型は地震が起こる範囲が広く震源が深いことも多い。

海溝型地震
海溝トラフでは、海洋プレートが大陸プレートの下に沈み込み、両者の境界が応力により歪みを受け、ばねのように弾性力を蓄え、やがてそれが跳ね返る時に地震が起こると考えられている。これを海溝型地震と呼んでいるが、1923年の関東地震や想定される南関東直下地震のように、海溝から離れた深いところにまで震源域は広がっている。跳ね返りで発生するといっても、実際は2つの地盤の面(プレート境界面)がずれる断層運動によって起こるものである。
海溝型地震は、海溝よりも大陸プレート寄りの部分で発生する。1つの細長い海溝の中では、いくつかの領域に分かれて別々に大地震が発生する。地震の規模はM7~8と大きくなることがままあり、稀に複数の領域が同時に動いて後述のようにM9を超える超巨大地震となるケースもある。1つの領域では、およそ数十~数百年ほどの周期で大地震が繰り返し発生する。規模が大きい海溝型地震が海洋の下で発生した場合、津波が発生することがある。震源断層は海洋プレート大陸プレートの境界そのものである。震源域が広く規模が大きいため、被害が広範囲にわたることがある。
発生しやすい場所は、チリペルーメキシコ、アメリカのアラスカアリューシャン列島千島列島日本フィリピンインドネシアパプアニューギニアソロモン諸島フィジートンガニュージーランドなどの沖合いや海岸付近である。いずれも沿岸に海溝があり、大きな海溝型地震が発生する。
例として、2004年のジャワ海溝におけるスマトラ島沖地震や日本付近では2003年9月に発生した千島海溝における十勝沖地震(Mw8.3、最大震度6弱)や2011年3月に発生した三陸沖日本海溝における東北地方太平洋沖地震(Mw9.0、最大震度7)、また近い将来の発生が指摘されている駿河トラフにおける東海地震が例として挙げられ、東南海・南海沖の南海トラフ、宮城県沖の日本海溝、根室沖の千島海溝などでも発生する。関東大震災の原因となった関東地震(M7.9)も相模トラフがずれ動いた地震であり、海溝型地震に含まれる。
前述のスマトラ島沖地震や東北地方太平洋沖地震、過去に幾度も発生した南海トラフの巨大地震では、複数震源領域で短時間のうちに断層(プレート境界面)の破壊が起きる連動型地震となったため、広範囲における大規模な地震に発展している。また、大きな海溝型地震の後にはその震源域から離れた場所で内陸地殻内地震や海洋プレート内地震、または他の海溝型地震を誘発することがある(誘発地震)。
この他、東北地方太平洋沖地震発生の引き金として、海底活断層や日本海溝から北米プレートの下に沈み込んでいる海山の関与が指摘されている[11][12]。1994年に発生したインドネシアの地震は海山が原因とされているが、海底活断層についてはこれまで地下深くで発生する海溝型地震への直接の関与は考えられていなかった。
衝突型境界で起こる地震
衝突型境界では、プレート同士が激しく衝突し合い、境界部分では強い圧縮の力が働いて地震が発生する。強い力によってプレートが砕け、その破片同士がずれたり、付加体がずれたりして地震が起こる。
大陸プレート同士が押し合い衝突しているヒマラヤ山脈パミール高原チベット高原日本海東縁部などが主な発生地である。
日本付近での例は、日本海東縁変動帯域を震源とする地震で、1983年5月の日本海中部地震(M7.7、最大震度5)、1993年7月の北海道南西沖地震(M7.8、最大震度6)などが例である。
発散型境界で起こる地震
発散型境界でも、マグマの上昇やプレートの軋みなどによって地震が発生する。主に、海洋中央部の海嶺で発生し、地震の規模はそれほど大きくない。
東太平洋海嶺オーストラリア南極海嶺中央インド洋海嶺南西インド洋海嶺大西洋中央海嶺など各地の海嶺で地震が発生する。アイスランドやアフリカの大地溝帯では、陸上にある海嶺(地溝)の影響で正断層型の地震が発生する。
すれ違い型境界(トランスフォーム断層)で起こる地震
トランスフォーム断層では、プレートのすれ違いによって地震が発生する。断層のタイプは横ずれ断層型となる。
主な発生地には、トルコの北アナトリア断層やアメリカ西海岸のサンアンドレアス断層などがある。
発生例としては、1906年4月のサンフランシスコ地震(M7.8)などが挙げられる。

内陸地殻内地震

海洋プレートが沈み込んでいる大陸プレートの端の部分では、海溝から数百km離れた部分まで含む広い範囲に海洋プレートの押す力が及ぶ。その力はプレートの内部や表層部にも現れるため、プレートの表層部ではあちこちでひび割れができる。このひび割れが断層である。

周囲から押されている断層では、押された力を上下に逃がす形で山が高く、谷が深くなるように岩盤が動く(逆断層)。また、大陸プレートの一部分では、火山活動によってマグマがプレート内を上昇し、プレートを押し広げているような部分がある。また、周囲から引っ張られている断層でも、引っ張られた力を上下に逃がす形で山が高く、谷が深くなるように岩盤が動く(正断層)。また、押される断層・引っ張られる断層であっても、場所によっては断層が水平にずれ、岩盤が上下に動かないこともある(横ずれ断層)。多くの断層は、正断層型・逆断層型のずれ方と、横ずれ断層型のずれ方のどちらかがメインとなり、もう一方のずれ方も多少合わさった形となる。

このようなタイプの地震を内陸地殻内地震あるいは大陸プレート内地震と呼ぶ。伊豆半島ニュージーランドなどは海洋プレート上に位置しているが、これらの場所で起こる内陸地殻内の地震もこのタイプの地震として扱われることがある。このタイプの地震では地表に断層が出現しやすいため、断層型地震活断層型地震などとも呼ぶが、プレート間・大陸プレート内・海洋プレート内地震は全て断層で発生することに注意する必要がある。内陸の断層は都市の直下や周辺にあることも少なくなく、直下型地震とも呼ぶが、関東地震のように陸地の直下を震源とする海溝型地震もあるため、それと区別する意味で「陸域の浅い場所を震源とする地震」のような言い方もされる。

地震の規模は活断層の大きさによるが、多くの断層はM6~7、大きいものではM8に達する。海溝型地震と同じように、長い断層はいくつかの領域に分かれ、別々に活動する。同一の活断層での大きな地震の発生は、数百年から数十万年に1回の頻度とされている。都市の直下で発生すると甚大な被害をもたらすことがあるが、大きな揺れに見舞われる範囲は海溝型地震と比べると狭い領域に限られる。初期微動を検知するという原理上、ごく浅い場所で発生したものは緊急地震速報が間に合わないこともある。

1976年7月の唐山地震(M7.8)、1995年1月の兵庫県南部地震(M7.3、最大震度7)や2000年10月の鳥取県西部地震(M7.3、最大震度6強)、2004年10月の新潟県中越地震(M6.8、最大震度7)や2007年3月の能登半島地震(M6.9、最大震度6強)、新しいものでは2008年6月14日に発生した岩手・宮城内陸地震(M7.2、最大震度6強)や2010年1月のハイチ地震(Mw7.0)などが該当する。

アメリカ西海岸ニュージーランド日本中国台湾フィリピンインドネシアアフガニスタンイラントルコギリシャイタリアスイスなどに活断層が密集しており、大きな断層型地震が頻発する。

このタイプの地震はしばしば甚大な被害をもたらすため、将来の地震発生予測を目的に、1980年以後日本全土の活断層が調査され、危険な断層を順次評価している。兵庫県南部地震の前に公表された活断層の地図には他の大断層類と同時に「危ない断層」として有馬・高槻・六甲断層帯が危険と表示されていた。この調査作業は2009年現在も継続して続けられている。

一方、ヨーロッパ中部・北部、アメリカ中部、オーストラリアなどには、過去の造山運動に伴ってできた断層があるが、その中には現在も動いている活断層がある。このような断層は、時々動いて最大でM4~5程度の地震を起こし、稀に被害が出ることもある。また、そのような地域でもニューマドリッド断層帯のように活断層が存在し、頻繁に活動している場合がある。

海洋プレート内地震

沈み込みの運動をしている海洋プレートでも地震が発生する。このようなタイプの地震を海洋プレート内地震あるいはプレート内地震と呼ぶ。単にプレート内地震と呼ぶときはほとんどの場合このタイプを指し、大陸プレート内地震は含まれない。プレート間地震と合わせて海溝型地震と呼ぶこともある[13]。海洋プレートにおける地震は大きく以下の2種類に分けられる。「沈み込んだ海洋プレート」では震源が深くなる傾向にあり、「これから沈み込む海洋プレート」では浅くなることが多い。

沈み込んだ海洋プレート内で起こる地震
海溝を経て大陸プレートの下にもぐりこんだ海洋プレートは、マントルの中を沈み込んでいる途中で割れたり、地下深部でスタグナントスラブとなって大きく反り返って割れたりして、地震を発生させることがある。海洋プレートが沈み込んだ部分であるスラブ(板=プレート)の中で発生するので、スラブ内地震と呼ばれる。また、震源が深いことから深発地震とも呼ばれる。
一般に震源が深く、したがって震源と震央の距離は長い場合が多いにもかかわらず、規模が大きなものは被害としては侮れない。また深い分、広範で最大震度に近い揺れに見舞われることにもなる。地震波の伝わりやすさは、プレートの位置関係やマントルの深さなどでそれぞれ異なるため、震源から離れた場所で揺れが大きくなる異常震域が発生しやすいのも特徴である。
20世紀末以降の例では、1987年12月の千葉県東方沖地震(M6.7、深さ50km、最大震度5)、1992年2月の浦賀水道の地震(M5.7、深さ92km、最大震度5)、1993年1月の釧路沖地震(M7.5、深さ101km、最大震度6)や2003年5月の宮城県沖の地震(M7.0、深さ71km、最大震度6弱)のような被害事例が見られる(注:2003年9月17日に気象庁マグニチュード算出方法が改訂し、これにより過去の地震も修正された。ここではそのマグニチュードを用いている)。
福島県沖や茨城県沖で頻繁に発生する地震のほか、2001年3月の芸予地震もこのタイプである。
これから沈み込む海洋プレート内で起こる地震
海洋プレートが陸地側に潜り込んだ歪みを解消するため陸地側プレートが反発した時に、プレート境界型地震が起こる。歪みはこれから沈み込む海洋プレート側(海溝よりも更に沖側)にもたまっており、海底が隆起している場合がある(アウターライズ・海溝上縁隆起帯)。この歪みはプレート境界型地震の発生によって解消されるとは限らず、プレート境界型地震の前後などに、解消されなかった歪みによってずれや割れが生じ、地震を発生させることがある。アウターライズ(海溝上縁隆起帯)で発生するため、主にアウターライズ地震と呼称される(なお、こちらもスラブ内地震とする場合がある)。
一般に反り返った先のもっとも高い(浅い)場所が張力を受けて破壊される正断層型の地震が多い。これとは逆に震源が深い場合は圧力が働き逆断層型となる。遠方の海域で発生するため、陸地において地震の揺れそのものによる被害は少ないことがほとんどであるが、1933年3月の昭和三陸地震や2007年1月の千島列島沖の地震のようにM8を超える地震がしばしば発生し、海溝型地震に匹敵する津波災害を引き起こすことがある。また、大きなプレート境界型地震の後に発生する場合もあることから警戒を要するものである。

火山性地震

海溝の周辺の火山弧ホットスポット海嶺ホットプリュームの噴出地域では、マグマの移動や熱せられた水蒸気の圧力、火山活動に伴う地面の隆起や沈降が原因となって地震が発生する。これらの地震を火山性地震という。火山性地震は断層の動きだけでは説明できない部分があるので、上記の3分類とは分けて考えることが多い。地震動も上記の地震とは異なる場合がある。

火山性地震は地震動の性質から2つのタイプに分けられる。P波とS波が明瞭で、一般的な断層破壊による地震と大差がないA型地震、および紡錘型の波形を持つB型地震である。B型地震はさらに周期の違いによってBL型地震とBH型地震に分けられる。広義では火山性微動も地震に含む。

また、火道の圧縮やマグマの爆発・爆縮によって、一般的な断層破壊では見られない特殊な発震機構(メカニズム)を持つ地震も起こりうる。

その他

誘発地震
人為的な原因によって引き起こされる地震。
大質量の移動による誘発
超高層建築物ダムの建設、地面の掘削・造成、石炭・石油や天然ガスなどの採掘が地下構造を変え、地震を誘発することがある。また、ダムの貯水でも地下の岩盤における間隙水圧応力が変化して地震を誘発することがある。
1940年には、アメリカフーバーダム付近でM5の地震が発生した。また、インドマハラシュトラ州西部のコイナダム付近では、1962年の貯水開始後から地鳴りと小さな地震が発生し、1967年12月10日にはM6.3の地震が起こり180人が死亡、およそ2000人が負傷した。同時期にはダムは最高水位に達しており、貯まった水の水圧によって誘発されたものだとされている[14]
電流による誘発
地中に電流を流すことで地震が誘発されると言う実験結果がある。ソビエト連邦キルギス天山山脈で、2.8kAの電流を百回以上地下に流し込む実験を行ったところ、約2日後から地震が増え、数日のうちに収まるという現象が起こった[15]
流体注入による誘発
水分やガスといった流体が地中に注入されることで地震が誘発されることがある。なお、自然界でも同様の現象が発生している(後述)。
ロッキー山脈のアメリカ軍の兵器工場で、1962年3月から深さ3670メートルの地下に放射性の廃水を廃棄し始めたところ、1882年以来80年間も地震が全くなかった場所に地震が発生し始めた。注入量や圧力に比例するように地震の数が増減した[16]。また、2007年12月にスイスバーゼル地熱発電に利用する蒸気を発生させるために地下5000メートルの花崗岩層に熱水を注入したところ、最大M3.4の地震が2度発生した。この地域では以前から有感地震が発生していた[17]。同様に、鉱山内のガス流体による地震の誘発作用も示唆されている[18]。また、シェールガス採掘のために地中に注入された水が引き金となった事が報告されている[19]
地震以外の発振現象
地震とは異なり、断層のずれを伴わずに地表に揺れを引き起こす発振現象。
氷震
氷河の運動によって、自然地震に似た発振現象(氷震)が発生している[20]
人工震源
主に爆弾の爆発などがある。土木工事などに使われる発破は地震波を発生させるが、「P波に比べてS波が小さい」、「表面波が卓越する」、「すべての観測点で押し波となる」などの特徴があり、自然地震との判別は可能である。核爆発によるものは、代表的な人工震源のひとつである。

地震発生のきっかけ

地震発生までのメカニズムは徐々に明らかになっているが、地盤や岩盤に溜まった応力の解放を促している引き金が何であるかはほとんどが謎のままになっていて、はっきりとした特定はなされておらず、様々な説が展開されている。この引き金に関しては、相関性の比較により統計学的に相関を見出すことは可能であるが、それが因果関係であるかを同定するのは地震学的な研究に頼るもので、分野が少し異なる。

水分の流入
兵庫県南部地震フィリピン海プレートから生じた水によって誘発されたという説がある[21]。また東北大学によれば、新潟中越沖地震[22]岩手・宮城内陸地震など複数の地震は断層直下のマグマが冷えたことで発生した水分が潤滑油の役割を果たし地震を発生させたとしている[23][24]。7つの火山島からなるアゾレス諸島では、雨が降ると2日後に小さな地震が起こったり[16]、鉱山の水没域では、雨水が流れ込み地震が誘発されることがあったりする[25]
潮汐力
太陽との潮汐が発生の引き金になるとの指摘もある。満月と新月時に強まった潮汐力が地震を誘発する可能性が指摘されており[26][27]、防災科学技術研究所は、スマトラ島沖では2004年の地震の8年前から潮汐力が強まった時間帯に地震が集中していたため、歪みが溜まっている地域では潮汐力が地震の引き金になっている可能性が高いとしている[28]
地震
遠く離れた場所で発生した地震が時間をおいて別の地震を誘発する可能性が指摘されている[29]

地震の原因論とメカニズム論の展開

神話

日本では古来より「地中深くに大ナマズが存在し、その大ナマズが暴れることにより大地震が起きる」という俗説が信じられていた。その為なのか、一部の人々には今でもナマズが暴れると大地震が来ると信じられている。だが、ナマズが地震を予知できる根拠は見つかっていない。江戸時代には安政の大地震を期に鯰絵と呼ばれる錦絵が流行するなど、日本人にとって地震とナマズが身近な関係にあったことが伺える。また、鹿島神宮にはこの大ナマズを抑えるという要石があり、地震の守り神として信仰されている。地震避けの呪歌に、万葉集の歌を使った「ゆるぐともよもや抜けじの要石鹿島の神のあらむ限りは」(要石は動きはしても、まさか抜ける事はないだろう、武甕槌神がいる限りは)というものがある。

北海道アイヌ民族には、「地下には巨大なアメマスが住んでいる。これが暴れて地震が起きる」という、日本とよく似た伝承があった。そこで地震が発生すれば、地震鎮めの呪いとして囲炉裏の灰に小刀や火箸を刺し、アメマスを押さえつけるまねごとをした。

中国では古来から、陰陽説の考え方を背景にして、地震とは陰の性質を持った大地から陽の性質を持った大気が出てくるときに起こるものという説明があった。また福建省では、地震を起こすのはネズミであると言う神話上の伝承が存在する。

北欧神話においては地底に幽閉されたロキが、頭上から降り注ぐ蛇の毒液を浴びたときに震えて地震が起きるとされている(詳細はロキを参照のこと)。ギリシア神話ではポセイドンが地震の神とされた。

科学的探究

古代ギリシアでは、自然哲学者アナクシメネスが大地の窪みにずり落ちることが原因だと考えた。アナクサゴラスは地下で激しくが流れ落ちることを原因と考えた。その後、アリストテレス四元素説を基に、地震は地中から蒸気のようなプネウマ(気、空気)が噴出することで起こると説明した。これらを受けて、セネカは地下での蒸気の噴出によって空洞ができ、そこの地面が陥没するときに地震が起こるという説を立てた。時は変わって、アラビアではイブン=スィーナーが、地面が隆起することが原因だとする考えを示した。

18世紀には、リスボン地震をきっかけにジョン・ミッチェルが地震の研究を行い、火山の影響で地中の水蒸気が変化を起こすことが原因という説を発表した。

19世紀末には、お雇い外国人として日本にいたジョン・ミルンジェームス・アルフレッド・ユーイングが地震を体験したことがきっかけとなり、日本地震学会が設立され、地震計の開発や地震の研究が進み始めた。地震の波形から震源を推定する方法が発見されたり、アンドリア・モホロビチッチモホロビチッチ不連続面を発見して地球の内部構造の解明の足がかりとなったりした。ミルンは、イギリスで地震の研究を進めて同国に近代地震学が確立された。現在イギリスには世界中の地震の観測情報を集積している国際地震センター (ISC) が設置されている。

また20世紀に入って、リチャード・ディクソン・オールダムが地球の(コア)を発見、ベノー・グーテンベルググーテンベルク不連続面を発見するなどし、地球物理学が次第に進展するとともに、アルフレート・ヴェーゲナー大陸移動説から発展したマントル対流説海洋底拡大説プレートテクトニクスにまとめられ、地震の原因として断層地震説弾性反発説が定着した。

ただ、断層地震説と弾性反発説によって一度否定された岩漿貫入などは、2説を補完する説として考える学者もいる。また、地球空洞説に原因を求めるなど、これらとはまったく異なる説を展開する学者や思想も、少数ながら存在している。

その他

  • 仏教では、地震は傲慢と不平が原因で起こされる自然災害であり、自然災害が起きるのを防ぐには戒定慧を勤修し、三毒を息滅することが必要だと教えている。

地震動・地震波と揺れ

地震の波形。■:東西動成分、:南北動成分、:上下動成分。
P波とS波の伝わり方を示したアニメーション

地表では、P波による揺れが始まってからS波が到達するまでは、初期微動と呼ばれる比較的小さい揺れに見舞われる。その後、S波が到達した後は主要動と呼ばれる比較的大きい揺れとなる。震源から数十km以上と離れている場合にはこのような揺れの変化が感じられるが、震源が近い場合はP波とS波がほぼ同時に到達するため分からない。また震源から近い場所では、P波が到達する前後にレイリー波も到達し、同じく揺れを引き起こす。S波は液体中を伝播しないため、海上のなどでは、P波のみによって発生する海震と呼ばれる揺れに見舞われる。

被害を引き起こすような揺れのもとは主にS波だが、レイリー波、ラブ波、P波も振幅や周期によっては被害を引き起こすような揺れとなる。

地震波/地震動の周期は、被害を受ける構造物と一定の関係性がある。構造物にはそれぞれ、固有振動周期の地震波に共振しやすい、周波数が違うと曲げ・ねじれ・伸縮などの変形の「型」も変わるといった、地震動を受けた際の振動特性があり、地震工学建築工学においては重要視される。構造計算においては、さまざまな固有振動周期や減衰定数をもつ構造物の応答スペクトルを解析して、地震動に対する構造物の特性をみる。

例えば、日本家屋のような木造住宅は周期1秒前後の短周期地震動固有振動周期にあたるため、周期1秒前後の地震動によって共振が発生し非常に強く建物が揺さぶられ、壊れやすく被害が拡大しやすい。一方、高層建築物は周期5秒以上の長周期地震動が固有振動であり、地震波が堆積平野を伝わる過程で増幅しやすい長周期地震動によって、平野部の高層建築物の高層階では大きな被害が発生する。このほかに、M9を超えるような巨大地震の際に観測される、超長周期地震動または地球の自由振動と呼ばれる周期数百秒以上の地震動がある。この超長周期地震動の中には地球の固有振動周期に当たる地震動もあり、地球全体が非常に長い周期で揺れることもある。

地下の構造、特に地面に近い表層地盤の構造や地下のプレートの構造によって、地震動全般に対する揺れやすさ、揺れやすい周期、あるいは地震波の伝わり方が異なる。そのため地震の際、震度が震央からの距離に完全に比例して、きれいに同心円状に分布することはほぼない。稀に震央と異なる地域で揺れが最も大きくなることがあり、異常震域と呼ばれる。一般的に、地表の含水率間隙率が高い質地盤が最も揺れやすく、礫が多くなり岩盤に近くなるほど揺れにくくなる。また、完新世(1万年前以降)に堆積した沖積層など新しい層に厚く覆われていると揺れやすく、洪積層更新世、258万年~1万年前)やそれ以前(新第三紀かそれ以前)の層に覆われていると揺れにくい傾向にあるが、一概には言えず、厳密には地盤調査によるN値基盤岩深度などから推定する。

また、多くの地震計は周期0.2~0.3秒前後の地震動を感知しやすいため、周期0.2~0.3秒で大きく周期1秒で小さい地震では震度に比べて被害が軽かったり、逆に、周期0.2~0.3秒で小さく周期1秒で大きい地震では震度に比べて被害が甚大だったりといったことが起こる。ただし、これには地震計の設置場所と地下構造の問題もあるとされる[2]

地震の揺れの速度を表す単位として、カイン(kine, センチメートル毎秒)がある。また、地震の揺れによる加速度を表す単位として、ガル(gal, センチメートル毎秒毎秒)がある。1秒間に1カインの加速度が1ガルである。

地震動や地震波は地震計により観測される。揺れの周期や感度振幅などにあわせてさまざまな種類のものがあり、担当機関でもいくつかの種類の地震計を使い分けている。日本では気象庁防災科学技術研究所が地震計を多数設置していて観測網を作っている。これらは震度を算出したり、震源の位置や規模を推定することに利用されている。

主な地震帯と地震の頻度

1963年から1998年に発生した地震の分布図。地震の震央の分布にはっきりしたパターンがある。

主な地震の震源を地図にして地球の表面を概観すると、プレートテクトニクス理論における「環太平洋造山帯」や「アルプス・ヒマラヤ造山帯」の周辺は地震が特に多い地域があることが分かる。前述の2つの造山帯も含めた新期造山帯で最も地震が多く世界の地震活動の大部分を占める。このほか、ヨーロッパ西部やアジア北部などの古期造山帯でも比較的多く地震が発生する。

これらの地域は造山帯または地震帯(火山に着目した場合火山帯とも呼ぶ)と呼ばれ、地殻や地面の活動(移動)が活発で、地震も活発である。しかし、この地図はあくまで一定期間に発生した地震を集計したものであり、「地震の起こりやすさ」を表したものである。この地図で地震が少ない地域でも、絶対に地震が発生しないわけではない。

ただし、地震の多い地域と、地震による被害が大きい地域は異なる。地盤の揺れやすさ、人口密度の大小、建造物の強度、社会情勢などによって被害や救助復旧の様子が異なるためである。一方、同じ地域においても、地震が発生する時間や時期などによっても被害は異なり、例えば調理を行う食事時間前や暖房を多く使う時間帯においては火災の多発、大都市では平日昼間における帰宅困難者の発生などが挙げられる。また、地震の規模が大きくなるほど断層の長さが長くなり、被害地域が広くなる傾向にある。津波が発生した場合は、揺れが小さい沿岸部や揺れが全くなかった遠隔地に津波が押し寄せ被害をもたらす。ハワイ諸島などは太平洋の中心にあって周囲に島が少ないため、環太平洋各地の遠隔地津波を受けやすいことで知られる。

世界の年間平均地震発生回数
マグニチュード 回数
8.0~ 1 注1
7.0~7.9 17 注2
6.0~6.9 134 注2
5.0~5.9 1,319 注2
4.0~4.9 13,000 注3
3.0~3.9 130,000 注3
2.0~2.9 1,300,000 注3
USGSの資料による。
注1:1900年以降の平均。
注2:1990年以降の平均。
注3:推定。

世界では、1年間にM5以上の地震が平均約1,500回、M2以上の地震が平均145万回発生している。数の上では、世界で発生する地震の1割程度が日本付近で発生しているといわれ、また1996年から2005年の期間では世界で発生したM6以上の地震の2割が日本で発生しているとの統計があり[3]、客観的に見ても日本は地震の多い国と考えられる。

地震の発生の頻度が過去と比べて増加したかどうかということは、局地的に見ることはできても、全世界的に見ることは現状では難しい。地震の発生数のデータは、地震計の精度の向上や観測点のネットワークの状況などに左右される。世界的に見ても目が細かい日本の高感度地震観測網でも1990年代後半以降のデータであり、世界を見ても微小地震・極微小地震を捉えられるような観測網は少なく、海底となればその傾向は顕著である。

主な活断層・海溝

防災上、地震を引き起こす可能性の高い活断層の存在は注目される。日本では主要な数百の活断層の位置と再来間隔や規模などが調査・発表されている。活断層と同様に活褶曲も地震を発生させうるほか、活断層が無い地域に新たに断層が発生する可能性も否定できない。そのため、活断層の調査を中心とした地震防災に対する批判も存在している。

地球上の活断層(地溝海溝などを含む)のうち、主なものを挙げる。これらは周期的に大地震を発生させると考えられている。このほか、地震活動が活発で多くの活断層を擁する歪集中帯と呼ばれる地域がある。

断層
海溝・沈み込み帯

地震の周期性

プレートや地表の動きが数百年程度の間、長期的に見て一定であれば、それぞれのプレートの境界や断層で起こる地震は一定の周期で起こると考えられており、歪みの蓄積と解放というサイクルを繰り返す。実際に、プレートの境界で起こる南海地震東南海地震東海地震宮城県沖地震などでは周期性があるとされているほか、北アナトリア断層の諸地震などでも周期性が確認されている。

周期性のある地震は、一般的に固有地震といい、現在のところマグニチュード4程度以上、再来周期数年以上の地震で発見されている。過去数十年の地震であれば観測記録から分かるが、古い地震については津波堆積物の分析をしたり、古い文献を参考にしたりして推定している。

プレートの境界においては50年~300年程度[注 8](または1000年程度[注 9])、断層においては数百年~数十万年と、地震の周期はそれぞれ異なる。そのため、周囲のプレートの境界や断層での歪みの影響を受け、それぞれのサイクルで、歪みのかかり具合が毎回異なり、地震の周期が多少ずれることも考えられる。このずれの推定は、現在の長期的地震予知における大きな課題の1つとなっている。

1つの周期をもって繰り返し起こる一連の地震の活動のなかには、大きく分けて、歪みの蓄積、前駆的地震活動、静穏化(空白域の形成もその一種)、前震本震余震などがある。このサイクルには規則性があると考えられており、観測によって現在どのような活動に当たる時期かを知ることで、地震予知に役立てようという動きがある。

専門家の中には、1995年阪神大震災などを例として、「西日本西南日本)は地震の"活動期"に入っているのではないか」と推測している者もいる。これは、過去の資料から西日本で周期的に発生している南海地震東南海地震の前後で西日本の地震活動に変化があり、現在そのパターンのうち"活動期"にあるとするものである(西日本地震活動期説参照)。ただ、判断するための資料が少ないと指摘する声もあり、これを否定する専門家もいる。

地震による被害と対策

ファイル:柏井ビル倒壊の推移Img335 b.jpg
阪神・淡路大震災により傾いたビル。この後完全に倒壊した。
地震により激しく揺さぶられ散乱した食器類。1968年ニュージーランドにて
阪神・淡路大震災時の消火活動
スマトラ島沖地震の津波により家を失った人たちのスラム街。2005年インド・チェンナイにて
新潟県中越地震で被害を受けた道路と橋、地震後
新潟県中越地震で被害を受けた道路と橋、復旧後

震災

大規模な地震が発生した場合、その災害震災(しんさい)と呼ぶ。特に激甚な震災は大震災と呼んで、地震とは別に固有の名称が付けられることがある。例えば関東大震災阪神・淡路大震災東日本大震災などである。しかし「関東大震災」の命名者は不明、「阪神・淡路大震災」「東日本大震災」は報道機関が使用し始めたものを基に閣議で決められたもので、「震災名」を付ける制度は作られていない(地震名は気象庁が命名する)。新潟県中越地震では、新潟県が独自に「新潟県中越大震災」という呼称をつけている。

地震による主な被害

人的被害
建物・家具の倒壊等による怪我および生命への危険。
被災、家族・親せきや友人の死去、避難生活、生活の変化などによる、ノイローゼ急性ストレス障害心的外傷後ストレス障害(PTSD)、うつ病などの心理的被害。震災が社会的にクローズアップされると、直接被災していなくても災害特有の障害に陥る場合がある。(災害心理学も参照)
建造物への被害
揺れによりまず基礎等のひび割れが生じ、地震耐力(耐震強度)が低下すると自重とさらなる揺れによって損壊、倒壊・崩壊に至る。致命的な被害がない場合でも、強度が低下して地震や荷重に弱くなることがある。余震の多発により、本震から時間が経ってからも被害が拡大する例が多い。
地震によりガラスといった建具、ブロック塀、壁面のタイル等が破損・変形・落下・飛散することもある。
屋内ではテレビや冷蔵庫といった電気製品、書棚などの家具食器類、置物などが転倒・落下・飛散することがある。
高層ビルでは長周期地震動による大きな揺れを生じることがある。エレベータでは地震感知器以外の安全装置が地震動により誤作動し閉じ込められる場合があり、大規模地震により大量の閉じ込めが発生して救援が遅れることが懸念されている。
体育館やプール、展示場などの大規模施設では天井屋根が破損・落下することがある。
火災の発生
電気設備・都市ガス設備等破損により火災が発生することがある。停電復旧時の通電火災、強風を伴った場合の火災旋風が発生する場合もある。
地盤・斜面への被害
地震動によって、落石、地割れや地盤の緩みが起こるほか、傾斜地や傾斜した地層、崖などではずれや凹凸が生じる。斜面ではがけ崩れ地滑りが発生する。地震の規模が大きい場合には山体崩壊を伴う。沖積地の砂質地盤では液状化現象側方流動が発生することがある。河川ではがけ崩れや地滑りにより河道閉塞(せき止め湖・天然ダム)が生じ、時間をおいて土石流を発生させる。寒冷地では雪崩も発生する。また、大地震後しばらくは地盤の緩みによって降雨等による土砂災害が発生しやすくなる。
津波の被害
家屋や建造物の流失、人的被害、滞留した水やゴミによる衛生環境の悪化、漁場や港湾への被害、田畑や防風林への塩害など。
ライフラインへの影響
(水道)取水設備・浄水設備・水道管の破損等により断水を生じることがある。ビルでは停電による送水ポンプ停止で断水となる場合もある。
(電気)発電所変電所の停止、鉄塔の倒壊、送電線の切断などにより停電を生じることがある。
(ガス)都市ガスの場合、マイコンメーターの作動により地域単位で供給が遮断されることがある。また、ガス管の破損により供給が停止することがある。
(交通)安全確認のため鉄道では運転見合わせ、高速道路などの道路では速度規制・通行規制などが行われる。地震により鉄道施設・道路施設そのものが故障・寸断されている場合には復旧に時間がかかる。都市部では公共交通機関の麻痺による大量の帰宅困難者が発生することがある。また、山間部・離島や沿岸部で土砂災害や津波によって陸上交通や港湾・飛行場が被害を受け集落が孤立することがある。
(通信)通信施設・電話線・通信系統そのものの損傷、あるいは安否確認・問い合わせ等の通信の殺到による回線のパンクによって通信に重大な支障を生じる。情報源が乏しくなったり情報の錯綜・混乱を生じることがあり、災害に関する情報や生活に必要な情報が入手しづらくなったり、デマや流言が広まりやすくなる。また他方では、地震による被害の過大報道・誤報や誤った認識などによる風評被害が発生する場合もある。
物資の不足や生活環境への被害
食糧や生活物資の不足。家屋被害による居住場所不足、トイレ不足。
物資不足による価格高騰、ヤミ市の出現
医療サービス、公共サービス、行政サービスなどの低下、機能停止。
その他の経済的損失
農地への被害。商品や工場への被害。寡占商品が被害を受けた場合の経済全体への影響。
文化的被害
文化財天然記念物景観などへの被害。文献や史料の損傷、紛失。
衛生状態の悪化
水やごみによる衛生環境の悪化、感染症の流行。
治安の悪化、犯罪の増加、災害時犯罪の発生
スーパーマーケットデパートなどの店舗で食料品や生活物資などが窃盗略奪される。支援物資の奪い合い、暴動などが発生し、治安が悪化(多くの国では近年も震災後の暴動・略奪などがしばしば発生しているが、日本では関東大震災以来、90年近くにわたって自然災害後の極度の治安悪化は起こっていない)。
震災を利用した詐欺、混乱に乗じた被災家屋や金融機関からの窃盗などの犯罪
刑務所拘置所が崩壊すると、受刑者(収容者)が脱走し、治安の悪化が進行(ハイチ地震チリ地震など)。

長期的に見て、地震による被害は縮小する傾向にある。これは、建造物の耐震化や地震に強い社会基盤の形成、さらに地震に関する知識や防災意識の浸透によるものが大きい。日本でも地震の被害は1948年に発生した福井地震の頃まで、人口の増加と産業の発展に比例して増加した部分もあったが、その後は住宅の耐震性・耐火性の向上とともに揺れに起因する被害は減少してきている。世界的にも、地震被害の多い地域では耐震化や防災体制の構築により被害が減少している地域もあるが、途上国を中心にいまだに有効な対策がとられていない地域も多く存在する。

地震は自然現象であり、現在の技術では押しとどめることはできないが、事前に備えておけば被害を大幅に小さくすることは可能であり、地震による災害を人災とする考え方もある。この「努力と事前対策により、想定される被害を可能な限り減らす」、すなわち「減災」の考え方を広めようという運動が2008年頃から行なわれている。

救助と救援・復興

大規模な地震が発生したときには、自分たちの出来る範囲で避難・救助・救援を行うことが救命率向上につながる。その際には、組織化されノウハウを蓄積している消防団自治会などのコミュニティが大きな担い手となる。これは、公設の機関である消防警察海上保安庁自衛隊なども救助・救援を行うがその能力は限られ、一刻を争う避難誘導や救急の人員が不足するためである。地震災害の規模が大きければ大きい程、救助・救援が到達するのが遅くなる傾向にある。また通信が途絶したり夜間であったりといった、救助・救援を必要とする場所の把握が困難になる事態が発生することもあり、捜索に時間がかかる場合もある。

このような大震災が発生した場合は、国内の被災していない地域や国外より救援が来る場合もある。国連機関であるUNICEFWFP、国際NGOである国境なき医師団、国家単位では各国の赤十字や日本における国際緊急援助隊などの救助隊・救援隊が、人的・物的・資金面での人道支援を行う。20世紀後半からは先進国を中心に災害ボランティアによる救助・救援活動が目立ってきている。救助活動や安否確認、医療のほか、避難生活の支援、復旧活動などに、物資や金銭を送ったり、実際に出向いたりといった形で支援が行われる。日本では、「ボランティア元年」と呼ばれた阪神・淡路大震災の際に社会的運動として広がりを見せた後、新潟県中越地震東日本大震災などで活発化した。ボランティアの受け入れ態勢不備やトラブルなどが発生したこともあるが、次第に改善されてきている。

地震災害の際の特徴として、余震により救助・救援が妨げられることが挙げられる。また、建物の中に人が閉じ込められることが多い地震被災地において、災害救助犬も多く活動している。

救助以外の行政の役割として、避難所仮設住宅の確保、物資の提供や仕分け、情報の提供などが挙げられる。また、復興に際しては住宅再建の補助金提供などの役割を担う。

大震災に伴う地すべりや津波による浸水などによって集落単位で壊滅的な被害が発生した場合、その地域を居住に適さない危険な地域として規制し、残った住民の集団移転を行う場合がある。1970年アンカシュ地震ユンガイ、1896年明治三陸地震・1933年昭和三陸地震の際の岩手・宮城沿岸の一部集落などが例であるが、生活との折り合いや費用の問題等で紛糾する場合がある。また、都市型震災の後に多くみられるが、大震災の原因が住居環境によるものであった場合、区画整理などの大型事業によって地震に強い防災まちづくりを実施することがある。

地震発生後の対策

被害の拡大を防ぐために、地震や津波の情報を迅速に伝達することも重要とされる。日本では、国内4,000地点以上に網羅された観測網により微小地震や震度を自動収集していて、気象庁が発生後数分以内での速報を行い、NHKと民間放送事業者がテレビ・ラジオで国民に広く伝えている。観測された震度の大きさによって報道体制を変えており、受け取る側でも、警察・消防・内閣などの公的機関が震度の大きさによって対応を決める。なお、NHKを中心とした一部のテレビ・ラジオでは津波警報発表時や東海地震警戒宣言発表時に受信機を強制起動する緊急警報放送を行っているが、普及率は低い。

それ以外にも、同報系市町村防災行政無線により屋外スピーカーで津波情報や地震に対する警戒を広域に呼びかける手法も、屋外にいる者に発する主要な警告手段として広く用いられる。特に早急な避難が必要な津波の場合には、消防・消防団・警察などが地域を巡回しながら緊急車両のサイレンや拡声器などで避難を呼びかける。また、感震計により強い揺れを観測した際に自動的に警告を発する手法もある。

なお、観測網が整備されている場合に可能な地震の揺れが到達する前の対策(地震警報システム)として、日本では鉄道でのユレダス、テレビ・携帯電話・専用受信機などでの緊急地震速報が運用されている。これと似たシステムが、アメリカ・カリフォルニア州南部やメキシコ・メキシコシティ周辺部でも運用されている。また、常時インターネット環境にある場合に効果が高いP2P地震情報などもある。

大地震直後の電話などの通信の混雑への対策として災害用伝言ダイヤルの設置などが行われている。携帯電話PHSにおいても災害用伝言板サービス等の同様のウェブ上サービスがある。自治体や民間が協力して臨時災害放送局を設置し、被災者への情報提供が行われた例もある。また1990年代から普及したメール2010年代に普及したリアルタイム・ウェブSNSブログミニブログなどの、誰もが即時発信即時共有できる情報)は生活情報や被災情報のやり取りに活用されていて、情報伝達の高速化をもたらした。しかし、震災後には情報が錯綜したりデマ・流言が発生しやすく、一定の社会的信頼を有する報道機関に比べると口承インターネットの信頼性は低いため、災害時においては各人が情報の真偽を見分けるメディア・リテラシーの必要性が高まる。

地震発生前の対策

筋交い(ブレース)による耐震補強を行った小学校の校舎。学校など公共性の高い建築物では、法規や社会的要求により高い耐震性が求められる。

地震被害を防ぐ最も重要な対策の1つが、建造物の耐震を高めることである。各国は建築関連法規により建築物の耐震性を規定しているが、地震経験の多寡によりその厳しさは異なる。日本では建築基準法とその関連法令による耐震基準1981年(昭和56年)6月施行の「新耐震基準」が現行の基準であって、想定される地震動に対し概ね妥当な強度を保持できると考えられている)がこれに該当し、大地震の際などに数回改定されていて、新築建造物はこれを満たして建設しなければならない。ただ、既存の建物は建てた時に適法でも後の法改正により既存不適格となったものがあり、これは一部を除いて耐震補強を行うのは任意である。また、消防法都市計画法にも地震防災に関係する規定が含まれる。

また、原子力発電所など揺れによる災害の危険性が高い建造物については、建設の前の環境アセスメントの段階で、地盤の強度や周囲の断層の位置・活動度などを調査し、なるべくリスクの低い場所に立地するような対策が取られている。これについては、調査が十分に行われない可能性、未知の断層や新たな断層が発生する可能性があるほか、日本では東日本大震災による福島原発事故後に津波に対する耐性が問題となって休止・再稼働停止する原発が相次いでいる。

企業では、リスクマネジメント事業継続マネジメント(BCM)などを通じた業務継続のための対策や経済的影響への対策も必要となる。保険業界や企業を中心に、被害リスクを予め算定する地震PMLという手法も普及している。

市民が行う対策としては、防災訓練防災用品非常食非常袋など)の準備などが代表的なものとして挙げられる。また、過去の災害の例を学んだり体験談を聴いたりすることも有用であるとされ、教育や地域において講演会として行われたり、書籍となったり、インターネット上で公開されたりしている。地震への防災や備えの目安として、避難場所や経路を記した防災地図、地盤の揺れやすさや地震動に見舞われる確率の地図なども自治体により作成されており、活用が可能である。地震被害からの復旧のために地震保険も用意されている。

過去に発生した地震

1906年サンフランシスコ地震後の町の様子。建物が崩れ、煙が上がっている。
スマトラ島沖地震による津波に襲われたスマトラ島の町の様子。水や流木が町のほとんどを覆っている。

有史以来、世界各地で無数の地震が発生している。その中で、多くの被害を出した地震も多数発生している。日本では、1960年以降に気象庁が正式に命名した地震が、現在約30個あるほか、それ以前にも多数の被害地震が発生している。また世界では、1980年から1999年までの20年間で、1年当たり平均約7,400人(うち日本は280人)が地震により亡くなっている[4]

日本およびその周辺の地震、震災など古地震として多く取り上げられる地震として、1923年関東地震関東大震災)がある。この地震では、日本の歴史上最多となる10万人以上の死者を出し、首都東京を含む広い範囲に被害を与え、火災の被害も大きかった。1995年兵庫県南部地震阪神・淡路大震災)は都市部を襲った地震の典型例であり、その後の建築基準法の見直しや防災意識の変化などに大きな影響を与えた。2004年新潟県中越地震では震災後の避難生活に関する問題が大きく取り上げられるようになった。2011年東北地方太平洋沖地震東日本大震災)は津波によって東日本の太平洋側の広い範囲に被害を与え、原発事故等の新たな問題も発生した。また世界的には、津波により多くの死者を出した2004年スマトラ島沖地震などがある。

人類史上、死者が最も多かった地震は、1556年1月23日中国 陝西省で発生した華県地震で、約83万人が死亡した。これは2番目に多い唐山地震の公式統計による死者数の3倍以上である。また、人類史上、最も規模が大きかった地震は、1960年5月22日チリ西岸で発生したチリ地震で、マグニチュードはモーメントマグニチュード(Mw)で9.5だった。

地震予知

地震の発生を事前に予知することで、被害を軽減する試みも、古くから行われてきた。従来の地震学の知識をもとにした、数十年~数百年単位での長期的な発生予測は公式に大掛かりなものが行われている。一方、数ヶ月~数時間単位で正確に予知することは、従来の知識からでは難しく、一般的にも困難とされている。

地震の予知と言っても、さまざまな範囲や形式があり、大きく長期予測と短期予測に分けられる。存在が判明している断層やプレートの沈み込み帯等においては、地質調査と文献の被害資料等から長期的な発生確率やその規模などを予測する手法が確立されている。期間が長いため精度の保証はできないが、ある程度の精度はあると考えられている。ただ、これを実際の地震対策に結び付けられる点はあまり多くない。

一方、短期予測に関しては、多種多様な手法が試みられている。有名なものでは、ギリシャのVAN法前震の検知(中国海城地震で成功した)などがあるが、常に利用できる手法ではない。また、東海地震発生直前に発生すると予想されているプレスリップ(前兆すべり)を検出する方法もある。一方で、現時点では科学的根拠に乏しい宏観異常現象による地震予知も試みられている。

また、仮に地震予知の手法が確立された場合、それを誰がどのように行い、いつどのように発表するかということも、現状では東海地震における地震防災対策強化地域など限られた地震・地域においてしか定まっておらず、混乱が発生する事態も考えられる。

地球以外での「地震」

地球以外の天体においても、地球の地震に相当する、地殻の振動現象が発見されている。

月で発生する地震は月震と呼ばれ、1969年から1977年までの通算8年余りの間観測が行われた。

その他

  • 132年に、後漢張衡地震計の一種である「候風地動儀」を発明したとされる。口に玉をくわえた八匹の竜が八方向を向いており、中国のどこかで地震が起きると、その方向の竜が玉を落とす仕掛けになっていたという。
  • 地震に関する日本最古の記録として、416年允恭5年)と599年推古7年)に発生した地震のことが日本書紀に記されている。
  • 菅原道真870年貞観12年)に方略試という当時最高峰の国家試験を受けたが、そのうちの一問が「地震ヲ弁ズ」(「地震について述べよ」の意か)というものであった。道真の答案は『菅家文草』によって読める。
  • 江戸時代後期に佐久間象山日本で初となる地震を予知をする機器「地震予知器」を開発した。安政江戸地震を機に、大地震の予兆について人々から聞いた話を元に作られた道具で、磁石の先端に火薬が付けられ、その火薬が落ちると大地震が来ると言われている。科学的根拠は皆無とされている。

脚注

注釈

  1. ^ 加えて振幅が小さければ、微小地震の可能性が高い。
  2. ^ この式は大森房吉が1899年に発表したので、「震源の大森公式」と呼ばれている。
  3. ^ 2004年の新潟県中越地震、2011年の東北地方太平洋沖地震で地震被害が比較的少なかったのは、キラーパルスが少なかったからである。
  4. ^ 例えば、Mが1大きくなると、それが表現するエネルギー量は約32倍となる。気象庁震度階級は同一振幅・周波数が数秒間継続した理想波形の場合6galで計測値2.50、60galで4.50であるが、実際の地震波は複雑なので対応関係は表現できない。
  5. ^ 英語圏では普通リヒター・スケール(Richter scale、発音はリクター・スケール)という。
  6. ^ 活断層の統一された定義はない。古典的には、(旧来区分における)第四紀開始以降に活動したと推定される断層を活断層という。なお、2009年より第四紀の区分が変更されたので、現在の区分では「更新世中期の開始以降」にあたる。断層の活動性を考える上では、より重要度の高い「約10万年前にあたる更新世後期の開始以降」に限定する場合がある。「地球史Q&A」 日本地質学会。
  7. ^ 例外として、火山の火道が圧縮されたり、爆発・爆縮によって発生する地震はこの限りでない。
  8. ^ たとえばM8級の東海地震南海地震は100年~150年周期で発生するとされるが、500年以上の長い周期でM8.5~9の連動型超巨大地震の発生も指摘されている(The Assumed Aseismic Subduction and the Necessity of Ocean-Bottom Crustal Deformation Measurements at the Ryukyus, Japan M Nakamura, M Ando, T Matsumoto, M Furukawa, K Tadokoro, M Furumoto, AGU, 2006)。チリ地震スマトラ島沖地震はこうしたタイプの地震であったと認識されている。
  9. ^ 纐纈一起(2011)は、断層のずれとひずみ量の計算から、東北沖の巨大地震の周期を400-600年(中心を438年)とした[要出典]

出典

  1. ^ 宇佐美龍夫(2002) (PDF) 宇佐美龍夫 「歴史史料の「日記」の地震記事と震度について」『歴史地震』 第18号、1-14、2002年
  2. ^ 表面波もレイリー波とラブ波に分けられる。
  3. ^ 初期微動継続時間という。
  4. ^ 鉄道、新幹線・エレベーターの緊急停止(P波管制運転)など
  5. ^ 地震の基礎知識とその観測 6.2 活断層 防災科学技術研究所
  6. ^ 『なゐふる第3号』p.4「関東大地震(大正12年9月1日)」日本地震学会
  7. ^ 群発地震発生のメカニズムを解明 産業技術総合研究所、2002年9月5日
  8. ^ USGS Updates Magnitude of Japan’s 2011 Tohoku Earthquake to 9.0 USGS
  9. ^ コラム1 地震発生のメカニズムと活断層 原子力安全委員会、新耐震指針の概要について
  10. ^ 過去の地震・津波被害 気象庁
  11. ^ 海底活断層が起こした可能性も 東日本大震災(佐賀新聞 2011年09月23日)
  12. ^ 壊れた「留め金」…海底の山の破壊が大震災誘発か(産経新聞 2011年10月8日)
  13. ^ 海溝型地震と活断層型地震 - 防災科学技術研究所
  14. ^ ダムが地震を起こす 週刊プレイボーイ2003年7月8日号
  15. ^ 上田誠也「地震予知研究の歴史と現状」|学士会会報 2007-IV No.865
  16. ^ a b 島村英紀「人間が起こした地震」
  17. ^ 地震続発で地熱発電計画にストップ バーゼル
  18. ^ 「鉱山地震活動、ガス爆発およびこれらと震源物理研究との関係の重要性」
  19. ^ Minor Quakes In the UK Likely Caused By Fracking記事:2011年11月03日 閲覧:2011年11月08日
  20. ^ NEWS SCAN 2009年1月号:日経サイエンス「氷河の健康状態を診断する新手法」
  21. ^ 「フィリピン海プレートの水分が阪神淡路大震災を誘発か?」1999年3月9日付神戸新聞
  22. ^ 中越沖地震、直下のマグマが原因か 2007年8月7日付読売新聞
  23. ^ 岩手・宮城地震、水が断層滑らす?…東北大分析2009年10月24日付読売新聞
  24. ^ 岩手・宮城内陸地震 断層に入った水原因か2010年1月17日付読売新聞
  25. ^ 立命館大学「水没した1km深鉱山で地下水変化に誘発された地震」
  26. ^ Earth Tides Can Trigger Shallow Thrust Fault Earthquakes
  27. ^ 地震と潮汐力の関係
  28. ^ 地震、月や太陽の引力が「最後の一押し」科学 YOMIURI ONLINE(読売新聞)
  29. ^ [1]閲覧には登録が必要
  30. ^ 北米西海岸で西暦1700年に発生した巨大地震の規模を日本の古文書から推定産総研

関連項目

参考文献

  • 国立天文台編『理科年表 平成20年』丸善、2007年。ISBN 978-4-621-07902-7  - 過去の地震のデータ
  • 震災予防調査会編『大日本地震史料』丸善、1904年。  - 日本における幕末までの地震史料の集大成。416年から1865年までの約2,000の地震を集めている。後に『付録大日本地震資料目録』も刊行された。
  • 宇佐美龍夫『新編日本被害地震総覧 : 416-1995』(増補改訂版)東京大学出版会、1996年。ISBN 4-13-060712-X 
  • 震災予防協会-理事長 那須信司編『大地震の前兆に関する資料-今村明恒博士遺稿-』古今書院、1977年。  - 地震周期説を唱え、関東大震災と昭和21年南海大地震を明確に予言した今村明恒東京帝国大学地震学教室教授の遺稿。東海地震などの連動についても明確に論考している古典。地震と火山の関係についても論考している。

外部リンク

日本語

英語

Template:Link FA Template:Link FA Template:Link FA Template:Link GA