Google DeepMind

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索
Google DeepMind
企業形態 子会社
本社
創業者
CEO デミス・ハサビス
業種 人工知能
所有者 Google
従業員数 >100[2]
ウェブサイト www.deepmind.com

Google DeepMind(グーグル・ディープマインド)はイギリス人工知能企業である。2010年にDeepMind Technologiesとして起業された。2014年にGoogleによって買収された際に現在の社名に改称された。Google DeepMindは、人間と似たようなやり方でどのようにビデオゲームをプレーするかを学ぶニューラルネットワークを作成している[3]。また、従来的なチューリング機械のように外部記憶装置にアクセスできるニューラルネットワークを作成しており、これによって人間の脳の短期記憶を模倣できるのではないかと期待されている[4]。Google DeepMindは、開発したプログラムAlphaGoが人間のプロ囲碁棋士を初めて破ったことで2016年に大ニュースとなった[5]

歴史[編集]

2010年-2014年[編集]

2010年、新興企業デミス・ハサビスシェーン・レッグムスタファ・シュリーマンによって起業された[6][7]。ハサビスとレッグはユニヴァーシティ・カレッジ・ロンドンGatsby Computational Neuroscience Unitで初めて出会った[8]

その後大きなベンチャー投資会社維港投資(ホライゾンズ・ベンチャーズ)とファウンダーズ・ファンドがDeepMindに投資し[9]、企業家のスコット・バニスター[10]イーロン・マスク[11]も投資した。ヤーン・タリンも初期の投資家、アドバイザーであった[12]。2014年、DeepMindはケンブリッジ大学コンピュータ研究所の「今年の企業」に選ばれた[13]

Googleによる買収[編集]

2014年1月26日、GoogleはDeepMind Technologiesの買収に合意したことを発表した[14]。この買収は報道によれば、2013年にFacebookとDeepMind Technologiesとの交渉が終わった後に行われた[15]。買収に続いて、社名がGoogle DeepMindに改称された[1]

買収金額は4億米ドル[16]から5億ポンド以上[17][18][19][20][21]と見積られている。

Googleに対するDeepMind側の条件の一つは、人工知能の倫理en:Ethics of artificial intelligence)委員会を設立することであった[22]

AlphaGo[編集]

2015年10月、DeepMind社製のAlphaGoと呼ばれるコンピュータ囲碁プログラムがヨーロッパ囲碁王者樊麾(プロ二段)を5-0で破った[23]。人工知能 (AI) がプロ棋士を破ったのはこれが初めてであった[5]。これ以前は、コンピュータは「アマチュア」レベルでしか囲碁を打てないことが知られていた[23][24]。囲碁は、可能な局面の数がチェスのようなその他のゲームよりもかなり多いため、力まかせ探索といった伝統的なAI手法では極めて困難な課題であり、コンピュータにとって勝つことがより難しいと考えられる[23][24]。このニュースの発表は、使用されたアルゴリズムが記述されたNature誌の論文の発表と合わせるために、2016年1月27日まで遅れた[23]。2016年3月に、プロ棋士李世乭(九段)と韓国で対局し、4勝1敗で勝ち越している。

研究[編集]

DeepMind Technologiesの目標は「知性の謎を解く」ことであり[25]、「強力な汎用学習アルゴリズムを構築するために機械学習システム神経科学からの最良の手法」を組み合わせることによってこれを達成しようと試みている[25]。DeepMind社は、機械に知性を実装するためだけでなく、人間の脳について理解するために、知性を形式化しようと試みている[26]。デミス・ハサビスは

[...] 知性(の本質)をアルゴリズム構成モデルへと抜き出すという試みは、我々の心の永遠の謎のいくらかを理解するための最良の道となるだろう[27][28]

と説明している。

2016年現在、DeepMind社の焦点はゲームをプレーできるコンピュータシステムに関する研究を発表すること、これらのシステムを開発することにある。対象とするゲームは囲碁[29]といった戦略ゲームからアーケードゲームにまで及ぶ。シェーン・レッグによれば、人間レベルの機械知能は、「機械が知覚の流れの入力と出力から本当に幅広いゲームのプレーを学ぶことができるようになり、ゲーム間で理解を移転できるようになった時」[30]に達成することができる。7種類のアタリのビデオゲーム(ポンブレイクアウトスペースインベーダーシークエストビームライダーエンデューロQバート)をプレーするAIを記述した研究が、 報道によればGoogleによる買収につながった[3]

深層強化学習[編集]

IBMディープ・ブルーワトソンといった予め定義された目的のために開発され、その範囲内でのみ機能するその他のAIとは対照的に、DeepMindは自身のシステムが事前にプログラムされていないと主張している。DeepMindのシステムは、データ入力として生のピクセルのみを使用し、経験から学ぶ。技術的には、畳み込みニューラルネットワーク上での深層学習(ディープラーニング)と新たな形式のQ学習(モデルフリー強化学習の一形式)を使用する[1][31]。DeepMindは、ビデオゲーム、特にスペースインベーダーブロックくずし(ブレイクアウト)といった初期のアーケードゲーム上でこのシステムを試験した[31][32]。コードを変更することなしに、このAIはゲームをどうやってプレーするかを理解し始め、ある程度プレーした後、いくつかのゲーム(中でも特にブレイクアウト)については、どの人間よりも効率的にプレーできるようになった[32]。しかし、ほとんどのゲーム(例えばスペースインベーダー、パックマン、Qバート)については、DeepMindは現在の世界記録を下回っている。DeepMindのAiのビデオゲームへの応用は、現在1970年代と1980年代に作られたゲームへのものであり、1990年代初頭に初めて登場したDOOMといったより複雑な3Dゲームへ作業も行われている[32]

脚注[編集]

  1. ^ a b c Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David (2015). “Human-level control through deep reinforcement learning”. Nature 518: 529–33. doi:10.1038/nature14236. PMID 25719670. http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html. 
  2. ^ CEO Demis Hassabis”. 2016年3月12日閲覧。
  3. ^ a b The Last AI Breakthrough DeepMind Made Before Google Bought It”. The Physics arXiv Blog. 2014年10月12日閲覧。
  4. ^ Best of 2014: Google's Secretive DeepMind Startup Unveils a "Neural Turing Machine", MIT Technology Review
  5. ^ a b Première défaite d’un professionnel du go contre une intelligence artificielle”. Le Monde (2016年1月27日). 2016年3月12日閲覧。
  6. ^ “Google Buys U.K. Artificial Intelligence Company DeepMind”. Bloomberg. (2014年1月27日). http://www.bloomberg.com/news/2014-01-27/google-buys-u-k-artificial-intelligence-company-deepmind.html 2014年11月13日閲覧。 
  7. ^ “Google makes £400m move in quest for artificial intelligence”. Financial Times. (2014年1月27日). http://www.ft.com/cms/s/0/dfedc62e-874e-11e3-9c5c-00144feab7de.html 2014年11月13日閲覧。 
  8. ^ “Demis Hassabis: 15 facts about the DeepMind Technologies founder”. The Guardian. http://www.theguardian.com/technology/shortcuts/2014/jan/28/demis-hassabis-15-facts-deepmind-technologies-founder-google 2014年10月12日閲覧。 
  9. ^ DeepMind buy heralds rise of the machines”. 2014年10月14日閲覧。
  10. ^ DeepMind Technologies Investors”. 2014年10月12日閲覧。
  11. ^ Cuthbertson, Anthony. “Elon Musk: Artificial Intelligence 'Potentially More Dangerous Than Nukes'”. International Business Times UK. 2016年3月12日閲覧。
  12. ^ Recode.net – DeepMind Technologies Acquisition”. 2014年1月27日閲覧。
  13. ^ Hall of Fame Awards: To celebrate the success of companies founded by Computer Laboratory graduates.”. University of Cambridge. 2014年10月12日閲覧。
  14. ^ Google to buy artificial intelligence company DeepMind”. Reuters (2014年1月26日). 2014年10月12日閲覧。
  15. ^ Google beats Facebook for Acquisition of DeepMind Technologies”. 2014年1月27日閲覧。
  16. ^ Computers, gaming”. The Economist (2015年2月28日). 2016年3月12日閲覧。
  17. ^ “Google Acquires UK AI startup Deepmind”. The Guardian. http://www.theguardian.com/technology/2014/jan/27/google-acquires-uk-artificial-intelligence-startup-deepmind 2014年1月27日閲覧。 
  18. ^ Report of Acquisition, TechCrunch”. TechCrunch. 2014年1月27日閲覧。
  19. ^ Oreskovic, Alexei. “Reuters Report”. Reuters. 2014年1月27日閲覧。
  20. ^ “Google Acquires Artificial Intelligence Start-Up DeepMind”. The Verge. http://www.theverge.com/2014/1/26/5348640/google-deepmind-acquisition-robotics-ai 2014年1月27日閲覧。 
  21. ^ Google acquires AI pioneer DeepMind Technologies”. Ars Technica. 2014年1月27日閲覧。
  22. ^ “Inside Google's Mysterious Ethics Board”. Forbes. (3 February 2014). http://www.forbes.com/sites/privacynotice/2014/02/03/inside-googles-mysterious-ethics-board/ 2014年10月12日閲覧。. 
  23. ^ a b c d Google achieves AI 'breakthrough' by beating Go champion”. BBC News (2016年1月27日). 2016年3月12日閲覧。
  24. ^ a b Research Blog: AlphaGo: Mastering the ancient game of Go with Machine Learning”. Google Research Blog (2016年1月27日). 2016年3月12日閲覧。
  25. ^ a b DeepMind Technologies Website”. DeepMind Technologies. 2014年10月11日閲覧。
  26. ^ Legg, Shane; Veness, Joel (29 September 2011). An Approximation of the Universal Intelligence Measure. http://arxiv.org/pdf/1109.5951v2.pdf 2014年10月12日閲覧。. 
  27. ^ attempting to distil intelligence into an algorithmic construct may prove to be the best path to understanding some of the enduring mysteries of our minds.
  28. ^ Hassabis, Demis (23 February 2012). “Model the brain's algorithms”. Nature. http://www.gatsby.ucl.ac.uk/~demis/TuringSpecialIssue(Nature2012).pdf 2014年10月12日閲覧。. 
  29. ^ Huang, Shih-Chieh; Müller, Martin (12 July 2014). “Investigating the Limits of Monte-Carlo Tree Search Methods in Computer Go”. Lecture Notes in Computer Science (Springer): 39–48. doi:10.1007/978-3-319-09165-5_4. http://link.springer.com/chapter/10.1007%2F978-3-319-09165-5_4. 
  30. ^ Q&A with Shane Legg on risks from AI” (2011年6月17日). 2014年10月12日閲覧。
  31. ^ a b Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David; Graves, Alex; Antonoglou, Ioannis; Wierstra, Daan; Riedmiller, Martin (2013). Playing Atari with Deep Reinforcement Learning. http://arxiv.org/pdf/1312.5602v1.pdf. 
  32. ^ a b c Deepmind artificial intelligence @ FDOT14. 19 April 2014. 

関連項目[編集]

外部リンク[編集]