合成数

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索

合成数(ごうせいすう、: Composite number)は、自然数で、1とその数自身以外の約数を持つ数である。2つ以上の素数で表すことのできる自然数と定義してもよい。たとえば15は1と15自身以外に3と5を約数に持つ(または 3×5 と素数の積で表される)ので合成数である。9や25など素数を2乗した数は1つしか素因数をもたないが、9 = 3×3 のように2つの素数の積で表せる合成数である。

最小の素数は2であり、これを2乗した4が最小の合成数となる。合成数は無数にあり、4から小さい順に列記すると次のようになる。

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, …(オンライン整数列大辞典の数列 A002808)

合成数はおおよそ「素数でない自然数」と考えられる。ただし自然数の内 1 は合成数や素数ではない。また自然数に 0 を含む場合は 0 も合成数や素数ではない。

言い換えれば、「1 と素数と合成数から自然数が構成される」とも捉えることが出来る。解釈によってはこれに 0 を加える。

数学的性質[編集]

  • 4以上の全ての偶数は合成数である。6以上の全ての偶数は最低4個の約数を持つ。
  • 10以上の数では一の位が 0, 2, 4, 5, 6, 8 であれば全て合成数である。
  •  6 ≦ n である合成数nはこの式を満たす。(→ウィルソンの定理
  • 合成数は少なくとも3個の約数を持つ。また素数の2乗以外の合成数は最低4個の約数を持つ。最少個の約数を持つ合成数は素数pを2乗したp2で、1,p,p2 の3つがその約数である。
  • 3番目以降の多角数は合成数である。また、完全数過剰数も全て合成数である。
  • 任意の自然数nに対して、連続するn個の合成数を自然数列から取り出すことができる。実際、(n+1)!+2, (n+1)!+3, …, (n+1)!+(n+1)は連続するn個の合成数である。

関連項目[編集]