倍積完全数

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索

倍積完全数(ばいせきかんぜんすう、: multiply perfect number, multiperfect number, pluperfect number)とは、その約数総和が元の数の整数倍になるような自然数のことである。約数関数 σ を用いて定義すると σ(n) = knk は自然数)を満たす自然数 n が倍積完全数であり、これを k倍完全数ともいう。

k = 2 の場合である2倍完全数は単に完全数と呼ぶ。なお、k = 1 の場合は σ(n) = n を満たす n が 1 のみであるため、1倍完全数は 1 のみである。

例えば、120 の約数の総和は

σ(120) = 1 + 2 + 3 + 4 + 5 + 6 + 8 + 10 + 12 + 15 + 20 + 24 + 30 + 40 + 60 + 120 = 360 = 3 × 120

であり、120 の 3 倍となるので、120 は3倍完全数である。

具体的には 1, 6, 28, 120, 496, 672, 8128, 30240, 32760, 523776, 2178540, 23569920, …(オンライン整数列大辞典の数列 A007691

pn を割り切らない素数とすると、np倍完全数であることと、pn が (p + 1)倍完全数であることは同値である。例えば、3倍完全数 m が 2 で割り切れるが 4 で割り切れない場合(すなわち m単偶数である場合)、m/2 は奇数の完全数となるが、そのような数はいまだに見つかっていない。

k倍完全数の表[ソースを編集]

以下にそれぞれの k倍完全数 (k ≤ 11) のうち、現在見つかっている中で最小の数を挙げる。(オンライン整数列大辞典の数列 A007539

k 最小の k倍完全数 発見者、年
1
1 -
2
6 -
3
120 -
4
30240 デカルト1638年
5
14182439040 デカルト、1638年
6
154345556085770649600 カーマイケル (en:Robert Daniel Carmichael)、1907年
7
141310897947438348259849402738485523264343544818565120000 TE Mason、1911年
8
2.34111439263306338… × 10161 Paul Poulet (en:Paul Poulet)、1929年
9
7.9842491755534198… × 10465 Fred Helenius
10
2.86879876441793479… × 10923 Ron Sorli
11
2.51850413483992918… × 101906 George Woltman (en:George Woltman)

2007年12月現在、11倍完全数までの倍積完全数が見つかっている。

性質[ソースを編集]

k = 2 のとき、つまり通常の完全数の場合については同項目を参照。

  • k倍完全数が無数に存在するかどうかは分かっていないが、3倍完全数は6個、4倍完全数は36個、5倍完全数は65個、6倍完全数は245個がそれぞれ発見されており、これより多くは存在しないと言われている。
  • k ≥ 2 とし、Nr 個の相異なる素因数を持つ k 倍完全数とする。このとき N は、kr に依存するある定数 C 未満の自然数と、1 または偶数の完全数との積になる(Kanold, 1956)。この定数 C は実際に計算可能である(Pomerance, 1977)。
  • k 倍完全数 n における約数の逆数の和は k に等しい。これは n の約数の和を N としたとき、逆数の和は になることから証明できる。
例:n = 6 のとき

参考文献[ソースを編集]

  • H.-J. Kanold, Über einen Satz von L. E. Dickson, II, Math. Ann. 132 (1956), 246--255. doi:10.1007/BF01360184
  • C. Pomerance, Multiple Perfect Numbers, Mersenne Primes, and Effective Computability, Math. Ann. 226 (1977), 195--206. doi:10.1007/BF01362422

外部リンク[ソースを編集]

関連項目[ソースを編集]