コンテンツにスキップ

「雨氷」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
出典整理など
編集の要約なし
1行目: 1行目:
[[ファイル:Shrub Branch-Ice Storm-Dec 2007-St Jo MO.jpg|thumb|right|324px|雨氷が付着した枝先の拡大写真]]
[[ファイル:Shrub Branch-Ice Storm-Dec 2007-St Jo MO.jpg|thumb|right|324px|雨氷が付着した枝先の拡大写真]]
'''雨氷'''(うひょう、あめごおり)とは、[[過冷却]]状態の[[雨]]('''着氷性の雨''')が[[物体]]に付着してできる、硬く[[透明]]な[[氷]]のこと。[[着氷|着氷]]現象の一種。
'''雨氷'''(うひょう<ref name="daijirin">[[#daijirin|三省堂 大辞林第二版「雨氷」]]</ref>)とは、[[過冷却]]状態の[[雨]]('''着氷性の雨''')が[[物体]]に付着してできる、硬く[[透明]]な[[氷]]のこと。[[着氷|着氷]]現象の一種。


== 概要 ==
== 概要 ==
21行目: 21行目:
なお、0℃を僅かに超えた雨粒が0℃以下に冷えた物体に付着しても透明な氷ができ、雨氷と混同される場合がある。また、[[積雪]]が[[融解]]したあと再び凍結するなどして透明な氷ができることもある。これらは雨氷ではない<ref name="okada1951"/>。なお、再凍結によりできるもののうち、例えば細く地面に向かって垂れ下がるものは[[氷柱]](つらら)、その逆に空に向かって伸びるものは[[氷筍]](ひょうじゅん)という。
なお、0℃を僅かに超えた雨粒が0℃以下に冷えた物体に付着しても透明な氷ができ、雨氷と混同される場合がある。また、[[積雪]]が[[融解]]したあと再び凍結するなどして透明な氷ができることもある。これらは雨氷ではない<ref name="okada1951"/>。なお、再凍結によりできるもののうち、例えば細く地面に向かって垂れ下がるものは[[氷柱]](つらら)、その逆に空に向かって伸びるものは[[氷筍]](ひょうじゅん)という。


=== 発生の特徴 ===
=== 特徴 ===
着氷性の雨が発生する条件として、地上気温は0℃から-数℃の狭い範囲に限られ、[[#形成過程|後述]]のように上空に適度な厚みの[[逆転層]]が存在することが必要である。ごくありふれた現象である雨や雪と比べて、雨氷は目にする機会が少なく、発生頻度も低いため、珍しい気象現象とされている<ref name="terada"/><ref name="okada1951">[[#岡田(1951)|岡田、『雨』、1951年]]</ref>。
着氷性の雨が発生する条件として、地上気温は0℃から-数℃の狭い範囲に限られ、[[#形成過程|後述]]のように上空に適度な厚みの[[逆転層]]が存在することが必要である。ごくありふれた現象である雨や雪と比べて、雨氷は目にする機会が少なく、発生頻度も低いため、珍しい気象現象とされている<ref name="terada"/><ref name="okada1951">[[#岡田(1951)|岡田、『雨』、1951年]]</ref>。


低地の[[平野]]部よりも、地形に起伏のある[[山地]]などのほうが発生しやすい。これは起伏により逆転層が形成されやすくなることなどが原因である。
低地の[[平野]]部よりも、地形に起伏のある[[山地]]などのほうが発生しやすい。これは起伏により逆転層が形成されやすくなることなどが原因である。


雨氷が物体に大量に付着すると、[[木|樹木]]の枝が重くなりって折れ曲がったり、地面に氷の層を作って人の転倒や車両のスリップを引き起こすなど、被害を発生させることがある。一方、樹木などに付着した雨氷が美しい[[風景]]を作り出すという側面もある。着氷性の雨や霧は上空でも生じるが、これにより雨氷が[[航空機]]の翼などに付着して運行に重大な支障を引き起こす例がある<ref name="okada1951"/><ref name="ahb">[[#ahb|全日空広報室、『エアラインハンドブックQ&A100 航空界の基礎知識』、1995]]</ref>。
広域的には、アメリカ、カナダ、[[ヨーロッパ]]、[[中華人民共和国|中国]]、[[日本]]など各地で発生例が報告されている。特に[[アメリカ合衆国|アメリカ]]と[[カナダ]]にまたがる[[セントローレンス川]]沿岸ではよく発生することが知られている。セントローレンス川沿岸に位置するカナダの[[モントリオール]]では、年間約12 - 17回、時間にして年間計約45 - 65時間という頻度で雨氷が発生する<ref name="h">[http://www.discoverychannelasia.com/perfect_disaster/ice_storm/index.shtml Ice Storm] Discovery Cannnel </ref>。アメリカで1948 - 2000年の着氷性の雨の年間平均発生日数を調べた調査では、最多の[[アディロンダック山地]]南部で7日、[[ミズーリ州]]から[[ペンシルベニア州]]までの帯状の地域及び[[アイオワ州]]・[[ミネソタ州]]西部で5日などとなっている<ref>[[#Stanley(2003)|Stanley et al, 2003]]</ref>。同様にカナダで1961 - 1990年の着氷性の雨・霧雨の年間発生日数を調べた調査では、[[ニューブランズウィック州]]、[[ノバスコシア州]]、[[ニューファンドランド島]]東部で年間50日(着氷性の雨に限っても25日)などとなっている<ref name="Stuart(1999)">[[#Stuart(1999)|Stuart et al, 1999]]</ref><ref name="Cortinas Jr.(2004)">[[#Cortinas Jr.(2004)|Cortinas Jr. et al, 2004]]</ref>。


== 形成過程 ==
日本では、[[長野県]]で特に多く報告され多いところでは年平均2 -3回の発生がある。また、1989 - 2003年に気象台や測候所のある都市の着氷性の雨・霧雨を調べた調査において、[[中部地方|中部]]から[[東北地方|東北]]にかけての山間部や東北と[[北海道]]の[[太平洋側]]平野部のいくつかの都市で4 - 5年に1回程度の発生が報告されているほか、被害をもたらすレベルの雨氷は国内で10年に1件程度という調査がある。時期については、研究報告のある[[北半球]]では[[冬]]季に発生のピークがくる地域が多いが、北極に近く寒冷な地域の中には夏季にピークがくるところもある<ref name="terada"/><ref name="seppyo2000">[[#松下ら(2000)|松下ら、2000年]]</ref><ref name="seppyo2000"/><ref name="seppyo2004"/><ref name="Cortinas Jr.(2004)"/>。
[[ファイル:Uhyou.JPG|right|thumb|300px|雪が融解して生じる着氷性の雨の発生メカニズム]]
[[ファイル:Freezing rain and inversion.png|right|thumb|300px|逆転層と降水の形の変化。]]
[[ファイル:Aerological diagram Tsukuba Japan 2003-01-03-2100JST.png|right|thumb|250px|関東地方で着氷性の雨や凍雨が観測された[[2003年]]1月3日21:00(日本標準時)の茨城県[[つくば市]]館野の高層気温・露点温度断面図([[気象庁]])。逆転層がある。]]
着氷性の雨(霧雨を含む)の形成には2通りある。1つは[[雪]]が融けて生じるもので、上空で生成された雪が落下する間に融ける「融解過程(melting process)」を経る。融解過程には、上空に[[逆転層]]が生じることが必要である。もう1つははじめから過冷却の状態にあるもので、始めから過冷却の水滴として雲の中で水滴が発達し、地上に達するものである。このプロセスは「[[降水過程#過冷却の暖かい雨|過冷却の暖かい雨]](supercooled warm rain process, SWRP)」と呼ばれている<ref name="seppyo2004"/>。


着氷性の霧の場合、はじめから過冷却の「過冷却の暖かい雨」である。
雨氷が物体に大量に付着すると、[[木|樹木]]の枝が重くなりって折れ曲がったり、地面に氷の層を作って人の転倒や車両のスリップを引き起こすなど、被害を発生させることがある。一方、樹木などに付着した雨氷が美しい[[風景]]を作り出すという側面もある。着氷性の雨や霧は上空でも生じるが、これにより雨氷が[[航空機]]の翼などに付着して運行に重大な支障を引き起こす例がある<ref name="okada1951"/><ref name="ahb">[[#ahb|全日空広報室、『エアラインハンドブックQ&A100 航空界の基礎知識』、1995]]</ref>。


=== 雪が融解して生じる着氷性の雨 ===
== 形成過程 ==
=== 着氷性の雨 ===
[[ファイル:Uhyou.JPG|right|thumb|300px|着氷性の雨の発生メカニズム(冷たい雨のプロセス)]]
[[ファイル:Freezing rain and inversion.png|right|thumb|300px|逆転層と着氷性の雨。谷を覆う寒気に暖気が覆いかぶさるように移動してきて逆転層が形成され、着氷性の雨を発生させる環境が整う。]]
{{see also|雪の生成までのプロセスについては「[[降水過程]]」、「[[雪]]」を}}
{{see also|雪の生成までのプロセスについては「[[降水過程]]」、「[[雪]]」を}}
通常、[[地球の大気|大気]]は上に行くほど[[気温]]が下がるが、風によってかき混ぜられると、上下の冷たい空気の層(冷気層)の間に暖かい空気の層(暖気層)が侵入する[[逆転層]]が発生することがある。
通常、[[地球の大気|大気]]は上に行くほど[[気温]]が下がるが、例えば上空の高さごに風向が異なり、上下の冷たい空気の層(冷気層)の間に暖かい空気の層(暖気層)が侵入すると、[[逆転層]]が発生することがある。逆転層発生の要因は他にも地形による寒気のブロックなどがある。


下の冷気層が地表に接していて気温0℃以下、暖気層が気温0℃以上の状態にあり、層の厚さ、気温、[[湿度]]、[[風速]]、水滴の大きさ等がちょうど良い条件のとき、上の冷気層[[雲]]があってそこから[[雪]]が降ると、暖気層で融解して[[雨]]となり、冷気層で再冷却され着氷性の雨となり、地表に達して雨氷となる。変化の過程は次の表のようになる。
下の冷気層が気温0℃以下、真ん中の暖気層が気温0℃以上のとき、上の冷気層[[雲]]から[[雪]]が降ると、暖気層で融解して[[雨]]、冷気層で再冷却され着氷性の雨となる。
:'''[[雪]]([[固体]])'''→加熱による[[融解]]→'''[[雨]]([[液体]])'''→冷却→'''着氷性の雨([[過冷却]]の液体)'''
{| class="wikitable" style="font-size:small"
|+ 一般的な雪から雨氷への変化過程
|-
| 大気層と気温
| 降水/着氷形態と水の相
| 物理的状態
|- style="background-color:#ccffff"
| 冷気層(気温0℃以下)
| 雪([[固体]])
| -
|- style="background-color:#ffcccc"
|rowspan="3"| 暖気層(気温0℃以上)
| 雪([[固体]])
| 雪の温度が上昇している
|- style="background-color:#ffcccc"
| 融けつつある雪または[[霙]](固体と[[液体]])
| 雪の[[融解]]や[[昇華]]、融けた部分の[[蒸発]]が進んでいる
|- style="background-color:#ffcccc"
| 雨(液体)
| 雨の温度が上昇している
|- style="background-color:#ccffff"
|rowspan="2"| 冷気層(気温0℃以下)
| 雨(液体)
| 雨の温度が低下している
|- style="background-color:#ccffff"
| 着氷性の雨(過冷却の液体)
| 雨の温度が低下している
|- style="background-color:#ccffff"
|rowspan="2"| 物体表面(温度0℃以下)
| 雨氷と水(固体と液体)
| 水の凍結が進んでいる
|- style="background-color:#ccffff"
| 雨氷(固体)
| -
|}


ただし既に述べたよう条件により着氷性の雨ならない場合がある。この場合片の変化は2通り考えられる。ひとつは雨粒が0℃以下冷えないパターン。この場合単なる雨として降る。うひとつは雪片が結晶を残したまま下の冷気層に入り、結晶を核として凍結して氷の粒になってしまう、または完全に融解した後凍結して氷の粒になってしまうパターンであ。この場合は[[霰]](あられ)や[[凍雨]]としてる。着氷性の雨より凍雨の方が遥かに発生頻度は高い<ref name="seppyo2000"/>。
ただし、前記のような逆転層があっても必ずしも着氷性の雨にはならない。逆転層があっても、暖気層で雪が完全融けないで[[雪]]となる場合もあれば、冷気層凍結してしま氷の粒が降る[[凍雨]]として観測される場合もあるからである。実際、着氷性の雨より凍雨の方が遥かに発生頻度は高い<ref name="seppyo2000"/>。


具体的に暖気層の厚さが何百mないし、気温が何℃というようなデータはいくつか報告されているが、事例によりまちまちで定性的ではない。
具体的に暖気層の厚さが何百mないし、気温が何℃というようなデータはいくつか報告されているが、事例によりまちまちで定性的ではない。
*1956年3月19日 - 20日に着氷性の雨により筑波山の山頂を含む標高700m以上の地域に雨氷が発生した例では、雪の結晶が最初に生成される[[雲頂]]高度6,000m、0℃以上の暖気層が3,000 - 1,400m、0℃以下の冷気層が1,400 - 800mであった。仮に雨粒の直径を1mm、落下速度を毎秒6mとすれば、暖気層で融解した雨粒はおよそ100秒かけて過冷却となり、標高700 - 800mの地表に達して雨氷を生じさせる{{harv|植野|1961}}
*1956年3月19日 - 20日に着氷性の雨により筑波山の山頂を含む標高700m以上の地域に雨氷が発生した例では、雪の結晶が最初に生成される[[雲頂]]高度6,000m、0℃以上の暖気層が3,000 - 1,400m、0℃以下の冷気層が1,400 - 800mであった。仮に雨粒の直径を1mm、落下速度を毎秒6mとすれば、暖気層で融解した雨粒はおよそ100秒かけて過冷却となり、標高700 - 800mの地表に達して雨氷を生じさせる([[#植野(1961)|植野、1961年]])


また、アメリカ・カナダで着氷性の雨や霧雨の発生時の地上の気温を調べた研究では、約8割が1から-5℃の間、約2割が-5℃未満で、僅かに1℃以上の事例もあった<ref name="Cortinas Jr.(2004)"/>。
また、アメリカ・カナダで着氷性の雨や霧雨の発生時の地上の気温を調べた研究では、約8割が1から-5℃の間、約2割が-5℃未満で、僅かに1℃以上の事例もあった<ref name="Cortinas Jr.(2004)"/>。


=== 「過冷却の暖かい雨」 ===
以上は落下途中で一度氷の状態を経る「[[降水過程#冷たい雨|冷たい雨]]」のプロセスの着氷性の雨について述べてきた。氷の状態を経るかどうかという観点では、一度も凍結しないままの「[[降水過程#過冷却の暖かい雨|過冷却の暖かい雨]](Supercooled Warm Rain Process, SWRP)」のプロセスの着氷性の雨も存在する。始めから過冷却の水滴として雲の中で水滴が発達し、地上に達するものである。この種の着氷性の雨は水滴の直径が小さく、雨というよりも(着氷性の)霧雨に分類されるものがほとんどである<ref name="seppyo2004">[[#seppyo2004|松下 他、2004年]]</ref>。この種の雲は水滴が落下まで至らずとも、山地などに[[着氷性の霧]]として現れ雨氷・[[霧氷#樹氷|樹氷]]・[[霧氷#粗氷|粗氷]]を発生させる。また、この種の雲はおおむね雲頂(雲の最高部)の気温が-10℃より高いことが知られている<ref>[[#uiuc-ice|イリノイ大学大気科学部]]</ref>。
雲や雨粒のような大きさや存在環境では過冷却の水滴が珍しくないことは既に述べた。例えば一般的に[[雲]]の中では、0℃から-4℃程度では水滴のほとんどが過冷却であり、温度が低くなるにつれて少なくなるが、-20℃程度までは過冷却の水滴が存在する。なお、実際にはこの種の雲はおおむね雲頂(雲の最高部)の気温が-10℃より高いことが知られている<ref>[[#uiuc-ice|イリノイ大学大気科学部]]</ref>。これが成長し、過冷却を保ったまま降って地上に達した場合、あるいは上空で航空機への着氷などとして観測されれば着氷性の雨になる<ref name="lts1951-1"/><ref name="lts1951-2"/><ref name="lts1951-3"/><ref name="ogura1999">[[#ogura1999|小倉、『一般気象学』第2版、1999年]]</ref>。この種の着氷性の雨は水滴の直径が小さく、雨というよりも(着氷性の)霧雨に分類されるものがほとんどである<ref name="seppyo2004">[[#seppyo2004|松下 他、2004年]]</ref>。


過冷却の水滴を含む雲は、山地などの地表に現れると着氷性の霧として観測される。
=== 着氷性の霧 ===
[[着氷性の霧]]は、逆転層に伴い発生する場合もあれば、逆転層を伴わない場合(前節における「過冷却の温かい雨」のプロセスのもの)もある。後者のものは、0℃以下の比較的広い範囲の地上気温、最も低いものでは-20℃程度まで存在することが知られている<ref name="lts1951-2"/><ref group="注">なお、一般的に[[雲]]の中では、0℃から-4℃程度では水滴のほとんどが過冷却であり、温度が低くなるにつれて少なくなるが、-20℃程度までは過冷却の水滴が存在する。</ref><ref name="ogura1999">[[#ogura1999|小倉、『一般気象学』第2版、1999年]]</ref>。


=== 着氷性の霧 ===
ただし、着氷性の霧がつくる付着氷は、大気や水滴の条件の違いにより雨氷、粗氷、樹氷に分かれる。3者の違いは気泡の含有率にあることは[[#概要]]の節で述べたが、これと相関性が高いのは気温と風速である。気温が高いほど、また風速が速いほど、気泡が少ない傾向にある。ある研究によれば気温-2℃以上では風速に関係なくほとんどが雨氷になり、気温-2℃から-4℃の間では風速により雨氷と粗氷に分かれ、気温-4℃以下ではほとんど雨氷は発生しない<ref name="lts1951-2"/><ref name="lts1951-3"/>。
着氷性の霧は条件により、雨氷・[[霧氷#樹氷|樹氷]]・[[霧氷#粗氷|粗氷]]になる。3者の違いは気泡の含有率にあることは[[#概要]]の節で述べたが、これと相関性が高いのは気温と風速である。気温が高いほど、また風速が速いほど、気泡が少ない傾向にある。ある研究によれば気温-2℃以上では風速に関係なくほとんどが雨氷になり、気温-2℃から-4℃の間では風速により雨氷と粗氷に分かれ、気温-4℃以下ではほとんど雨氷は発生しない<ref name="lts1951-2"/><ref name="lts1951-3"/>。


=== 付着仕方 ===
=== 形成 ===
[[ファイル:Tree branch after ice storm.JPG|thumb|right|250px|枝の左側に多く雨氷が付いていることから、左方向からの風によって付着したと推測される。]]
[[ファイル:Tree branch after ice storm.JPG|thumb|right|250px|枝の左側に多く雨氷が付いていることから、左方向からの風によって付着したと推測される。]]
着氷性の雨が物体に付着してから完全に凍結するまでには、多少の時間がかかる。この時間は、凍結に伴う[[潜熱]]放出による加熱蒸発に伴う潜熱吸収による冷却という熱のバランスによるもので、湿度・気温・風速などに相関性がある。凍結速度が遅いと、枝の表面などでは水の部分は重力により落下していくほか、氷の表面は濡れた状態である<ref name="okada1951"/><ref name="jma"/>。
着氷性の雨や霧が物体に付着してから完全に凍結するまでには、多少の時間がかかる。この時間は、凍結に伴う[[潜熱]]放出による加熱蒸発に伴う潜熱吸収による冷却などの熱のバランスに左右され、湿度・気温・風速などに相関性がある。凍結速度が遅いと、枝の表面などでは水の部分は重力により落下していくほか、氷の表面は濡れた状態である<ref name="okada1951"/><ref name="jma"/><ref name="tenki2005"/>。
:'''着氷性の雨([[過冷却]]の[[液体]])'''→物体表面に付着→冷却による凍結→'''[[雨氷]]([[固体]])'''


なお、雨氷の凍結を決定する熱的な収支バランスは、[[顕熱]][[フラックス]]Q<sub>s</sub>と[[潜熱]]フラックスQ<sub>l</sub>の和と、雨氷の凍結に必要な熱量Q<sub>f</sub>のにより表され、木の枝など円柱表面における算出式は以下のようになる(Jones,1996および、松下ら,2005)<ref group="注">式では省略したが、式中の係数はさらにその場の[[降水量]]、[[風速]]、枝の直径などから導出される。出典論文を参照。</ref><ref>[[#tenki2005|松下 他、2005年]]</ref>。
なお、雨氷の凍結を決定する熱的な収支バランスは、[[顕熱]][[フラックス]]Q<sub>s</sub>潜熱フラックスQ<sub>l</sub>、雨氷の凍結に必要な熱量Q<sub>f</sub>の3つの和により表され、木の枝など円柱表面における算出式は以下のようになる(Jones, 1996および、松下ら2005)<ref group="注">式では省略したが、式中の係数はさらにその場の[[降水量]]、[[風速]]、枝の直径などから導出される。出典論文を参照。</ref>。この値が負で値が大きいほど、凍結は速いと考えられる<ref name="tenki2005">[[#tenki2005|松下 他、2005年]]</ref>。
:Q<sub>s</sub>=-πh<sub>a</sub>ΔT (W/m<sup>2</sup>) …(h<sub>a</sub>は大気の熱交換係数([[ワット|W]]/([[立方メートル|m<sup>2</sup>]]・[[セルシウス度|℃]]))、ΔTは大気と雨氷表面の温度差(℃))
:Q<sub>s</sub>=-πh<sub>a</sub>ΔT (W/m<sup>2</sup>) …(h<sub>a</sub>は大気の熱交換係数([[ワット|W]]/([[立方メートル|m<sup>2</sup>]]・[[セルシウス度|℃]]))、ΔTは大気と雨氷表面の温度差(℃))
:Q<sub>l</sub>=-πL<sub>e</sub>h<sub>v</sub>Δρ<sub>v</sub> (W/m<sup>2</sup>) …(L<sub>e</sub>は水の蒸発潜熱([[ジュール|J]]/[[キログラム|kg]])、h<sub>v</sub>は水蒸気の交換係数(m/[[秒|s]])、Δρ<sub>v</sub>は水蒸気密度の差(kg/[[立方メートル|m<sup>3</sup>]]))
:Q<sub>l</sub>=-πL<sub>e</sub>h<sub>v</sub>Δρ<sub>v</sub> (W/m<sup>2</sup>) …(L<sub>e</sub>は水の蒸発潜熱([[ジュール|J]]/[[キログラム|kg]])、h<sub>v</sub>は水蒸気の交換係数(m/[[秒|s]])、Δρ<sub>v</sub>は水蒸気密度の差(kg/[[立方メートル|m<sup>3</sup>]]))
102行目: 71行目:


== 雨氷をもたらす天候 ==
== 雨氷をもたらす天候 ==
逆転層発生する主な条件として、低気圧や前線の通過といった[[気象#気象現象のスケール|総観スケール]]の気象状態のほか、より小さなスケールの地形の影響などが挙げられる。
着氷性の雨降ったときの特徴として、低気圧や前線の通過といった[[気象#気象現象のスケール|総観スケール]]の気象状態、より小さなスケールの地形の影響などがる。


また目安として、気温分布図では0℃の等温線付近、降水分布図では雨と雪の境界付近、風向分布図では風向が急変するが[[ウインドシア]]の近傍にそれぞれ着氷性の雨が分布することが多く、分布域は[[前線 (気象)|前線]]に平行することが多い<ref name="seppyo2000"/>。また[[凍雨]]は着氷性の雨と似た条件で発生するため、似たような分布を示すことが多い。
また目安として、気温分布図では0℃の等温線付近、降水分布図では雨と雪の境界付近、風向分布図では風向が急変するが[[ウインドシア]]の近傍にそれぞれ着氷性の雨が分布することが多く、分布域は[[前線 (気象)|前線]]に平行することが多い。分布域はふつう細長く幅は狭いが、北極に近い高緯度地方では、[[寒冷前線]]の寒気側で幅50km以上の広範囲にわたって着氷性の雨が降ることもある<ref>[[#uiuc-cyc|イリノイ大学大気科学部]]</ref>。また[[凍雨]]は着氷性の雨と似た条件で発生するため、似たような分布を示すことが多い<ref name="seppyo2000"/><ref name="Cortinas Jr.(2004)"/><ref name="Robert(2001)"/>


=== 総観スケールの気象 ===
=== 総観スケールの気象 ===
総観スケールの気象は地域により差異があるため一概には言えないが、いくつかの例を挙げる。
前線を境にして北に雪を降らせる寒気、南に雨を降らせる暖気があって、低気圧に伴う強風があると南北で風向が大きく異なる場合がある。ここで寒気の上に暖気が乗り上げると、逆転層ができる。ここに[[降水]]があり気温などの条件がそろうと、着氷性の雨が発生する。


日本においては主に2つのパターンが多い。1つは海に面した[[平野]]部で、下層に北寄りの風による寒気の[[移流]]、中層に南寄りの風による暖気の移流があって、そこに逆転層が生じるパターン。もう1つは内陸の[[盆地]]で、弱風下で下層の盆地内に寒気が滞留していて(「冷気湖」という)、中層に南寄りの風による暖気の移流があって、そこに逆転層ができるパターンである。天気図で見ると、大局的には日本海と本州南岸の2つの低気圧が並んで東進する「[[二つ玉低気圧]]」の時に起こる場合が多い。また着氷性の雨の分布は、低気圧の東側にある[[温暖前線]]の寒気側から低気圧の周囲付近にかけての細長い地域となる場合が多い<ref name="seppyo2000"/><ref name="seppyo2004"/>。
[[天気図]]で見ると、低気圧の東側にある[[温暖前線]]の寒気側から低気圧の周囲付近にかけての細長い地域で着氷性の雨が降る例が多く<ref>[[#uiuc-frz|イリノイ大学大気科学部]]</ref><ref name="seppyo2000" />みられる。


アメリカではいくつかのパターンがある。前線を伴った[[低気圧]]の北側([[温暖前線]]や[[停滞前線]]の寒気側)で発生するパターン、大陸に張り出す[[高気圧]]の辺縁部([[寒冷前線]]の寒気側)で発生するパターン、大陸を東進する低気圧と東海岸の高気圧との間で発生するパターン、[[アパラチア山脈]]による寒気のせき止め(cold air damming)により発生するパターンである<ref name="seppyo2004"/><ref name="Robert(2001)">[[#Robert(2001)|Rauber, Robert M. et al., 2001]]</ref>。
ただし、北極に近い高緯度地方では、[[寒冷前線]]の寒気側で幅50km以上の広範囲にわたって着氷性の雨が降ることもある。これは、この地域の寒気が非常に低温であることなどが関係している。寒気が大陸の乾燥した空気、暖気が海洋の湿った空気で構成されているとこの傾向が強くなる<ref>[[#uiuc-cyc|イリノイ大学大気科学部]]</ref>。


=== 地形 ===
=== 地形 ===
119行目: 88行目:
一般的に起伏のある地形では[[霧氷|樹氷]]や[[霧氷|粗氷]]も発生しやすいが、例年のように樹氷が現れる場所で同様に雨氷が見られるかと言えばそうではない。雨氷は条件が非常に限定的なため、限られた狭い地域で偶発的に発生し、年々変動が大きい<ref name="seppyo2000"/>。
一般的に起伏のある地形では[[霧氷|樹氷]]や[[霧氷|粗氷]]も発生しやすいが、例年のように樹氷が現れる場所で同様に雨氷が見られるかと言えばそうではない。雨氷は条件が非常に限定的なため、限られた狭い地域で偶発的に発生し、年々変動が大きい<ref name="seppyo2000"/>。


== 地域性 ==
[[セントローレンス川|セントローレンス峡谷]]は谷型の地形で、世界でも最も頻繁に雨氷が発生することで知られる<ref name="h"/>。なおアメリカでは、[[ロッキー山脈]]より東側(南部の海沿いの一部を除く)の地域で雨氷が発生し、西側の地域では発生しない。これは、[[北極気団]]がロッキー山脈に阻まれて、それより南西側には南下できないためである<ref>[[#uiuc-rgn|イリノイ大学大気科学部]]</ref>。
広域的には、アメリカ、カナダ、[[ヨーロッパ]]、[[中華人民共和国|中国]]、[[日本]]など各地で発生例が報告されている。特に[[アメリカ合衆国|アメリカ]]と[[カナダ]]にまたがる[[セントローレンス川]]沿岸ではよく発生することが知られている。セントローレンス川沿岸に位置するカナダの[[モントリオール]]では、年間約12 - 17回、時間にして年間計約45 - 65時間という頻度で雨氷が発生する<ref name="h">[http://www.discoverychannelasia.com/perfect_disaster/ice_storm/index.shtml Ice Storm] Discovery Cannnel </ref>。アメリカで1948 - 2000年の着氷性の雨の年間平均発生日数を調べた調査では、最多の[[アディロンダック山地]]南部で7日、[[ミズーリ州]]から[[ペンシルベニア州]]までの帯状の地域及び[[アイオワ州]]・[[ミネソタ州]]西部で5日などとなっている<ref>[[#Stanley(2003)|Stanley et al, 2003]]</ref>。同様にカナダで1961 - 1990年の着氷性の雨・霧雨の年間発生日数を調べた調査では、[[ニューブランズウィック州]]、[[ノバスコシア州]]、[[ニューファンドランド島]]東部で年間50日(着氷性の雨に限っても25日)などとなっている<ref name="Stuart(1999)">[[#Stuart(1999)|Stuart et al, 1999]]</ref><ref name="Cortinas Jr.(2004)">[[#Cortinas Jr.(2004)|Cortinas Jr. et al, 2004]]</ref>。


日本では、[[長野県]]で特に多く報告され多いところでは年平均2 -3回の発生がある。また、1989 - 2003年に気象台や測候所のある都市の着氷性の雨・霧雨を調べた調査において、[[中部地方|中部]]から[[東北地方|東北]]にかけての山間部や東北と[[北海道]]の[[太平洋側]]平野部のいくつかの都市で4 - 5年に1回程度の発生が報告されているほか、被害をもたらすレベルの雨氷は国内で10年に1件程度という調査がある。時期については、研究報告のある[[北半球]]では[[冬]]季に発生のピークがくる地域が多いが、北極に近く寒冷な地域の中には夏季にピークがくるところもある<ref name="terada"/><ref name="seppyo2000">[[#松下ら(2000)|松下ら、2000年]]</ref><ref name="seppyo2000"/><ref name="seppyo2004"/><ref name="Cortinas Jr.(2004)"/>。
== 予測 ==
着氷性の雨や着氷性の霧は、[[集中豪雨]]などと同じように、現象が起こる範囲が狭い。気温わずか10℃程度の変化で雨から着氷性の雨、凍雨、雪へと変わるほど発生の条件が限られており、雨氷は最大で50km程度の幅までしか発生しないと言われている。


== 予測 ==
着氷性の雨の予測では、気温・湿度・風向風速の[[鉛直]]分布や面的な分布を通して、逆転層とそれに沿う着氷性の雨の出現域を解析することが行われる。これらのデータは[[気象レーダー]]や地上気象観測、高層気象観測などによって収集される<ref>[[#uiuc-fcst|イリノイ大学大気科学部]]</ref><ref>[[#uiuc-sounding|イリノイ大学大気科学部]]</ref>。
着氷性の雨の予測では、気温・湿度・風向風速の[[鉛直]]分布や面的な分布を通して、逆転層とそれに沿う着氷性の雨の出現域を解析することが行われる。これらのデータは[[気象レーダー]]や地上気象観測、高層気象観測などによって収集される<ref>[[#uiuc-fcst|イリノイ大学大気科学部]]</ref><ref>[[#uiuc-sounding|イリノイ大学大気科学部]]</ref>。


136行目: 106行目:
[[ファイル:Trees-Ice Storm-Dec 2007-St Jo MO.jpg|thumb|right|240px|雨氷の重さで垂れ下がり、折れた木の枝々]]
[[ファイル:Trees-Ice Storm-Dec 2007-St Jo MO.jpg|thumb|right|240px|雨氷の重さで垂れ下がり、折れた木の枝々]]
[[ファイル:La Rade.jpg|right|thumb|240px|厚い雨氷が付着したベンチ、[[レマン湖]]畔]]
[[ファイル:La Rade.jpg|right|thumb|240px|厚い雨氷が付着したベンチ、[[レマン湖]]畔]]
雨氷ができた後、気温が上昇するなどして氷が融けてしまえば大きな被害は発生しない。アメリカでは、ある研究では発生する雨氷の99%が2時間以内で終わってしまう、また別の研究では約45%が1時間以内、約90%が5時間以内に終わってしまう<ref name="Cortinas Jr.(2004)"/>などとされており、着氷性の雨が降り止んだ後はたいてい南から暖かい空気が押し寄せてきて雨氷が溶けてしまう<ref>[http://www.islandnet.com/~see/weather/whys/westzr.htm Freezing Rain In The US West] THE WEATHER DOCTOR</ref>。しかし、融けずに長時間固まったままであれば、さらに雨氷や雪が積もって厚くなり、大きな被害をもたらす。


雨氷ができた後、気温が上昇するなどして氷が融けてしまえば大きな被害は発生しない。しかし、例えばカナダ・アメリカでは、着氷性の雨の約45%が1時間以内、約90%が5時間以内に終わってしまう<ref name="Cortinas Jr.(2004)"/>という研究があり、長時間続くと被害が大きくなる。
類似の被害をもたらす現象と比較した雨氷による被害の特徴として、その性質の違いによるものが挙げられる。新雪、押しつぶされた雪、[[霜]]、[[粗氷]]、[[樹氷]]、雪や霜が融けた後に再凍結した氷などと比較しても雨氷は気泡が少なく、比重は約0.9と純粋な氷に近い。そのため、[[熱伝導率]]が高く冷気を伝えやすいほか、頑丈なため手で割って取り除くのは難しい<ref name="lts1951-1"/><ref name="lts1951-3"/>。

雪や[[霧氷]]などに比べて雨氷は密度が高く、固い<ref name="lts1951-1"/><ref name="lts1951-3"/><ref name="jma"/>。雨氷による被害の主なものとして、樹木の被害、電力網への被害、交通の支障、人的被害等が挙げられる。北東部を中心に被害が多いアメリカでは、着氷性の雨を伴った天候を[[:en:Ice storm|ice storm]](アイスストーム)と言う<ref>[[#amsglo2|アメリカ気象学会, 気象学用語集]]</ref>が、1949年から2000年までの間にアイスストームによる損害額は163億ドル(2000年時点)(Changnon,2003)に上るとされ、同国内の気象災害によるケガの20%がアイスストームによるものだという報告もある(Kochin,1997<ref name="Cortinas Jr.(2004)"/>)。


=== 山地での被害 ===
=== 山地での被害 ===
雨氷は高山で発生することが多いため、山地で局地的に雨氷が発生し、樹木への被害をもたらす例が多数報告されている。雨氷が樹木にもたらす被害は、枝のみが折れる軽微なものもあるが、傾いたり、大きく曲がったり、地面に倒れこんだり、根ごと倒れたり、途中で折れたりといった深刻なものもあり、[[林業]]にとっては大きな打撃となる<ref name="e"/>。
雨氷は高山で発生することが多いため、山地で局地的に雨氷が発生し、樹木への被害をもたらす例が多数報告されている。雨氷が樹木にもたらす被害は、枝のみが折れる軽微なものもあるが、傾いたり、大きく曲がったり、地面に倒れこんだり、根ごと倒れたり、途中で折れたりといった深刻なものもあり、[[林業]]にとっては大きな打撃となる<ref name="e"/>。


雪が樹木の上部や外部にのみ付着するのに対し、雨氷は樹木の枝葉1つ1つに氷がついて重くなるため、雪の半分程度の降水量で折れ曲がったり倒壊してしまう。ある調査では、樹木に付着する雨氷の重さは、平均で木の総重量の5 - 16倍に達していたといい<ref name="matsushima1923">松島周一、1923「[http://kindai.ndl.go.jp/info:ndljp/pid/984943/26 富士見及木祖ニ於ケル雨氷]」『森林治水気象彙報』第2号、pp.88-93 {{NAID|10003425389}}</ref>、15mの木に総重量4.5トンの雨氷が付着した例もある<ref name="f">[http://www.islandnet.com/~see/weather/elements/icestorm.htm ICE STORMS: HAZARDOUS BEAUTY] THE WEATHER DOCTOR</ref>。日本における事例では、森林に被害を与える気象現象の中で雨氷は珍しい部類ではあるが、[[北海道]]、[[岩手県|岩手]]、[[長野県|長野]]などで詳しい記録がある。なお、雨氷で森林被害が生じても氷が解けるとそれが雨氷が原因であったことがわからないこともあるため、報告されていないものもあると考えられている<ref>吉武孝、島田和則、2001「[http://www.ffpri.affrc.go.jp/labs/kanko/380-2.html 文献による森林気象災害 -発生位置図と気候区分図-]」,『[[森林総合研究所]]研究報告』No.380, pp.35-173 {{NAID|40004842709}}</ref>。北海道の[[カラマツ]][[人工林]]で行われた被害調査では、同年齢の樹木の中で太く高いものが被害を受ける事例、逆に細く低いものが被害を受ける事例、また樹勢に関係なく被害を受ける事例があり、樹勢よりも風や付着の仕方などの気象条件の方が雨氷被害との相関性が高いと報告されている<ref>鳥田宏行、武一夫、2007「[https://www.jstage.jst.go.jp/article/jjfs/89/1/89_1_39/_article/-char/ja/ 雨氷害を受けたカラマツ人工林における林分構造と被害率との関係]」,『日本森林学会誌』89巻1号, pp.39-44 {{NAID|110006882851}}</ref>。
雪が樹木の上部や外部にのみ付着するのに対し、雨氷は樹木の枝葉1つ1つに氷がついて重くなるため、雪の半分程度の降水量で折れ曲がったり倒壊してしまう。ある調査では、樹木に付着する雨氷の重さは、平均で木の総重量の5 - 16倍に達していたといい<ref name="matsushima1923">[[#matsushima1923|松島、1923年]]</ref>、15mの木に総重量4.5トンの雨氷が付着した例もある<ref name="f">[[#twd|THE WEATHER DOCTOR]]</ref>。日本における事例では、森林に被害を与える気象現象の中で雨氷は珍しい部類ではあるが、[[北海道]]、[[岩手県|岩手]]、[[長野県|長野]]などで詳しい記録がある。なお、雨氷で森林被害が生じても氷が解けるとそれが雨氷が原因であったことがわからないこともあるため、報告されていないものもあると考えられている<ref name="吉武ほか(2001)">[[#吉武ほか(2001)|吉武ほか、2001]]</ref>。北海道の[[カラマツ]][[人工林]]で行われた被害調査では、同年齢の樹木の中で太く高いものが被害を受ける事例、逆に細く低いものが被害を受ける事例、また樹勢に関係なく被害を受ける事例があり、樹勢よりも風や付着の仕方などの気象条件の方が雨氷被害との相関性が高いと報告されている<ref name="鳥田ほか(2007)">[[#鳥田ほか(2007)|鳥ほか、2007年]]</ref>。


=== 居住地での被害 ===
=== 居住地での被害 ===
[[ファイル:Ice storm.jpg|thumb|left|240px|雨氷の重さで地面近くにまで垂れ下がった電線]]
[[ファイル:Ice storm.jpg|thumb|left|240px|雨氷の重さで地面近くにまで垂れ下がった電線]]
市街で発生した場合は、特に被害が大きくなる。氷が[[電線路|電線]]に付着して[[電柱]]が倒壊し、氷の量が多い場合には送電線の鉄塔でさえ倒れることもある。[[鉄道]]の[[架線]]に付着した場合は、給電がストップして運行ができなくなるが、雨氷を取り除く作業は着雪などに比べて時間がかかり、運行再開は遅れがちになる<ref name="下原(2011)">[[#下原(2011)|下原、2011年]]</ref>。また、電線の一定の方向にだけ雨氷が付着すると、強風により[[ギャロッピング現象]]と呼ばれる振動現象を起こし、電線同士が接触するなどして[[短絡|ショート]]し、断線することがある<ref name="c">[[#田所(1997)|田所、1997年]]</ref>。
市街で発生した場合は、特に被害が大きくなる。雨氷はあらゆる物にくっついて凍るため、外気に触れている構造物のほとんどに硬い氷が付着し、どんどんと成長していく。また、電線や枝などの細い物体に氷が付くと、重量と[[面積|表面積]]が大きく増加するため、[[風力|強風]]に弱くなる。北米では、冬に多く見られる、着氷性の雨を伴った天候を[[:en:Ice storm|ice storm]](アイスストーム)と言う<ref>[[#amsglo2|アメリカ気象学会, 気象学用語集]]</ref>。

氷が[[電線路|送電線]]に付着して[[電柱]]が倒壊し、氷の量が多い場合には送電線の鉄塔でさえ倒れることもある。[[鉄道]]の[[架線]]に付着した場合は、給電がストップして運行ができなくなるが、雨氷を取り除く作業にも時間がかかり、運行再開は遅れがちになる<ref name="b">[http://www.knet.ne.jp/~3776net/yuki-030103.html 2003年1月3日の降雪 ~関東地方で着氷災害~] Earth Travel Museum 気象気候館</ref>。また、電線の一定の方向にだけ雨氷が付着すると、強風により[[ギャロッピング現象]]と呼ばれる振動現象を起こし、電線同士が接触するなどして[[短絡|ショート]]し、断線することがある<ref name="c">田所裕 {{PDFlink|[http://crcenter.crc.kitami-it.ac.jp/publish/seika/4/tadokoro.pdf 雨氷ギャロッピング現象事例解析]}} 北見工業大学地域共同研究センター、研究成果報告書第4号、1997年</ref>。


雨氷が道路を覆うと、表面は硬く滑らかなため非常に滑りやすい状態となり、[[自動車|車]]はスリップし、歩行者も転倒しやすくなる。雨氷に覆われた道路の[[ブレーキ|制動距離]]は、乾いている場合の10倍、雪に覆われている場合の2倍といわれている<ref name="f"/>。雨氷は表面が滑らかで透明なうえ、雪が降るとすぐ覆い隠されてしまうため、道路が雨氷に覆われていることに気付かないことがある。また、気づいていても滑りやすいので、誤って怪我をしてしまうことが多い<ref name="uiuc-home"/>。戸外での移動に際しては、[[靴]]や車の[[タイヤ]]のスリップ対策が必要になる。また、[[鉄道]]の[[線路 (鉄道)|線路]]や[[飛行場]]の[[滑走路]]も凍結した場合、交通網の深刻な停滞・麻痺を来たす。
雨氷が道路を覆うと、表面は硬く滑らかなため非常に滑りやすい状態となり、[[自動車|車]]はスリップし、歩行者も転倒しやすくなる。雨氷に覆われた道路の[[ブレーキ|制動距離]]は、乾いている場合の10倍、雪に覆われている場合の2倍といわれている<ref name="f"/>。雨氷は表面が滑らかで透明なうえ、雪が降るとすぐ覆い隠されてしまうため、道路が雨氷に覆われていることに気付かないことがある。また、気づいていても滑りやすいので、誤って怪我をしてしまうことが多い<ref name="uiuc-home"/>。戸外での移動に際しては、[[靴]]や車の[[タイヤ]]のスリップ対策が必要になる。また、[[鉄道]]の[[線路 (鉄道)|線路]]や[[飛行場]]の[[滑走路]]も凍結した場合、交通網の深刻な停滞・麻痺を来たす。


また、特に雨氷の場合に留意しなければならないのが、停電に伴う影響である。雨氷は電線に付着して[[停電]]を起こしやすいため、ガスや電気の代わりとして[[暖房]]に火を使うことになる。それによって[[火災]]の危険性が高まり、締め切った室内で暖房器具や発電機を使うことで[[一酸化炭素#.E4.B8.80.E9.85.B8.E5.8C.96.E7.82.AD.E7.B4.A0.E4.B8.AD.E6.AF.92|一酸化炭素中毒]]の危険性も高まる。1998年1月上旬に北米を襲ったアイスストームでは、多数の一酸化炭素中毒患者が出ている<ref>[http://archives.cbc.ca/IDD-1-70-258/disasters_tragedies/ice_storm/ The Ice Storm of 1998] CBC Archives</ref>。
また、特に雨氷の場合に留意しなければならないのが、停電に伴う影響である。雨氷は電線に付着して[[停電]]を起こしやすいため、ガスや電気の代わりとして[[暖房]]に火を使うことになる。それによって[[火災]]の危険性が高まり、締め切った室内で暖房器具や発電機を使うことで[[一酸化炭素#.E4.B8.80.E9.85.B8.E5.8C.96.E7.82.AD.E7.B4.A0.E4.B8.AD.E6.AF.92|一酸化炭素中毒]]の危険性も高まる。1998年1月上旬に北米を襲ったアイスストームでは、多数の一酸化炭素中毒患者が出ている<ref>[[#cbc|CBC archives]]</ref>。

着氷性の雨に前後して強い[[寒波]]が訪れ、低温が長期間続くと、これに水道管の凍結などが加わり、[[ライフライン]]がほぼ全て停止するほどの大きな影響が出ることがある。氷が融けない状態が続けば、被害は長期化する。


=== 航空機への被害 ===
=== 航空機への被害 ===
地上に限らず、上空でも雨氷の付着被害が発生する。[[航空機]]に雨氷が付着すると、視界が悪くなったり、機体の重量や[[空気抵抗]]が増加したり、翼に付着して[[揚力]]を低下させたり、[[ジェットエンジン]]や[[プロペラ]]に付着して出力を低下させたりして、航行に支障が生じることがある。その他の[[着氷]]も航行への支障の原因となるが、付着速度は雨氷が最も速く、氷が硬く取れにくいため、もっとも厄介な着氷とされる。現在では航空機の[[防氷システム]]<small>([[:en:Ice protection system|英語]])</small>が普及しており、中型機では主に[[防氷ブーツ]]、大型機では主に[[ヒーター]]や空圧を利用した機構により着氷を防止したり、氷を除去したりしている。<ref name="ahb"/>。
地上に限らず、上空でも雨氷の付着被害が発生する。[[航空機]]に雨氷が付着すると、視界が悪くなったり、機体の重量や[[空気抵抗]]が増加したり、翼に付着して[[揚力]]を低下させたり、[[ジェットエンジン]]や[[プロペラ]]に付着して出力を低下させたりして、航行に支障が生じることがある。その他の[[着氷]]も航行への支障の原因となるが、付着速度は雨氷が最も速く、氷が硬く取れにくいため、もっとも厄介な着氷とされる。現在では航空機の[[防氷システム]]<small>([[:en:Ice protection system|英語]])</small>が普及しており、中型機では主に[[防氷ブーツ]]、大型機では主に[[ヒーター]]や空圧を利用した機構により着氷を防止したり、氷を除去したりしている。<ref name="ahb"/>。

なお、航空機においては地表では凍雨として観測されていても上空では着氷性の雨という場合があり、予報の際には凍雨を含めて考える必要がある<ref name="Cortinas Jr.(2004)"/>。


== 雨氷のもたらす景色と文化 ==
== 雨氷のもたらす景色と文化 ==
雨氷が物体に付着すると、独特の[[景色]]が現れる。木々に付着した雨氷は、透明な氷の層を形成し、光が当たると[[ガラス]]のように光り輝く。また、山の斜面に帯状の雨氷ができ、それが白く輝いて見えることがある。これらは[[観光]]や自然観賞の対象となり、寒い時期に見られる美しい景観として親しまれている。中国の[[廬山]]や[[黄山]]をはじめとして、山でよく見られる景観として捉えられている地域もあれば<ref name="g">[http://news.tq121.com.cn/index.php?id=1003 冻雨的形成与危害] 问天网、2001年11月13日。</ref>、平野部の居住地でも身近に見ることができる景観として捉えられている地域もある。雨氷は冬の[[季語]]となっている<ref>松村明、1995『[[大辞林]] 第二版』三省堂 ISBN 978-4385140094</ref>。なお、[[古代]]日本では[[和名類聚抄]]にも記載されているように[[雹]]、[[霙]]あるいは氷雨(冷たい雨)の意味で「雨氷」という語が用いられたこともあるが、これは現在の用法とは直接の関係はないとされる<ref>壬生幸子、2000「上代の雨」『共栄学園短期大学研究紀要』6巻、pp.265-276 {{NAID|110000467002}}</ref>。
雨氷が物体に付着すると、独特の[[景色]]が現れる。木々に付着した雨氷は、透明な氷の層を形成し、光が当たると[[ガラス]]のように光り輝く。また、山の斜面に帯状の雨氷ができ、それが白く輝いて見えることがある。これらは[[観光]]や自然観賞の対象となり、寒い時期に見られる美しい景観として親しまれている。中国の[[廬山]]や[[黄山]]をはじめとして、山でよく見られる景観として捉えられている地域もあれば<ref name="g">[http://news.tq121.com.cn/index.php?id=1003 冻雨的形成与危害] 问天网、2001年11月13日。</ref>、平野部の居住地でも身近に見ることができる景観として捉えられている地域もある。雨氷は冬の[[季語]]となっている<ref name="daijirin"/>。
なお、[[古代]]日本では[[和名類聚抄]]にも記載されているように[[雹]]、[[霙]]あるいは氷雨(冷たい雨)の意味で「雨氷」という語が用いられたこともあるが、これは現在の用法とは直接の関係はないとされる<ref name="壬生(2000)">[[#壬生(2000)|壬生、2000年]]</ref>。


雨氷を見ることができる地域では、雨氷がもたらす美しい景観やその情緒が、さまざまな形で[[芸術]]に表現されている。雨氷をテーマとした文化作品や芸術作品を以下に挙げる。
雨氷を見ることができる地域では、雨氷がもたらす美しい景観やその情緒が、さまざまな形で[[芸術]]に表現されている。雨氷をテーマとした文化作品や芸術作品を以下に挙げる。
179行目: 150行目:
[[ファイル:Chinasnowstorm2008 bijie.jpg|thumb|right|240px|2008年冬の寒波の際に発生した雨氷、中国貴州省[[畢節地区]]の林にて]]
[[ファイル:Chinasnowstorm2008 bijie.jpg|thumb|right|240px|2008年冬の寒波の際に発生した雨氷、中国貴州省[[畢節地区]]の林にて]]
北米やヨーロッパでは、冬を中心に、低気圧の通過時に平野部でも雨氷が発生することがある。以下に顕著な被害を出した例を挙げる。
北米やヨーロッパでは、冬を中心に、低気圧の通過時に平野部でも雨氷が発生することがある。以下に顕著な被害を出した例を挙げる。
{{Main2|「[[:en:List of ice storms|List of ice storms]](英語)」、「[[:en:Category:Ice storms|Category:Ice storms]](英語)」も}}
*[[1867年]][[1月22日]] - イギリス [[ロンドン]]で雨氷が発生、道路が氷に覆われ滑って車や場所の往来ができなくなった<ref name="okada1951"/>。
*[[1867年]][[1月22日]] - イギリス [[ロンドン]]で雨氷が発生、道路が氷に覆われ滑って車や場所の往来ができなくなった<ref name="okada1951"/>。
*[[1875年]][[1月1日]] - イギリス ロンドンで1967年と同じような雨氷が発生した<ref name="okada1951"/>。
*[[1875年]][[1月1日]] - イギリス ロンドンで1967年と同じような雨氷が発生した<ref name="okada1951"/>。
*[[1879年]][[1月22日]] - [[1月24日|24日]] - フランス [[パリ]]で着氷性の雨により大規模な雨氷が発生。広い範囲で30時間にわたって降り続け、氷の厚さは20 - 40mm、電線の氷の直径は38mmに達した。このとき気温は-3℃程度、雨の温度が-4から-5℃くらいであったという<ref name="okada1951"/>。
*[[1879年]][[1月22日]] - [[1月24日|24日]] - フランス [[パリ]]で着氷性の雨により大規模な雨氷が発生。広い範囲で30時間にわたって降り続け、氷の厚さは20 - 40mm、電線の氷の直径は38mmに達した。このとき気温は-3℃程度、雨の温度が-4から-5℃くらいであったという<ref name="okada1951"/>。
*[[1905年]][[11月18日]] - [[11月19日|19日]] - フランス [[アルザス=ロレーヌ]]で広範囲にわたり雨氷、氷の厚さは10mmに達した<ref name="okada1951"/>。
*[[1905年]][[11月18日]] - [[11月19日|19日]] - フランス [[アルザス=ロレーヌ]]で広範囲にわたり雨氷、氷の厚さは10mmに達した<ref name="okada1951"/>。
*[[1994年]][[10月31日]] - アメリカ [[インディアナ州]]上空を飛行中のアメリカン・イーグル4184便が雨氷に遭遇し、着氷により操縦不能に。同州ローズローン近郊に墜落、乗客・乗員68名が死亡([[アメリカン・イーグル航空4184便墜落事故]])<ref>{{PDFlink|[http://www.bluecoat.org/reports/NTSB_96_Roselawn_ATR.pdf American Eagle Flight 4184]}} National Transportation Safety Board Aircraft Accident Report</ref>。
*[[1994年]][[10月31日]] - アメリカ [[インディアナ州]]上空を飛行中のアメリカン・イーグル4184便が雨氷に遭遇し、着氷により操縦不能に。同州ローズローン近郊に墜落、乗客・乗員68名が死亡([[アメリカン・イーグル航空4184便墜落事故]])<ref>{{PDFlink|[http://www.bluecoat.org/reports/NTSB_96_Roselawn_ATR.pdf American Eagle Flight 4184]}} [[国家運輸安全委員会]]"Aircraft Accident Report"</ref>。
*[[1996年]][[1月23日]] - [[1月24日|24日]] - イギリス [[ウェールズ]]から[[イングランド]]中南部にかけての地域で雨氷が発生、各地で停電や交通障害が発生した<ref>[http://www.dandantheweatherman.com/Bereklauw/Freezingrain23jan96.htm A British Ice Pellet, Freezing Rain and Glaze Event During the Cold Snap of Late January 1996.] Dan Suri、2001年3月5日</ref>。
*[[1996年]][[1月23日]] - [[1月24日|24日]] - イギリス [[ウェールズ]]から[[イングランド]]中南部にかけての地域で雨氷が発生、各地で停電や交通障害が発生した<ref name="Suri(2001)">[[#Suri(2001)|Suri、2001]]</ref>。
*[[1998年]][[1月5日]] - [[1月10日|10日]] - カナダ南東部・アメリカ北東部の広範囲で雨氷(アイスストーム)が発生、特に[[セントローレンス川]]沿岸で数十mmの雨氷が降り積もった。停電により約400万人が影響を受け、46人が死亡、被害額は数十億ドルに達した<ref>The January 1998 Ice Storm Montreal, Quebec, Canada [http://www.imiuru.com/icestormdiary/1pages/factsfigures.html Fast Facts], [http://www.imiuru.com/icestormdiary/1pages/Introduction.html Introduction], [http://www.imiuru.com/icestormdiary/1pages/HydroQuebecMap.html HydroQuebec's Map] 2005年1月24日</ref>。([[:en:North American ice storm of 1998|North American ice storm of 1998]])
*[[1998年]][[1月5日]] - [[1月10日|10日]] - カナダ南東部・アメリカ北東部の広範囲で雨氷(アイスストーム)が発生、特に[[セントローレンス川]]沿岸で数十mmの雨氷が降り積もった。停電により約400万人が影響を受け、46人が死亡、被害額は数十億ドルに達した<ref name="imiuru">[[#imiuru|imiuru.com、2005]]</ref>。([[:en:North American ice storm of 1998|North American ice storm of 1998]])


日本でも、雨氷の観測や、雨氷被害の報告が多数ある。山地で局地的に発生することが多いため、集落や都市部で見られることは少ない。以下に主な例を挙げる。
日本でも、雨氷の観測や、雨氷被害の報告が多数ある。山地で局地的に発生することが多いため、集落や都市部で見られることは少ない。以下に主な例を挙げる。
194行目: 166行目:
*[[1970年]][[2月24日]] - [[2月25日|25日]] - [[新潟県]]内陸部 - 長野県南東部<ref name="c"/>
*[[1970年]][[2月24日]] - [[2月25日|25日]] - [[新潟県]]内陸部 - 長野県南東部<ref name="c"/>
*[[1980年]][[3月22日]] - [[3月23日|23日]] - 長野県中部でおよそ70km四方にわたって雨氷が発生、鉄道や電線、林業に被害を出した<ref name="e"/>
*[[1980年]][[3月22日]] - [[3月23日|23日]] - 長野県中部でおよそ70km四方にわたって雨氷が発生、鉄道や電線、林業に被害を出した<ref name="e"/>
*[[1987年]][[2月27日]] - [[2月28日|28日]] - [[熊本県]]阿蘇地方の阿蘇外輪山東側で局地的な雨氷が発生、人工林の[[杉]]などが折れ曲がったりし、およそ1億6,000万円相当の被害を出した<ref name="d">上中作次郎 [http://www.ffpri-kys.affrc.go.jp/kysmr/data/mr0004k2.htm 阿蘇地方に発生した造林地の雨氷害] 森林総合研究所九州支所、『九州の森と林業』第4号、1988年6月1日</ref>。
*[[1987年]][[2月27日]] - [[2月28日|28日]] - [[熊本県]]阿蘇地方の阿蘇外輪山東側で局地的な雨氷が発生、人工林の[[杉]]などが折れ曲がったりし、およそ1億6,000万円相当の被害を出した<ref name="d">[[#上中(1988)|上中、1988年]]</ref>。
*[[1989年]][[1月24日]] - [[宮城県]]仙台平野で雨氷が発生<ref name="c"/>。
*[[1989年]][[1月24日]] - [[宮城県]]仙台平野で雨氷が発生<ref name="c"/>。
*[[1998年]][[4月1日]] - [[4月2日|2日]] - 長野県中部で雨氷が発生、鉄道の運休、倒木による建物被害や1,000以上の停電、林業被害が生じた<ref>牛山素行1998「1998年4月1日から2日にかけて長野県中部で発生した雨氷」日本気象学会『天気』45巻7号, p.498 {{NAID|110001814015}}</ref>。
*[[1998年]][[4月1日]] - [[4月2日|2日]] - 長野県中部で雨氷が発生、鉄道の運休、倒木による建物被害や1,000以上の停電、林業被害が生じた<ref name="牛山(1998)">[[#牛山(1998)|牛山、1998年]]</ref>。
*[[2003年]][[1月3日]] - [[1月4日|4日]] - 関東地方内陸部で雨氷が発生、朝から鉄道の不通や道路のスリップ多発など大きな影響が生じた<ref name="b"/>。
*[[2003年]][[1月3日]] - [[1月4日|4日]] - 関東地方内陸部で雨氷が発生、朝から鉄道の不通や道路のスリップ多発など大きな影響が生じた<ref>[[#3776net|3776net]]</ref><ref name="saijiki2003">[[#saijiki2003|お天気歳時記、2003年]]</ref>。
中国でも、雨氷の観測や被害例が多数ある。南方では「下冰凌」「天凌」「牛皮凌」、北京地方では「地油子」といった俗称がある。以下に顕著な被害を出した例を挙げる。
中国でも、雨氷の観測や被害例が多数ある。南方では「下冰凌」「天凌」「牛皮凌」、北京地方では「地油子」といった俗称がある。以下に顕著な被害を出した例を挙げる。
*[[1893年]][[1月17日]] - [[香港]]で雨氷が発生、草の表面には厚さ9mmの氷、電線には厚さ15mm・下方につららのように長さ70mmを超える氷が付着し、電線の切断も起きた<ref name="okada1951"/>。
*[[1893年]][[1月17日]] - [[香港]]で雨氷が発生、草の表面には厚さ9mmの氷、電線には厚さ15mm・下方につららのように長さ70mmを超える氷が付着し、電線の切断も起きた<ref name="okada1951"/>。
212行目: 184行目:
*66.弱い着氷性の雨→[[ファイル:Symbol rain 66.svg|30px]]
*66.弱い着氷性の雨→[[ファイル:Symbol rain 66.svg|30px]]
*67.並または強い着氷性の雨→[[ファイル:Symbol rain 67.svg|30px]]
*67.並または強い着氷性の雨→[[ファイル:Symbol rain 67.svg|30px]]
の5種類が、着氷性の雨や着氷性の霧雨を表す。なお、[[霰]]、[[雹]]、[[砂嵐|砂塵嵐]]、[[雷]]などが同時にあればそれが優先され違う表記となる<ref>気象庁 海洋気象観測資料 「[http://www.data.kishou.go.jp/db/vessel_obs/data-report/doc/wmocode_jap.pdf 海上気象タ WMO符号表]</ref>。
の5種類が、着氷性の雨や着氷性の霧雨を表す。なお、[[霰]]、[[雹]]、[[砂嵐|砂塵嵐]]、[[雷]]などが同時にあればそれが優先され違う表記となる<ref>[[#jmbsc|気象業務支援センター]]</ref>。


[[定時飛行場実況気象通報式|METAR]]や[[運航用飛行場予報気象通報式|TAF]]では、「特性」の欄のFZが着氷性を表す。「降水現象」の欄の雨を表すRA、霧雨を表すDZ、また「視程障害現象」の欄の霧を表すFGとそれぞれ組み合わせて、例えば着氷性の雨であればFZRAと表記する<ref>那覇航空測候所 「[http://www.jma-net.go.jp/naha-airport/koku_kishojyoho/metar_taf.htm METAR報とTAF報の解説]</ref><ref>[http://www.iknet.info/docs/howmetar.html 航空実況気象通報式 METARの読み方] WEATHER NAVIGATOR</ref>。
[[定時飛行場実況気象通報式|METAR]]や[[運航用飛行場予報気象通報式|TAF]]では、「特性」の欄のFZが着氷性を表す。「降水現象」の欄の雨を表すRA、霧雨を表すDZ、また「視程障害現象」の欄の霧を表すFGとそれぞれ組み合わせて、例えば着氷性の雨であればFZRAと表記する<ref>[[#jmanaha|那覇航空測候所]]</ref><ref>[[#weathernav|WEATHER NAVIGATOR]]</ref>。


;日本式天気図・日本の国内気象通報式
;日本式天気図・日本の国内気象通報式
日本国内の目視での「[[天気]]」観測における15種天気、国内[[気象通報]]の[[地上天気図#日本式天気図|日本式天気図]]における21種天気では、いずれも着氷性の雨と普通の雨は区別されていない。前者では[[雨]]としか表現されない。後者では[[雨]]、[[霧雨]]、[[雨強し]]の3つのいずれかでしか表現されない。なおどちらも、[[雪]]や[[雷]]など他の現象が優先される。天気観測のうち現象判別機能のある現在天気計による自動観測点では、着氷性の雨と着氷性の霧雨を検出して記録する。なお、有人気象観測点では天気とは別に「大気現象」としては着氷性の雨、着氷性の霧雨のほか、雨氷も記録している。<ref>気象庁 「過去の気象データ検索 [http://www.data.jma.go.jp/obd/stats/data/mdrr/man/tenki_kigou.html 天気記号表]」</ref><ref>気象庁 「[http://www.jma.go.jp/jma/kids/faq/a5_51.html はれるんライブラリー 質問一覧 天気図の記号って何種類あるのですか?それと、どんなのがあるのですか?]」、「{{PDFLink|[http://www.jma.go.jp/jma/kids/faq/kigou.pdf 天気図記号の例]}}」</ref><ref>気象庁 「過去の気象データ検索 [http://www.data.jma.go.jp/obd/stats/data/mdrr/man/taiki_kigou.html 大気現象記号表]</ref>。
日本国内の目視での「[[天気]]」観測における15種天気、国内[[気象通報]]の[[地上天気図#日本式天気図|日本式天気図]]における21種天気では、いずれも着氷性の雨と普通の雨は区別されていない。前者では[[雨]]としか表現されない。後者では[[雨]]、[[霧雨]]、[[雨強し]]の3つのいずれかでしか表現されない。なおどちらも、[[雪]]や[[雷]]など他の現象が優先される。天気観測のうち現象判別機能のある現在天気計による自動観測点では、着氷性の雨と着氷性の霧雨を検出して記録する。なお、有人気象観測点では天気とは別に「大気現象」としては着氷性の雨、着氷性の霧雨のほか、雨氷も記録している。<ref name="jma2">[[#jma2|気象庁]]</ref>。


== 脚注 ==
== 脚注 ==
225行目: 197行目:
=== 出典 ===
=== 出典 ===
{{reflist}}
{{reflist|3}}


== 参考文献 ==
== 参考文献 ==
233行目: 205行目:
*{{Cite web |url=http://disaster-i.net/notes/1991kenchiri.html |title=雨氷現象について |author=牛山素行 |series=年報長野県地理 |issue=9 |pages=18-27 |date=1991 |accessdate=2012-12-21 |ref=牛山(1991)}}(リンクは[http://disaster-i.net/ disaster-i.net]掲載版。)
*{{Cite web |url=http://disaster-i.net/notes/1991kenchiri.html |title=雨氷現象について |author=牛山素行 |series=年報長野県地理 |issue=9 |pages=18-27 |date=1991 |accessdate=2012-12-21 |ref=牛山(1991)}}(リンクは[http://disaster-i.net/ disaster-i.net]掲載版。)
*{{Cite |和書 |author=[[全日本空輸|全日空]]広報室 |title=エアラインハンドブックQ&A100 航空界の基礎知識 |publisher=[[ぎょうせい]] |year=1995 |ISBN=978-4324046982 |ref=ahb}}
*{{Cite |和書 |author=[[全日本空輸|全日空]]広報室 |title=エアラインハンドブックQ&A100 航空界の基礎知識 |publisher=[[ぎょうせい]] |year=1995 |ISBN=978-4324046982 |ref=ahb}}
*{{Anchors|daijirin}}松村明『[[大辞林]] 第二版』三省堂、1995年 ISBN 978-4385140094
*{{Cite |和書 |author=[[小倉義光]] |title=一般気象学 |edition=第2版 |publisher=[[東京大学]]出版会 |date=1999 |ISBN=978-4-13-062706-1 |ref=ogura1999}}
*{{Cite |和書 |author=[[小倉義光]] |title=一般気象学 |edition=第2版 |publisher=[[東京大学]]出版会 |date=1999 |ISBN=978-4-13-062706-1 |ref=ogura1999}}
*{{Cite web |url=http://www.pref.nagano.lg.jp/xrinmu/ringyosen/02topics/mini_tech/data/mini43.htm |title=雨氷 |author=山内仁人 |publisher=長野県林業総合センター |series=ミニ技術情報 |issue=9 |pages=18-27 |date=2006 |accessdate=2012-12-21 |ref=山内(2006)}}
*{{Cite |和書 |author=菊地勝弘 |title=雪と雷の世界 雨冠の気象の科学-Ⅱ |date=2009 |publisher=成山堂書店 |isbn=978-4425552719 |series=気象ブックス-028 |ref=菊池(2009)}}
*{{Cite |和書 |author=菊地勝弘 |title=雪と雷の世界 雨冠の気象の科学-Ⅱ |date=2009 |publisher=成山堂書店 |isbn=978-4425552719 |series=気象ブックス-028 |ref=菊池(2009)}}
;論文
;論文
<!--*{{Cite journal |和書 |author= |url= |title= |publisher= |journal= |volume= |issue= |pages= |date= |NAID= |accessdate=2012-12-21 |ref=}}-->
*{{Cite journal |和書 |author=松島周一 |url=http://kindai.ndl.go.jp/info:ndljp/pid/984943/26 |title=富士見及木祖ニ於ケル雨氷 |publisher=[[農商務省 (日本)|農商務省]]林業試験場 |journal=森林治水気象彙報 |volume=2 |pages=88-93 |date=1923 |NAID=10003425389 |ref=matsushima1923}}
*{{Cite journal |和書 |author=小口八郎 |url=http://eprints.lib.hokudai.ac.jp/dspace/handle/2115/17486 |title=着氷の物理的研究 Ⅰ 顕微鏡的構造による着氷の分類 |journal=低温科学 |volume=6 |pages=95-101 |date=1951 |NAID=110001825519 |accessdate=2012-12-21 |ref=lts1951-1}}
*{{Cite journal |和書 |author=小口八郎 |url=http://eprints.lib.hokudai.ac.jp/dspace/handle/2115/17486 |title=着氷の物理的研究 Ⅰ 顕微鏡的構造による着氷の分類 |journal=低温科学 |volume=6 |pages=95-101 |date=1951 |NAID=110001825519 |ref=lts1951-1}}
*{{Cite journal |和書 |author=小口八郎 |url=http://eprints.lib.hokudai.ac.jp/dspace/handle/2115/17487 |title=着氷の物理的研究 Ⅱ 着氷の気象条件について |journal=低温科学 |volume=6 |pages=103-115 |date=1951 |NAID=110001825525 |accessdate=2012-12-21 |ref=lts1951-2}}
*{{Cite journal |和書 |author=小口八郎 |url=http://eprints.lib.hokudai.ac.jp/dspace/handle/2115/17487 |title=着氷の物理的研究 Ⅱ 着氷の気象条件について |journal=低温科学 |volume=6 |pages=103-115 |date=1951 |NAID=110001825525 |ref=lts1951-2}}
*{{Cite journal |和書 |author=小口八郎 |url=http://eprints.lib.hokudai.ac.jp/dspace/handle/2115/17488 |title=着氷の物理的研究 Ⅲ 着氷の密度について |journal=低温科学 |volume=6 |pages=117-123 |date=1951 |NAID=110001825528 |accessdate=2012-12-21 |ref=lts1951-3}}
*{{Cite journal |和書 |author=小口八郎 |url=http://eprints.lib.hokudai.ac.jp/dspace/handle/2115/17488 |title=着氷の物理的研究 Ⅲ 着氷の密度について |journal=低温科学 |volume=6 |pages=117-123 |date=1951 |NAID=110001825528 |ref=lts1951-3}}
*{{Cite journal |和書 |author=植野隆寿 |url=http://www.metsoc.jp/tenki/pdf/1961/1961_04_f1.pdf |title=筑波山の大雨氷 |format=PDF |publisher=[[日本気象学会]] |journal=天気 |volume=8 |issue=4 |date=1961 |ref=植野(1961)}}
*{{Cite journal |author=Natalia A. Bezrukova, Richard K. Jeck, Marat F. Khalili, Ludmila S. Minina, Alexander Ya. Naumov, Evgeny A. Stulov |url=http://www.cao-rhms.ru/Second%20Rev%20Text%20Bezrukova%20Stat.pdf |title=Some statistics of freezing precipitation and rime for the territory of the former USSR from ground-based weather observations |format=PDF |journal=Atmospheric Research |volume=82 |issue=1-2 |pages=203-221 |date=200611 |OCLC=443545773 |laysummary=旧ソ連における着氷性降水の地上観測に関する研究 |accessdate=2012-12-21 |ref=rhms}}
*{{Cite journal |和書 |author=上中作次郎 |url=http://www.ffpri-kys.affrc.go.jp/kysmr/data/mr0004k2.htm |title=阿蘇地方に発生した造林地の雨氷害 |publisher=[[森林総合研究所]]九州支所 |journal=九州の森と林業 |issue=4号 |date=1988-06-01 |ref=上中(1988)}}
*{{Cite journal |author=Stanley A. Changnona, Thomas R. Karl |url=http://journals.ametsoc.org/doi/full/10.1175/1520-0450%282003%29042%3C1302:TASVOF%3E2.0.CO%3B2 |title=Temporal and Spatial Variations of Freezing Rain in the Contiguous United States: 1948–2000 |pablished=[[アメリカ気象学会|American Meteorological Society]] |journal=Journal of Climate and Applied Meteorology |volume=42 |pages=1302–1315 |date=2003 |DOI=10.1175/1520-0450(2003)042<1302:TASVOF>2.0.CO;2 |laysummary=アメリカにおける着氷性の雨の統計に関する研究 |accessdate=2012-12-21 |ref=Stanley(2003)}}
*{{Cite journal |author=R.A. Stuart, G.A. Isaac |url=http://www.tandfonline.com/doi/abs/10.1080/07055900.1999.9649622 |title=Freezing precipitation in Canada |journal=Atmosphere-Ocean |volume=37 |issue=1 |pages=87–102 |date=1999 |DOI=10.1080/07055900.1999.9649622 |laysummary=カナダにおける着氷性の降水の統計的研究 |accessdate=2012-12-21 |ref=Stuart(1999)}}
*{{Cite journal |和書 |author=牛山素行 |url=http://www.metsoc.jp/tenki/pdf/1993/1993_01_0047.pdf |title=1991年3月23日長野県中部で発生した雨氷現象の特徴 |format=PDF |publisher=日本気象学会 |journal=天気 |volume=40 |issue=1 |pages=47-54 |date=1993 |NAID=110001813214 |ref=牛山(1993)}}
*{{Cite journal |和書 |author=田所裕 |url=http://crcenter.crc.kitami-it.ac.jp/publish/seika/4/tadokoro.pdf |title=雨氷ギャロッピング現象事例解析 |format=PDF |publisher=[[北見工業大学]]地域共同研究センター |journal=研究成果報告書 |issue=4 |date=1997 |ref=田所(1997)}}
*{{Cite journal |author=John V. Cortinas Jr., Ben C. Bernstein, Christopher C. Robbins, J. Walter Strapp |url=http://journals.ametsoc.org/doi/pdf/10.1175/1520-0434%282004%29019%3C0377:AAOFRF%3E2.0.CO%3B2 |title=An Analysis of Freezing Rain, Freezing Drizzle, and Ice Pellets across the United States and Canada: 1976–90 |journal=Weather and forecasting |volume=19 |issue=2 |pages=377-390 |date=2004-04 |DOI=10.1175/1520-0434(2004)019<0377:AAOFRF>2.0.CO;2 |laysummary=アメリカ・カナダにおける着氷性の降水・凍雨に関する研究 |accessdate=2012-12-21 |ref=Cortinas Jr.(2004)}}
*{{Cite journal |和書 |author=松下拓樹、権頭芳浩 |url=https://www.jstage.jst.go.jp/article/seppyo1941/62/4/62_4_355/_article/-char/ja/ |title=雨氷発生日数の地域分布に関する統計的解析 |publisher=[[日本雪氷学会]] |journal=雪氷 |volume=62 |issue=4 |pages=355-365 |date=2000 |NAID=10004644939 |accessdate=2012-12-21 |ref=seppyo2000}}
*{{Cite journal |和書 |author=牛山素行 |title=1998年4月1日から2日にかけて長野県中部で発生した雨氷 |publisher=日本気象学会 |journal=天気 |volume=45 |issue=7 |pages=498 |NAID=110001814015 |date=1998 |ref=牛山(1998)}}
*{{Cite journal |和書 |last=植野 |first=隆寿 |url=http://www.metsoc.jp/tenki/pdf/1961/1961_04_f1.pdf |title=筑波山 |format=PDF |publisher=[[日本気象会]] |journal=天気 |volume=8 |issue=4 |date=1961 |accessdate=2012-12-21 |ref=ueno(1961)}}
*{{Cite journal |和書 |author=壬生幸子 |title=上代の雨 |journal=共栄園短期大学研究紀要 |volume=6 |pages=265-276 |date=2000 |NAID=110000467002|ref=壬生(2000)}}
*{{Cite journal |和書 |author=松下拓樹, 西尾文彦2004 |url=https://www.jstage.jst.go.jp/article/seppyo1941/66/5/66_5_541/_article/-char/ja/ |title=性降水気候学的特徴と地域ついて |publisher=[[日本雪氷学会]] |journal=雪氷 |volume=66 |issue=5 |pages=541-552 |date=2004 |NAID=10013540743 |accessdate=2012-12-21 |ref=seppyo2004}}
*{{Cite journal |和書 |author=松下拓樹、権頭芳浩 |url=https://www.jstage.jst.go.jp/article/seppyo1941/62/4/62_4_355/_article/-char/ja/ |title=発生日数の地域分布関する統計的解析 |publisher=日本雪氷学会 |journal=雪氷 |volume=62 |issue=4 |pages=355-365 |date=2000 |NAID=10004644939 |accessdate=2012-12-21 |ref=seppyo2000}}
*{{Cite journal |和書 |author=松下拓樹尾関俊浩、西尾文彦 |url=http://www.metsoc.jp/tenki/pdf/2005/2005_09_0675.pdf |title=2004年2月北海道・岩見沢付近で発生した雨氷現象の特徴 |format=PDF |publisher=[[日本気象学会]] |journal=天気 |volume=52 |issue=9 |date=2005 |pages=675-680 |NAID=110001868241 |accessdate=2012-12-21 |ref=tenki2005}}
*{{Cite journal |和書 |author=吉武孝島田和則 |url=http://www.ffpri.affrc.go.jp/labs/kanko/380-2.html |title=文献よる森林気象災害 -発生位置図と気候区分図- |journal=森林総合研究所研究報告 |issue=380 |pages=35-173 |date=2001 |NAID=40004842709 |ref=吉武(2001)}}
*{{Cite journal |和書 |author=牛山素行 |url=http://www.metsoc.jp/tenki/pdf/1993/1993_01_0047.pdf |title=1991年3月23日長野県中部で発生した雨現象の特徴 |format=PDF |publisher=[[日本気象学会]] |journal=天気 |volume=40 |issue=1 |pages=47-54 |date=1993 |NAID=110001813214 |ref=牛山(1993)}}
*{{Cite journal |和書 |author=松下拓樹、西尾文彦 |url=https://www.jstage.jst.go.jp/article/seppyo1941/66/5/66_5_541/_article/-char/ja/ |title=性降水気候学的特徴と地域性について |publisher=日本雪氷学会 |journal=雪氷 |volume=66 |issue=5 |pages=541-552 |date=2004 |NAID=10013540743 |ref=seppyo2004}}
*{{Cite journal |author=Kevin A. Scharfenberg, V. Lakshmanan |url=http://ams.confex.com/ams/pdfpapers/81801.pdf |title=The use of NWP data in polarimetric hydrometeor classification |format=PDF |publisher=[[アメリカ気象学会]] |work=11th Conference on Aviation, Range, and Aerospace (Poster Session) |date=2004-10-05 |accessdate=2012-12-21 |ref=Scharfenberg(2004)}}
*{{Cite journal |和書 |author=松下拓樹、尾関俊浩、西尾文彦 |url=http://www.metsoc.jp/tenki/pdf/2005/2005_09_0675.pdf |title=2004年2月に北海道・岩見沢付近で発生した雨氷現象の特徴 |format=PDF |publisher=日本気象学会 |journal=天気 |volume=52 |issue=9 |date=2005 |pages=675-680 |NAID=110001868241 |ref=tenki2005}}
*{{Cite journal |和書 |author=鳥田宏行、武田一夫 |url=https://www.jstage.jst.go.jp/article/jjfs/89/1/89_1_39/_article/-char/ja/ |title=雨氷害を受けたカラマツ人工林における林分構造と被害率との関係 |journal=日本森林学会誌 |volume=89 |issue=1 |pages=39-44 |date=2007 |NAID=110006882851 |ref=鳥田(2007)}}
*{{Cite journal |和書 |author=下原光幸 |title=雨氷現象による架線凍結対策の研究 |journal=鉄道と電気技術 |volume=22 |issue=6 |pages=29-32 |date=2011 |NAID=10028269606 |ref=下原(2011)}}
*{{Cite journal |author=R.A. Stuart, G.A. Isaac |url=http://www.tandfonline.com/doi/abs/10.1080/07055900.1999.9649622 |title=Freezing precipitation in Canada |journal=Atmosphere-Ocean |volume=37 |issue=1 |pages=87–102 |date=1999 |DOI=10.1080/07055900.1999.9649622 |ref=Stuart(1999)}} - 要約:カナダにおける着氷性の降水の統計的研究
*{{Cite journal |author=Rauber, Robert M., Larry S. Olthoff, Mohan K. Ramamurthy, Dianne Miller, Kenneth E. Kunkel |url=http://journals.ametsoc.org/doi/abs/10.1175/1520-0450%282001%29040%3C1724:ASWPAS%3E2.0.CO%3B2 |title=A Synoptic Weather Pattern and Sounding-Based Climatology of Freezing Precipitation in the United States East of the Rocky Mountains |journal=Journal of Climate and Applied Meteorology |volume=40 |pages=1724-1747 |date=2001 |DOI=10.1175/1520-0450(2001)040<1724:ASWPAS>2.0.CO;2 |ref=Robert(2001)}} - 要約:ロッキー山脈以東のアメリカにおける着氷性の降水と総観気象に関する研究
*{{Cite journal |author=Stanley A. Changnona, Thomas R. Karl |url=http://journals.ametsoc.org/doi/full/10.1175/1520-0450%282003%29042%3C1302:TASVOF%3E2.0.CO%3B2 |title=Temporal and Spatial Variations of Freezing Rain in the Contiguous United States: 1948–2000 |pablished=[[アメリカ気象学会|American Meteorological Society]] |journal=Journal of Climate and Applied Meteorology |volume=42 |pages=1302–1315 |date=2003 |DOI=10.1175/1520-0450(2003)042<1302:TASVOF>2.0.CO;2 |ref=Stanley(2003)}} - 要約:アメリカにおける着氷性の雨の統計に関する研究
*{{Cite journal |author=Kevin A. Scharfenberg, V. Lakshmanan |url=http://ams.confex.com/ams/pdfpapers/81801.pdf |title=The use of NWP data in polarimetric hydrometeor classification |format=PDF |publisher=[[アメリカ気象学会]] |work=11th Conference on Aviation, Range, and Aerospace (Poster Session) |date=2004-10-05 |ref=Scharfenberg(2004)}}
*{{Cite journal |author=John V. Cortinas Jr., Ben C. Bernstein, Christopher C. Robbins, J. Walter Strapp |url=http://journals.ametsoc.org/doi/pdf/10.1175/1520-0434%282004%29019%3C0377:AAOFRF%3E2.0.CO%3B2 |title=An Analysis of Freezing Rain, Freezing Drizzle, and Ice Pellets across the United States and Canada: 1976–90 |journal=Weather and forecasting |volume=19 |issue=2 |pages=377-390 |date=2004-04 |DOI=10.1175/1520-0434(2004)019<0377:AAOFRF>2.0.CO;2 |ref=Cortinas Jr.(2004)}} - 要約:アメリカ・カナダにおける着氷性の降水・凍雨に関する研究
*{{Cite journal |author=Natalia A. Bezrukova, et al. |url=http://www.cao-rhms.ru/Second%20Rev%20Text%20Bezrukova%20Stat.pdf |title=Some statistics of freezing precipitation and rime for the territory of the former USSR from ground-based weather observations |format=PDF |journal=Atmospheric Research |volume=82 |issue=1-2 |pages=203-221 |date=2006-11 |OCLC=443545773 |ref=rhms}} - 要約:旧ソ連における着氷性降水の地上観測に関する研究
;web
;web
<!--*{{Cite web |author= |url= |title= |publisher= (|format=PDF) |pages= |date= (|archiveurl= |archivedate= |deadlinkdate= )|accessdate=2012-12-21 |ref=}}-->
*{{Cite web |url=http://www.jma.go.jp/jma/kishou/know/kansoku_guide/tebiki.pdf |title=気象観測の手引き 平成10年9月 |publisher=[[気象庁]] |format=PDF |date=1998 |accessdate=2012-12-21 |ref=jma}}
*{{Cite web |url=http://www.jma.go.jp/jma/kishou/know/kansoku_guide/tebiki.pdf |title=気象観測の手引き 平成10年9月 |publisher=[[気象庁]] |format=PDF |date=1998 |accessdate=2012-12-21 |ref=jma}}
*{{Anchors|jma2}}「過去の気象データ検索 [http://www.data.jma.go.jp/obd/stats/data/mdrr/man/tenki_kigou.html 天気記号表]」「[http://www.data.jma.go.jp/obd/stats/data/mdrr/man/taiki_kigou.html 大気現象記号表]」「[http://www.jma.go.jp/jma/kids/faq/a5_51.html はれるんライブラリー 質問一覧 天気図の記号って何種類あるのですか?それと、どんなのがあるのですか?]」「{{PDFLink|[http://www.jma.go.jp/jma/kids/faq/kigou.pdf 天気図記号の例]}}」、気象庁、2012年12月25日閲覧。
*{{Cite web |url=http://www.jma-net.go.jp/naha-airport/koku_kishojyoho/metar_taf.htm |title=METAR報とTAF報の解説 |author=那覇航空測候所 |date=不明 |accessdate=2012-12-25 |ref=jmanaha}}
*{{Cite web |url=http://www.pref.nagano.lg.jp/xrinmu/ringyosen/02topics/mini_tech/data/mini43.htm |title=雨氷 |author=山内仁人 |publisher=長野県林業総合センター |series=ミニ技術情報 |issue=9 |pages=18-27 |date=2006 |accessdate=2012-12-21 |ref=山内(2006)}}
*{{Cite web |url=http://www.iknet.info/docs/howmetar.html |title=航空実況気象通報式 METARの読み方 |publisher=WEATHER NAVIGATOR |date=不明 |accessdate=2012-12-25 |ref=weathernav}}
*{{Cite web |url=http://gms5sn.hp.infoseek.co.jp/saijiki41.html |title=(43) 雨氷現象 |author=Sadao Nakahara |work=[http://homepage3.nifty.com/snakahara/saijiki.html お天気歳時記] |date=2003-01-05 |accessdate=2007-12-13<!--このリンクが追加された日--> |archiveurl=http://web.archive.org/web/20100329071700/http://gms5sn.hp.infoseek.co.jp/saijiki41.html |archivedate=2010-03-29 |deadlinkdate=2012-12-21 |ref=saijiki2003}}
*{{Cite web |url=http://www.knet.ne.jp/~3776net/snow-030103.html |title=2003年1月3日の降雪・雨氷現象 ~関東地方で着氷災害~ |publisher=3776net |date=不明 |accessdate=2012-12-25 |ref=3776net}}
*{{Anchor|imiuru}}The January 1998 Ice Storm Montreal, Quebec, Canada “[http://www.imiuru.com/icestormdiary/1pages/factsfigures.html Fast Facts]”, “[http://www.imiuru.com/icestormdiary/1pages/Introduction.html Introduction]”, “[http://www.imiuru.com/icestormdiary/1pages/HydroQuebecMap.html HydroQuebec's Map]”.2005年1月24日、2012年12月25日閲覧。
*{{Anchors|jmbsc}}[http://www.jmbsc.or.jp/hp/online/f-online3y.html#synop オンライン気象情報ファイル形式配信データ] 「[http://www.jmbsc.or.jp/hp/online/data/surface_format.pdf 地上気象資料フォーマット]」、気象業務支援センター 、2012年12月25日閲覧。
*{{Cite web |url=http://imnh.isu.edu/digitalatlas/clima/patterns/pp.htm |title=Precipitaion Patterns |publisher=Digital Atlas of Idaho Project([[アイダホ大学]]webサイト内) |date=不明 |accessdate=2012-12-21 |ref=dai}}
*{{Cite web |url=http://imnh.isu.edu/digitalatlas/clima/patterns/pp.htm |title=Precipitaion Patterns |publisher=Digital Atlas of Idaho Project([[アイダホ大学]]webサイト内) |date=不明 |accessdate=2012-12-21 |ref=dai}}
*{{Cite web |url=http://amsglossary.allenpress.com/glossary/search?id=glaze1 glaze]”, “[http://amsglossary.allenpress.com/glossary/search?id=clear-ice1 clear ice]”, “[http://amsglossary.allenpress.com/glossary/search?id=freezing-precipitation1 freezing precipitation]”, “[http://amsglossary.allenpress.com/glossary/search?id=freezing-rain1 |title=freezing rain |work=Glossary of Meteorology |publisher=[[アメリカ気象学会]] |laysummary=web版気象学用語集 |accessdate=2012-12-21 |ref=amsglo1}}
*{{Cite web |url=http://amsglossary.allenpress.com/glossary/search?id=glaze1 glaze]”, “[http://amsglossary.allenpress.com/glossary/search?id=clear-ice1 clear ice]”, “[http://amsglossary.allenpress.com/glossary/search?id=freezing-precipitation1 freezing precipitation]”, “[http://amsglossary.allenpress.com/glossary/search?id=freezing-rain1 |title=freezing rain |work=Glossary of Meteorology |publisher=[[アメリカ気象学会]] |laysummary=web版気象学用語集 |accessdate=2012-12-21 |ref=amsglo1}}
*{{Cite web |url=http://amsglossary.allenpress.com/glossary/search?id=ice-storm1 |title=ice storm |work=Glossary of Meteorology |publisher=[[アメリカ気象学会]] |laysummary=web版気象学用語集 |accessdate=2012-12-21 |ref=amsglo2}}
*{{Cite web |url=http://amsglossary.allenpress.com/glossary/search?id=ice-storm1 |title=ice storm |work=Glossary of Meteorology |publisher=アメリカ気象学会 |laysummary=web版気象学用語集 |accessdate=2012-12-21 |ref=amsglo2}}
*''Weather World 2010 Online Guides''. University of Illinois Atmospheric Sciences(イリノイ大学大気科学部).
*''Weather World 2010 Online Guides''. University of Illinois Atmospheric Sciences(イリノイ大学大気科学部).
**{{Cite web |url=http://ww2010.atmos.uiuc.edu/(Gh)/wwhlpr/zr_swrp.rxml?hret=/guides/mtr/cld/prcp/zr/prcs/ice.rxml |title=Supercooled Warm-Rain Processes |date=不明 |accessdate=2012-12-21 |ref=uiuc-ice}}
**{{Cite web |url=http://ww2010.atmos.uiuc.edu/(Gh)/wwhlpr/zr_swrp.rxml?hret=/guides/mtr/cld/prcp/zr/prcs/ice.rxml |title=Supercooled Warm-Rain Processes |date=不明 |accessdate=2012-12-21 |ref=uiuc-ice}}
**{{Cite web |url=http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/cld/prcp/zr/dang/home.rxml |title=Freezing Rain - Dangers to People |date=不明 |accessdate=2012-12-21 |ref=uiuc-home}}
**{{Cite web |url=http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/cld/prcp/zr/dang/home.rxml |title=Freezing Rain - Dangers to People |date=不明 |accessdate=2012-12-21 |ref=uiuc-home}}
**{{Cite web |url=http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/cld/prcp/zr/frz.rxml |title=Freezing Rain - Definition |date=不明 |accessdate=2012-12-21 |ref=uiuc-frz}}
**{{Cite web |url=http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/cld/prcp/zr/cond/cyc.rxml |title=Freezing Rain - Cyclones and Fronts |date=不明 |accessdate=2012-12-21 |ref=uiuc-cyc}}
**{{Cite web |url=http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/cld/prcp/zr/cond/cyc.rxml |title=Freezing Rain - Cyclones and Fronts |date=不明 |accessdate=2012-12-21 |ref=uiuc-cyc}}
**{{Cite web |url=http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/cld/prcp/zr/rgn.rxml |title=Freezing Rain - Regions of Freezing Rain |date=不明 |accessdate=2012-12-21 |ref=uiuc-rgn}}
**{{Cite web |url=http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/cld/prcp/zr/fcst/fcst.rxml |title=Freezing Rain - Forecasting |date=不明 |accessdate=2012-12-21 |ref=uiuc-fcst}}
**{{Cite web |url=http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/cld/prcp/zr/fcst/fcst.rxml |title=Freezing Rain - Forecasting |date=不明 |accessdate=2012-12-21 |ref=uiuc-fcst}}
**{{Cite web |url=http://ww2010.atmos.uiuc.edu/(Gh)/wwhlpr/zr_sounding.rxml?hret=/guides/mtr/cld/prcp/zr/fcst/fcst.rxml |title=Common Freezing Rain Sounding |date=不明 |accessdate=2012-12-21 |ref=uiuc-sounding}}
**{{Cite web |url=http://ww2010.atmos.uiuc.edu/(Gh)/wwhlpr/zr_sounding.rxml?hret=/guides/mtr/cld/prcp/zr/fcst/fcst.rxml |title=Common Freezing Rain Sounding |date=不明 |accessdate=2012-12-21 |ref=uiuc-sounding}}
*{{Cite web |url=http://www.crh.noaa.gov/dvn/?n=freezingrain |title=Freezing Rain Climatology |publisher=Quad Cities, IA/IL Weather Forecast Office, NOAA [[アメリカ国立気象局]] |date=不明 |accessdate=2012-12-21 |ref=noaafzra}}
*{{Cite web |url=http://www.crh.noaa.gov/dvn/?n=freezingrain |title=Freezing Rain Climatology |publisher=Quad Cities, IA/IL Weather Forecast Office, [[アメリカ国立気象局]] |date=不明 |accessdate=2012-12-21 |ref=noaafzra}}
*{{Cite web |url=http://www.ec.gc.ca/meteo-weather/default.asp?lang=En&n=D9553AB5-1#freezingdrizzle |title=Public Alerting Criteria#Freezing Rain |publisher=[[カナダ気象]], Environment Canada |date=不明 |accessdate=2012-12-21 |ref=noaafzra}}
*{{Cite web |url=http://www.ec.gc.ca/meteo-weather/default.asp?lang=En&n=D9553AB5-1#freezingdrizzle |title=Public Alerting Criteria#Freezing Rain |publisher=[[カナダ気象]] |date=不明 |accessdate=2012-12-21 |ref=noaafzra}}
*{{Cite web |url=http://www.dandantheweatherman.com/Bereklauw/Freezingrain23jan96.htm |title=A British Ice Pellet, Freezing Rain and Glaze Event During the Cold Snap of Late January 1996 |author=Dan Suri |date=2001-03-05 |accessdate=2012-12-25 |ref=Suri(2001)}}
*{{Cite web |url=http://www.islandnet.com/~see/weather/elements/icestorm.htm |title=ICE STORMS: HAZARDOUS BEAUTY |publisher=THE WEATHER DOCTOR |accessdate=2012-12-25 |ref=twd}}
*{{Cite web |url=http://archives.cbc.ca/IDD-1-70-258/disasters_tragedies/ice_storm/ |title=The Ice Storm of 1998 |publisher=CBC Archives |accessdate=2012-12-25 |ref=cbc}}


== 関連項目 ==
== 関連項目 ==
279行目: 267行目:


== 外部リンク ==
== 外部リンク ==
*[http://www.jma-net.go.jp/nagano/kikou_tokucyou/nagano_haru_tokucyou.html 長野県の春の特徴] 長野地方気象台 - 中盤に雨氷に関する解説を掲載。
*{{Cite web
|url=http://gms5sn.hp.infoseek.co.jp/saijiki41.html
|title=(43) 雨氷現象
|author=Sadao Nakahara
|work=[http://homepage3.nifty.com/snakahara/saijiki.html お天気歳時記]
|date=2003-01-05
|accessdate=2007-12-13<!--このリンクが追加された日-->
|archiveurl=http://web.archive.org/web/20100329071700/http://gms5sn.hp.infoseek.co.jp/saijiki41.html
|archivedate=2010-03-29
|deadlinkdate=2012-12-21}} - 2003年1月3日から4日にかけて関東地方で発生した雨氷に関する解説、個人サイト。
*{{YouTube|yzoB1jUzp2Il|Springfield Missouri Ice Storm - January 2007(雨氷の被害映像)}}
*{{YouTube|yzoB1jUzp2Il|Springfield Missouri Ice Storm - January 2007(雨氷の被害映像)}}
*[http://abcnews.go.com/video/playerIndex?id=6592432 Wet, Icy Weather Coats Northeast] ABC News Video, 2009年1月7日(雨氷の被害を伝えたニュース映像)
*[http://abcnews.go.com/video/playerIndex?id=6592432 Wet, Icy Weather Coats Northeast] ABC News Video, 2009年1月7日(雨氷の被害を伝えたニュース映像)

2012年12月25日 (火) 14:46時点における版

雨氷が付着した枝先の拡大写真

雨氷(うひょう[1])とは、過冷却状態の着氷性の雨)が物体に付着してできる、硬く透明のこと。着氷現象の一種。

概要

芝生にとげのように付着した雨氷。
木の全体に付着し垂れ下がった雨氷。このように垂れ下がった形で凍ることもある。

過冷却と凍結

水はふつう凝固点である0℃を下回ると凝固(凍結)しとなる。しかし、ある条件下では0℃以下であっても凍結しないで液体のままを保つことがある。水を構成する分子が非常に安定しているときに起こるもので、これを過冷却状態という。自然界では、を構成する水滴のように3 - 数百μmの大きさでは-20℃程度まで、雨粒のように数百μm - 数mmの大きさでは-4℃程度まで、過冷却のものが存在することが知られている[2][3][4]

雨粒がこのような過冷却状態にある雨を着氷性の雨(ちゃくひょうせいのあめ)という。過冷却状態の水に衝撃を与えると急速に凍結を始めて氷となるが、着氷性の雨も同様に樹木地面電線などの(0℃以下に冷えている)物体に触れた衝撃で凍結する。このようにしてできる付着氷が雨氷である。なお、霧雨や雨よりも小さな水滴でできているの場合にも起こりうる。過冷却状態の霧雨や霧をそれぞれ、着氷性の霧雨着氷性の霧という[5][6][7][8]。着氷性の霧は、後述のように風速や気温などの条件次第で付着の様子が変わり、雨氷、粗氷樹氷になる。

名称

日本では、近代には雨氷を表す言葉として"glazed frost"の訳に当たる「凝霜」が用いられていた。しかし、霜と混同して誤解を生むとされたことから、中国語の「雨淞」をより平易にした「雨氷」が1915年大正4年)から使用されるようになった[9][10]

英語では「上ぐすり(釉薬)」の意味があるGlaze, Glaze iceを雨氷を意味する語として用いる。また、航空の分野では航空機に付着する雨氷を特にClear iceと呼ぶことがある。また、着氷性の雨、霧雨、霧はそれぞれFreezing rainFreezing drizzleFreezing fogという[8]

雨氷の性状

雨氷は、物体表面に硬く滑らかで透明な氷のを作る。同じ着氷現象の1種である樹氷(じゅひょう)や粗氷(そひょう)とは、色や性質により区別されている。樹氷は白色不透明、粗氷は半透明なのに対して、雨氷は透明である。また樹氷より粗氷の方が固いがどちらも手で触れば崩れる程度の硬さであるのに対して、雨氷は固く手で触った程度では崩れない。色や脆さの違いは、気泡の含有率に起因している。樹氷は小さな気泡をたくさん含むため白色で脆く、粗氷は樹氷よりは固いがそれでも気泡を多く含むため半透明を呈する。一方の雨氷は気泡の含有率が低いため透明であり、氷が形成されるとき水滴同士が融合しあうので表面が滑らかになる[6][8]。雨氷の密度は約0.9であり、純粋な氷とほぼ同じである。

なお、0℃を僅かに超えた雨粒が0℃以下に冷えた物体に付着しても透明な氷ができ、雨氷と混同される場合がある。また、積雪融解したあと再び凍結するなどして透明な氷ができることもある。これらは雨氷ではない[10]。なお、再凍結によりできるもののうち、例えば細く地面に向かって垂れ下がるものは氷柱(つらら)、その逆に空に向かって伸びるものは氷筍(ひょうじゅん)という。

特徴

着氷性の雨が発生する条件として、地上気温は0℃から-数℃の狭い範囲に限られ、後述のように上空に適度な厚みの逆転層が存在することが必要である。ごくありふれた現象である雨や雪と比べて、雨氷は目にする機会が少なく、発生頻度も低いため、珍しい気象現象とされている[5][10]

低地の平野部よりも、地形に起伏のある山地などのほうが発生しやすい。これは起伏により逆転層が形成されやすくなることなどが原因である。

雨氷が物体に大量に付着すると、樹木の枝が重くなりって折れ曲がったり、地面に氷の層を作って人の転倒や車両のスリップを引き起こすなど、被害を発生させることがある。一方、樹木などに付着した雨氷が美しい風景を作り出すという側面もある。着氷性の雨や霧は上空でも生じるが、これにより雨氷が航空機の翼などに付着して運行に重大な支障を引き起こす例がある[10][11]

形成過程

ファイル:Uhyou.JPG
雪が融解して生じる着氷性の雨の発生メカニズム
逆転層と降水の形の変化。
関東地方で着氷性の雨や凍雨が観測された2003年1月3日21:00(日本標準時)の茨城県つくば市館野の高層気温・露点温度断面図(気象庁)。逆転層がある。

着氷性の雨(霧雨を含む)の形成には2通りある。1つはが融けて生じるもので、上空で生成された雪が落下する間に融ける「融解過程(melting process)」を経る。融解過程には、上空に逆転層が生じることが必要である。もう1つははじめから過冷却の状態にあるもので、始めから過冷却の水滴として雲の中で水滴が発達し、地上に達するものである。このプロセスは「過冷却の暖かい雨(supercooled warm rain process, SWRP)」と呼ばれている[12]

着氷性の霧の場合、はじめから過冷却の「過冷却の暖かい雨」である。

雪が融解して生じる着氷性の雨

通常、大気は上に行くほど気温が下がるが、例えば上空の高さごとに風向が異なり、上下の冷たい空気の層(冷気層)の間に暖かい空気の層(暖気層)が侵入すると、逆転層が発生することがある。逆転層発生の要因は他にも地形による寒気のブロックなどがある。

上下の冷気層が気温0℃以下、真ん中の暖気層が気温0℃以上のとき、上の冷気層のからが降ると、暖気層で融解して、冷気層で再冷却され着氷性の雨となる。

固体→加熱による融解液体→冷却→着氷性の雨(過冷却の液体)

ただし、前記のような逆転層があっても、必ずしも着氷性の雨にはならない。逆転層があっても、暖気層で雪が完全に融けないでとなる場合もあれば、冷気層で凍結してしまい氷の粒が降る凍雨として観測される場合もあるからである。実際、着氷性の雨より凍雨の方が遥かに発生頻度は高い[13]

具体的に暖気層の厚さが何百mないし、気温が何℃というようなデータはいくつか報告されているが、事例によりまちまちで定性的ではない。

  • 1956年3月19日 - 20日に着氷性の雨により筑波山の山頂を含む標高700m以上の地域に雨氷が発生した例では、雪の結晶が最初に生成される雲頂高度6,000m、0℃以上の暖気層が3,000 - 1,400m、0℃以下の冷気層が1,400 - 800mであった。仮に雨粒の直径を1mm、落下速度を毎秒6mとすれば、暖気層で融解した雨粒はおよそ100秒かけて過冷却となり、標高700 - 800mの地表に達して雨氷を生じさせる(植野、1961年)。

また、アメリカ・カナダで着氷性の雨や霧雨の発生時の地上の気温を調べた研究では、約8割が1から-5℃の間、約2割が-5℃未満で、僅かに1℃以上の事例もあった[14]

「過冷却の暖かい雨」

雲や雨粒のような大きさや存在環境では過冷却の水滴が珍しくないことは既に述べた。例えば一般的にの中では、0℃から-4℃程度では水滴のほとんどが過冷却であり、温度が低くなるにつれて少なくなるが、-20℃程度までは過冷却の水滴が存在する。なお、実際にはこの種の雲はおおむね雲頂(雲の最高部)の気温が-10℃より高いことが知られている[15]。これが成長し、過冷却を保ったまま降って地上に達した場合、あるいは上空で航空機への着氷などとして観測されれば着氷性の雨になる[2][3][4][16]。この種の着氷性の雨は水滴の直径が小さく、雨というよりも(着氷性の)霧雨に分類されるものがほとんどである[12]

過冷却の水滴を含む雲は、山地などの地表に現れると着氷性の霧として観測される。

着氷性の霧

着氷性の霧は条件により、雨氷・樹氷粗氷になる。3者の違いは気泡の含有率にあることは#概要の節で述べたが、これと相関性が高いのは気温と風速である。気温が高いほど、また風速が速いほど、気泡が少ない傾向にある。ある研究によれば気温-2℃以上では風速に関係なくほとんどが雨氷になり、気温-2℃から-4℃の間では風速により雨氷と粗氷に分かれ、気温-4℃以下ではほとんど雨氷は発生しない[3][4]

氷の形成

枝の左側に多く雨氷が付いていることから、左方向からの風によって付着したと推測される。

着氷性の雨や霧が物体に付着してから完全に凍結するまでには、多少の時間がかかる。この時間は、凍結に伴う潜熱放出による加熱、蒸発に伴う潜熱吸収による冷却などの熱のバランスに左右され、湿度・気温・風速などに相関性がある。凍結速度が遅いと、枝の表面などでは水の部分は重力により落下していくほか、氷の表面は濡れた状態である[10][6][17]

着氷性の雨(過冷却液体→物体表面に付着→冷却による凍結→雨氷固体

なお、雨氷の凍結を決定する熱的な収支バランスは、顕熱フラックスQs、潜熱フラックスQl、雨氷の凍結に必要な熱量Qfの3つの和により表され、木の枝など円柱表面における算出式は以下のようになる(Jones, 1996および、松下ら、2005年)[注 1]。この値が負で値が大きいほど、凍結は速いと考えられる[17]

Qs=-πhaΔT (W/m2) …(haは大気の熱交換係数(W/(m2))、ΔTは大気と雨氷表面の温度差(℃))
Ql=-πLehvΔρv (W/m2) …(Leは水の蒸発潜熱(J/kg)、hvは水蒸気の交換係数(m/s)、Δρvは水蒸気密度の差(kg/m3))
Qf=Lfw …(Lfは水の凍結潜熱(J/kg)、wは降水フラックス(kg/(m2・s))

気温と物体表面の温度が低いなどの条件が整うと、着氷性の雨は物体に付着してすぐに凍結し、次々と積もって厚い氷として成長していく。屋根や壁のような平面の物体では低い方へ広がりながら凍結していく。電線や木の枝のように細長い物体ではそれを取り巻くように凍結する。時には氷柱(つらら)のように滴りながら成長したり、風のある場合は風上や風下に偏って成長したりする[9][18]。地面に積もる量としては、極度に激しい雨氷の場合、最大でおよそ4 - 6インチ(10 - 15センチメートル)程度の厚さになった記録がある[19]

雨氷をもたらす天候

着氷性の雨が降ったときの特徴として、低気圧や前線の通過といった総観スケールの気象状態、より小さなスケールの地形の影響などがある。

また目安として、気温分布図では0℃の等温線付近、降水分布図では雨と雪の境界付近、風向分布図では風向が急変するがウインドシアの近傍にそれぞれ着氷性の雨が分布することが多く、分布域は前線に平行することが多い。分布域はふつう細長く幅は狭いが、北極に近い高緯度地方では、寒冷前線の寒気側で幅50km以上の広範囲にわたって着氷性の雨が降ることもある[20]。また凍雨は着氷性の雨と似た条件で発生するため、似たような分布を示すことが多い[13][14][21]

総観スケールの気象

総観スケールの気象は地域により差異があるため一概には言えないが、いくつかの例を挙げる。

日本においては主に2つのパターンが多い。1つは海に面した平野部で、下層に北寄りの風による寒気の移流、中層に南寄りの風による暖気の移流があって、そこに逆転層が生じるパターン。もう1つは内陸の盆地で、弱風下で下層の盆地内に寒気が滞留していて(「冷気湖」という)、中層に南寄りの風による暖気の移流があって、そこに逆転層ができるパターンである。天気図で見ると、大局的には日本海と本州南岸の2つの低気圧が並んで東進する「二つ玉低気圧」の時に起こる場合が多い。また着氷性の雨の分布は、低気圧の東側にある温暖前線の寒気側から低気圧の周囲付近にかけての細長い地域となる場合が多い[13][12]

アメリカではいくつかのパターンがある。前線を伴った低気圧の北側(温暖前線停滞前線の寒気側)で発生するパターン、大陸に張り出す高気圧の辺縁部(寒冷前線の寒気側)で発生するパターン、大陸を東進する低気圧と東海岸の高気圧との間で発生するパターン、アパラチア山脈による寒気のせき止め(cold air damming)により発生するパターンである[12][21]

地形

1998年1月、カナダ南東部からアメリカ北東部にかけて発生した大規模な雨氷の降積量を示した地図。セントローレンス川流域に被害が集中している。

山地など起伏のある地形の場所では、斜面を空気が上昇すると空気かかき混ぜられて逆転層ができ、雨氷が発生することがある。一般的に、標高が高いほど雨氷が発生しやすい。例えば日本で雨氷被害の多い長野県では、雨氷の発生日数が標高に対応して分布するという報告がある。ただし、ある程度の高さを超えると逆に発生しにくくなることがある。これは逆転層のできやすい高さがあり、標高が高くなると逆に暖気層に覆われることが多くなるためとみられている。また、山の斜面沿いでは一時的に狭い範囲で逆転層が発生し、山の斜面のある高さの付近あるいは片側だけ、雨氷が発生した例もある[13][22]

一般的に起伏のある地形では樹氷粗氷も発生しやすいが、例年のように樹氷が現れる場所で同様に雨氷が見られるかと言えばそうではない。雨氷は条件が非常に限定的なため、限られた狭い地域で偶発的に発生し、年々変動が大きい[13]

地域性

広域的には、アメリカ、カナダ、ヨーロッパ中国日本など各地で発生例が報告されている。特にアメリカカナダにまたがるセントローレンス川沿岸ではよく発生することが知られている。セントローレンス川沿岸に位置するカナダのモントリオールでは、年間約12 - 17回、時間にして年間計約45 - 65時間という頻度で雨氷が発生する[23]。アメリカで1948 - 2000年の着氷性の雨の年間平均発生日数を調べた調査では、最多のアディロンダック山地南部で7日、ミズーリ州からペンシルベニア州までの帯状の地域及びアイオワ州ミネソタ州西部で5日などとなっている[24]。同様にカナダで1961 - 1990年の着氷性の雨・霧雨の年間発生日数を調べた調査では、ニューブランズウィック州ノバスコシア州ニューファンドランド島東部で年間50日(着氷性の雨に限っても25日)などとなっている[25][14]

日本では、長野県で特に多く報告され多いところでは年平均2 -3回の発生がある。また、1989 - 2003年に気象台や測候所のある都市の着氷性の雨・霧雨を調べた調査において、中部から東北にかけての山間部や東北と北海道太平洋側平野部のいくつかの都市で4 - 5年に1回程度の発生が報告されているほか、被害をもたらすレベルの雨氷は国内で10年に1件程度という調査がある。時期については、研究報告のある北半球では季に発生のピークがくる地域が多いが、北極に近く寒冷な地域の中には夏季にピークがくるところもある[5][13][13][12][14]

予測

着氷性の雨の予測では、気温・湿度・風向風速の鉛直分布や面的な分布を通して、逆転層とそれに沿う着氷性の雨の出現域を解析することが行われる。これらのデータは気象レーダーや地上気象観測、高層気象観測などによって収集される[26][27]

また、着氷性の雨に伴い気象レーダーでブライトバンドと呼ばれるエコーが観測されることがあるが、融解途中の雪や霙などによるもので、着氷性の雨の前段階ではない雪や霙にも反応するため、着氷性の雨の予測にはあまり適さない[28][13]

警報・注意報

アメリカでは、着氷性の雨または着氷性の霧雨によって道路等の凍結で交通状況が悪くなることが予想される場合に「Winter Weather Advisory」、雨氷が1/4インチ(約6.3mm)以上積もることが予想される場合に「Ice Storm Warning」が、アメリカ海洋大気庁 (NOAA) の気象局 (NWS) によってそれぞれ発令され、警戒が呼びかけられる[29]。カナダでは、7時間以上着氷性霧雨が降り続くことが予想される場合や大量の着氷性霧雨が降ることが予想される場合は「Special Weather Statement」に付随する注意情報または「Freezing Drizzle Warning」が、1 - 4時間以上着氷性の雨が降り続くことが予想される場合や2mm以上雨氷が降り積もることが予想される場合は「Freezing Rain Warning」が、カナダ環境省の気象庁(MSC)によってそれぞれ発令される[30]

日本では、着氷全般(雨氷以外の霧氷・樹氷・粗氷・樹霜、融雪の再凍結なども対象としている)に注意を呼びかける着氷注意報というものがあり、雨氷の発生が予測される場合に出される注意報・警報等ではこれが最も重い。着氷注意報の発表基準は都道府県や地域によって異なり、(24時間降雪量などが基準になる)大雪警報発令時に気温が-2 - 2℃となる場合[31](大雪注意報まで含めたり[32]湿度90%以上という条件を付加したもの[33]もある)、大雪注意報発令時に気温が-2℃以上となる場合[34]、著しい着氷が予想される場合[35]、気温0℃付近で並以上の雪が数時間以上降り続くと予想される場合[36]、船への着氷のみを対象に発令する場合(北海道[37]等がある。また、着雪注意報という類似の注意報があり、この基準のみを定めて着氷注意報の基準を定めていない所や、両方とも定めていない所もある[38]

雨氷による災害

雨氷の重さで垂れ下がり、折れた木の枝々
厚い雨氷が付着したベンチ、レマン湖

雨氷ができた後、気温が上昇するなどして氷が融けてしまえば大きな被害は発生しない。しかし、例えばカナダ・アメリカでは、着氷性の雨の約45%が1時間以内、約90%が5時間以内に終わってしまう[14]という研究があり、長時間続くと被害が大きくなる。

雪や霧氷などに比べて雨氷は密度が高く、固い[2][4][6]。雨氷による被害の主なものとして、樹木の被害、電力網への被害、交通の支障、人的被害等が挙げられる。北東部を中心に被害が多いアメリカでは、着氷性の雨を伴った天候をice storm(アイスストーム)と言う[39]が、1949年から2000年までの間にアイスストームによる損害額は163億ドル(2000年時点)(Changnon,2003)に上るとされ、同国内の気象災害によるケガの20%がアイスストームによるものだという報告もある(Kochin,1997[14])。

山地での被害

雨氷は高山で発生することが多いため、山地で局地的に雨氷が発生し、樹木への被害をもたらす例が多数報告されている。雨氷が樹木にもたらす被害は、枝のみが折れる軽微なものもあるが、傾いたり、大きく曲がったり、地面に倒れこんだり、根ごと倒れたり、途中で折れたりといった深刻なものもあり、林業にとっては大きな打撃となる[9]

雪が樹木の上部や外部にのみ付着するのに対し、雨氷は樹木の枝葉1つ1つに氷がついて重くなるため、雪の半分程度の降水量で折れ曲がったり倒壊してしまう。ある調査では、樹木に付着する雨氷の重さは、平均で木の総重量の5 - 16倍に達していたといい[18]、15mの木に総重量4.5トンの雨氷が付着した例もある[40]。日本における事例では、森林に被害を与える気象現象の中で雨氷は珍しい部類ではあるが、北海道岩手長野などで詳しい記録がある。なお、雨氷で森林被害が生じても氷が解けるとそれが雨氷が原因であったことがわからないこともあるため、報告されていないものもあると考えられている[41]。北海道のカラマツ人工林で行われた被害調査では、同年齢の樹木の中で太く高いものが被害を受ける事例、逆に細く低いものが被害を受ける事例、また樹勢に関係なく被害を受ける事例があり、樹勢よりも風や付着の仕方などの気象条件の方が雨氷被害との相関性が高いと報告されている[42]

居住地での被害

雨氷の重さで地面近くにまで垂れ下がった電線

市街で発生した場合は、特に被害が大きくなる。氷が電線に付着して電柱が倒壊し、氷の量が多い場合には送電線の鉄塔でさえ倒れることもある。鉄道架線に付着した場合は、給電がストップして運行ができなくなるが、雨氷を取り除く作業は着雪などに比べて時間がかかり、運行再開は遅れがちになる[43]。また、電線の一定の方向にだけ雨氷が付着すると、強風によりギャロッピング現象と呼ばれる振動現象を起こし、電線同士が接触するなどしてショートし、断線することがある[44]

雨氷が道路を覆うと、表面は硬く滑らかなため非常に滑りやすい状態となり、はスリップし、歩行者も転倒しやすくなる。雨氷に覆われた道路の制動距離は、乾いている場合の10倍、雪に覆われている場合の2倍といわれている[40]。雨氷は表面が滑らかで透明なうえ、雪が降るとすぐ覆い隠されてしまうため、道路が雨氷に覆われていることに気付かないことがある。また、気づいていても滑りやすいので、誤って怪我をしてしまうことが多い[19]。戸外での移動に際しては、や車のタイヤのスリップ対策が必要になる。また、鉄道線路飛行場滑走路も凍結した場合、交通網の深刻な停滞・麻痺を来たす。

また、特に雨氷の場合に留意しなければならないのが、停電に伴う影響である。雨氷は電線に付着して停電を起こしやすいため、ガスや電気の代わりとして暖房に火を使うことになる。それによって火災の危険性が高まり、締め切った室内で暖房器具や発電機を使うことで一酸化炭素中毒の危険性も高まる。1998年1月上旬に北米を襲ったアイスストームでは、多数の一酸化炭素中毒患者が出ている[45]

航空機への被害

地上に限らず、上空でも雨氷の付着被害が発生する。航空機に雨氷が付着すると、視界が悪くなったり、機体の重量や空気抵抗が増加したり、翼に付着して揚力を低下させたり、ジェットエンジンプロペラに付着して出力を低下させたりして、航行に支障が生じることがある。その他の着氷も航行への支障の原因となるが、付着速度は雨氷が最も速く、氷が硬く取れにくいため、もっとも厄介な着氷とされる。現在では航空機の防氷システム(英語)が普及しており、中型機では主に防氷ブーツ、大型機では主にヒーターや空圧を利用した機構により着氷を防止したり、氷を除去したりしている。[11]

なお、航空機においては地表では凍雨として観測されていても上空では着氷性の雨という場合があり、予報の際には凍雨を含めて考える必要がある[14]

雨氷のもたらす景色と文化

雨氷が物体に付着すると、独特の景色が現れる。木々に付着した雨氷は、透明な氷の層を形成し、光が当たるとガラスのように光り輝く。また、山の斜面に帯状の雨氷ができ、それが白く輝いて見えることがある。これらは観光や自然観賞の対象となり、寒い時期に見られる美しい景観として親しまれている。中国の廬山黄山をはじめとして、山でよく見られる景観として捉えられている地域もあれば[46]、平野部の居住地でも身近に見ることができる景観として捉えられている地域もある。雨氷は冬の季語となっている[1]

なお、古代日本では和名類聚抄にも記載されているようにあるいは氷雨(冷たい雨)の意味で「雨氷」という語が用いられたこともあるが、これは現在の用法とは直接の関係はないとされる[47]

雨氷を見ることができる地域では、雨氷がもたらす美しい景観やその情緒が、さまざまな形で芸術に表現されている。雨氷をテーマとした文化作品や芸術作品を以下に挙げる。

  • 『雨氷の朝』(詩) - 尾崎喜八 『自註富士見高原詩集』、1969年、日本
  • 『Freezing rain』(歌) - m.o.v.e アルバム『Deep Calm』、2004年、日本
  • 『Freezing Rain Freezin'』(歌) - トロイ・グレゴリー(Troy Gregory)、2002年、アメリカ

過去に起こった雨氷の例

雨氷の重さで傾いた電柱、20世紀初頭のカナダ・オンタリオ州にて
2008年冬の寒波の際に発生した雨氷、中国貴州省畢節地区の林にて

北米やヨーロッパでは、冬を中心に、低気圧の通過時に平野部でも雨氷が発生することがある。以下に顕著な被害を出した例を挙げる。

日本でも、雨氷の観測や、雨氷被害の報告が多数ある。山地で局地的に発生することが多いため、集落や都市部で見られることは少ない。以下に主な例を挙げる。

中国でも、雨氷の観測や被害例が多数ある。南方では「下冰凌」「天凌」「牛皮凌」、北京地方では「地油子」といった俗称がある。以下に顕著な被害を出した例を挙げる。

天気図・気象通報

国際気象通報式

国際気象通報式のSYNOPおよびSHIPにおいて天気の項では、

  • 24.前1時間内に着氷性の雨または霧雨があった(しゅう雨性ではない)→
  • 56.弱い着氷性の霧雨→
  • 57.並または強い着氷性の霧雨→
  • 66.弱い着氷性の雨→
  • 67.並または強い着氷性の雨→

の5種類が、着氷性の雨や着氷性の霧雨を表す。なお、砂塵嵐などが同時にあればそれが優先され違う表記となる[56]

METARTAFでは、「特性」の欄のFZが着氷性を表す。「降水現象」の欄の雨を表すRA、霧雨を表すDZ、また「視程障害現象」の欄の霧を表すFGとそれぞれ組み合わせて、例えば着氷性の雨であればFZRAと表記する[57][58]

日本式天気図・日本の国内気象通報式

日本国内の目視での「天気」観測における15種天気、国内気象通報日本式天気図における21種天気では、いずれも着氷性の雨と普通の雨は区別されていない。前者ではとしか表現されない。後者では霧雨雨強しの3つのいずれかでしか表現されない。なおどちらも、など他の現象が優先される。天気観測のうち現象判別機能のある現在天気計による自動観測点では、着氷性の雨と着氷性の霧雨を検出して記録する。なお、有人気象観測点では天気とは別に「大気現象」としては着氷性の雨、着氷性の霧雨のほか、雨氷も記録している。[59]

脚注

注釈

  1. ^ 式では省略したが、式中の係数はさらにその場の降水量風速、枝の直径などから導出される。出典論文を参照。

出典

  1. ^ a b 三省堂 大辞林第二版「雨氷」
  2. ^ a b c 小口、「着氷の物理的研究 Ⅰ」、1951年
  3. ^ a b c 小口、「着氷の物理的研究 Ⅱ」、1951年
  4. ^ a b c d 小口、「着氷の物理的研究 Ⅲ」、1951年
  5. ^ a b c 寺田、「凍雨と雨氷」、1935年
  6. ^ a b c d 気象庁、「気象観測の手引き」、1998年
  7. ^ Digital Atlas of Idaho Project "Precipitaion Patterns"
  8. ^ a b c アメリカ気象学会, 気象学用語集
  9. ^ a b c d e f g 牛山、1991年
  10. ^ a b c d e f g h i j k l m 岡田、『雨』、1951年
  11. ^ a b 全日空広報室、『エアラインハンドブックQ&A100 航空界の基礎知識』、1995
  12. ^ a b c d e 松下 他、2004年
  13. ^ a b c d e f g h 松下ら、2000年
  14. ^ a b c d e f g Cortinas Jr. et al, 2004
  15. ^ イリノイ大学大気科学部
  16. ^ 小倉、『一般気象学』第2版、1999年
  17. ^ a b 松下 他、2005年
  18. ^ a b 松島、1923年
  19. ^ a b イリノイ大学大気科学部
  20. ^ イリノイ大学大気科学部
  21. ^ a b Rauber, Robert M. et al., 2001
  22. ^ 牛山、1993年
  23. ^ Ice Storm Discovery Cannnel
  24. ^ Stanley et al, 2003
  25. ^ Stuart et al, 1999
  26. ^ イリノイ大学大気科学部
  27. ^ イリノイ大学大気科学部
  28. ^ Scharfenberg et ai., 2004
  29. ^ NWS, "Freezing Rain Climatology"
  30. ^ MSC, "Watches, Warnings and Special Weather Statements"
  31. ^ 注意報・警報発表基準 東京都 (PDF) 気象庁、2008年5月28日現在
  32. ^ 注意報・警報発表基準 熊本県 (PDF) 気象庁、2008年10月6日現在
  33. ^ 注意報・警報発表基準 福岡県 (PDF) 気象庁、2008年5月28日現在
  34. ^ 注意報・警報発表基準 宮城県 (PDF) 気象庁、2008年5月28日現在
  35. ^ 注意報・警報発表基準 茨城県 (PDF) 気象庁、2008年6月30日現在
  36. ^ 注意報・警報発表基準 新潟県 (PDF) 気象庁、2008年6月30日現在
  37. ^ 注意報・警報発表基準 渡島・檜山支庁 (PDF) 気象庁、2008年5月28日現在
  38. ^ 前者:近畿・中国・四国各県、後者:宮崎、鹿児島、沖縄。警報・注意報発表基準一覧表 気象庁、2009年1月10日閲覧。
  39. ^ アメリカ気象学会, 気象学用語集
  40. ^ a b THE WEATHER DOCTOR
  41. ^ 吉武ほか、2001年
  42. ^ 鳥田ほか、2007年
  43. ^ 下原、2011年
  44. ^ a b c d 田所、1997年
  45. ^ CBC archives
  46. ^ a b 冻雨的形成与危害 问天网、2001年11月13日。
  47. ^ 壬生、2000年
  48. ^ American Eagle Flight 4184 (PDF) 国家運輸安全委員会"Aircraft Accident Report"
  49. ^ Suri、2001
  50. ^ imiuru.com、2005
  51. ^ 上中、1988年
  52. ^ 牛山、1998年
  53. ^ 3776net
  54. ^ お天気歳時記、2003年
  55. ^ 冻雨 Hoodong、2008-02-15 15:59:46の版
  56. ^ 気象業務支援センター
  57. ^ 那覇航空測候所
  58. ^ WEATHER NAVIGATOR
  59. ^ 気象庁

参考文献

書籍
  • 寺田寅彦 著「凍雨と雨氷」、樋口敬二, 太田文平 編『寺田寅彦全集 第六巻 随筆六 科学2』岩波書店、2010年。ISBN 978-4000920766 (フリーのweb資料として、青空文庫掲載の原版「凍雨と雨氷」(1935年)がある。)
  • 岡田武松』岩波書店、1951年、222-232(§7)頁http://books.google.co.jp/books?id=gsbluTPj2uEC&printsec=frontcover&hl=ja 
  • 牛山素行 (1991年). “雨氷現象について”. pp. 18-27. 2012年12月21日閲覧。(リンクはdisaster-i.net掲載版。)
  • 全日空広報室『エアラインハンドブックQ&A100 航空界の基礎知識』ぎょうせい、1995年。ISBN 978-4324046982 
  • 松村明『大辞林 第二版』三省堂、1995年 ISBN 978-4385140094
  • 小倉義光『一般気象学』(第2版)東京大学出版会、1999年。ISBN 978-4-13-062706-1 
  • 菊地勝弘『雪と雷の世界 雨冠の気象の科学-Ⅱ』成山堂書店〈気象ブックス-028〉、2009年。ISBN 978-4425552719 
論文
web

関連項目

外部リンク