コバルト

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索
コバルト ニッケル
-

Co

Rh
Element 1: 水素 (H), 非金属
Element 2: ヘリウム (He), 希ガス
Element 3: リチウム (Li), アルカリ金属
Element 4: ベリリウム (Be), 卑金属
Element 5: ホウ素 (B), 金属
Element 6: 炭素 (C), 非金属
Element 7: 窒素 (N), 非金属
Element 8: 酸素 (O), 非金属
Element 9: フッ素 (F), ハロゲン
Element 10: ネオン (Ne), 希ガス
Element 11: ナトリウム (Na), アルカリ金属
Element 12: マグネシウム (Mg), 卑金属
Element 13: アルミニウム (Al), 卑金属
Element 14: ケイ素 (Si), 金属
Element 15: リン (P), 非金属
Element 16: 硫黄 (S), 非金属
Element 17: 塩素 (Cl), ハロゲン
Element 18: アルゴン (Ar), 希ガス
Element 19: カリウム (K), アルカリ金属
Element 20: カルシウム (Ca), アルカリ土類金属
Element 21: スカンジウム (Sc), 遷移金属
Element 22: チタン (Ti), 遷移金属
Element 23: バナジウム (V), 遷移金属
Element 24: クロム (Cr), 遷移金属
Element 25: マンガン (Mn), 遷移金属
Element 26: 鉄 (Fe), 遷移金属
Element 27: コバルト (Co), 遷移金属
Element 28: ニッケル (Ni), 遷移金属
Element 29: 銅 (Cu), 遷移金属
Element 30: 亜鉛 (Zn), 卑金属
Element 31: ガリウム (Ga), 卑金属
Element 32: ゲルマニウム (Ge), 金属
Element 33: ヒ素 (As), 金属
Element 34: セレン (Se), 非金属
Element 35: 臭素 (Br), ハロゲン
Element 36: クリプトン (Kr), 希ガス
Element 37: ルビジウム (Rb), アルカリ金属
Element 38: ストロンチウム (Sr), アルカリ土類金属
Element 39: イットリウム (Y), 遷移金属
Element 40: ジルコニウム (Zr), 遷移金属
Element 41: ニオブ (Nb), 遷移金属
Element 42: モリブデン (Mo), 遷移金属
Element 43: テクネチウム (Tc), 遷移金属
Element 44: ルテニウム (Ru), 遷移金属
Element 45: ロジウム (Rh), 遷移金属
Element 46: パラジウム (Pd), 遷移金属
Element 47: 銀 (Ag), 遷移金属
Element 48: カドミウム (Cd), 卑金属
Element 49: インジウム (In), 卑金属
Element 50: スズ (Sn), 卑金属
Element 51: アンチモン (Sb), 金属
Element 52: テルル (Te), 金属
Element 53: ヨウ素 (I), ハロゲン
Element 54: キセノン (Xe), 希ガス
Element 55: セシウム (Cs), アルカリ金属
Element 56: バリウム (Ba), アルカリ土類金属
Element 57: ランタン (La), ランタノイド
Element 58: セリウム (Ce), ランタノイド
Element 59: プラセオジム (Pr), ランタノイド
Element 60: ネオジム (Nd), ランタノイド
Element 61: プロメチウム (Pm), ランタノイド
Element 62: サマリウム (Sm), ランタノイド
Element 63: ユウロピウム (Eu), ランタノイド
Element 64: ガドリニウム (Gd), ランタノイド
Element 65: テルビウム (Tb), ランタノイド
Element 66: ジスプロシウム (Dy), ランタノイド
Element 67: ホルミウム (Ho), ランタノイド
Element 68: エルビウム (Er), ランタノイド
Element 69: ツリウム (Tm), ランタノイド
Element 70: イッテルビウム (Yb), ランタノイド
Element 71: ルテチウム (Lu), ランタノイド
Element 72: ハフニウム (Hf), 遷移金属
Element 73: タンタル (Ta), 遷移金属
Element 74: タングステン (W), 遷移金属
Element 75: レニウム (Re), 遷移金属
Element 76: オスミウム (Os), 遷移金属
Element 77: イリジウム (Ir), 遷移金属
Element 78: 白金 (Pt), 遷移金属
Element 79: 金 (Au), 遷移金属
Element 80: 水銀 (Hg), 卑金属
Element 81: タリウム (Tl), 卑金属
Element 82: 鉛 (Pb), 卑金属
Element 83: ビスマス (Bi), 卑金属
Element 84: ポロニウム (Po), 金属
Element 85: アスタチン (At), ハロゲン
Element 86: ラドン (Rn), 希ガス
Element 87: フランシウム (Fr), アルカリ金属
Element 88: ラジウム (Ra), アルカリ土類金属
Element 89: アクチニウム (Ac), アクチノイド
Element 90: トリウム (Th), アクチノイド
Element 91: プロトアクチニウム (Pa), アクチノイド
Element 92: ウラン (U), アクチノイド
Element 93: ネプツニウム (Np), アクチノイド
Element 94: プルトニウム (Pu), アクチノイド
Element 95: アメリシウム (Am), アクチノイド
Element 96: キュリウム (Cm), アクチノイド
Element 97: バークリウム (Bk), アクチノイド
Element 98: カリホルニウム (Cf), アクチノイド
Element 99: アインスタイニウム (Es), アクチノイド
Element 100: フェルミウム (Fm), アクチノイド
Element 101: メンデレビウム (Md), アクチノイド
Element 102: ノーベリウム (No), アクチノイド
Element 103: ローレンシウム (Lr), アクチノイド
Element 104: ラザホージウム (Rf), 遷移金属
Element 105: ドブニウム (Db), 遷移金属
Element 106: シーボーギウム (Sg), 遷移金属
Element 107: ボーリウム (Bh), 遷移金属
Element 108: ハッシウム (Hs), 遷移金属
Element 109: マイトネリウム (Mt), 遷移金属
Element 110: ダームスタチウム (Ds), 遷移金属
Element 111: レントゲニウム (Rg), 遷移金属
Element 112: コペルニシウム (Cn), 卑金属
Element 113: ウンウントリウム (Uut), 卑金属
Element 114: フレロビウム (Fl), 卑金属
Element 115: ウンウンペンチウム (Uup), 卑金属
Element 116: リバモリウム (Lv), 卑金属
Element 117: ウンウンセプチウム (Uus), ハロゲン
Element 118: ウンウンオクチウム (Uuo), 希ガス
Cobalt has a hexagonal crystal structure
27Co
外見
銀白色
Kobalt electrolytic and 1cm3 cube.jpg
一般特性
名称, 記号, 番号 コバルト, Co, 27
分類 遷移金属
, 周期, ブロック 9, 4, d
原子量 58.933195(5) g·mol-1
電子配置 [Ar] 4s2 3d7
電子殻 2, 8, 15, 2(画像
物理特性
銀白色
密度 (室温付近) 8.90 g·cm-3
融点での液体密度 7.75 g·cm-3
融点 1768 K, 1495 °C, 2723 °F
沸点 3200 K, 2927 °C, 5301 °F
融解熱 16.06 kJ·mol-1
蒸発熱 377 kJ·mol-1
熱容量 (25 °C) 24.81 J·mol-1·K-1
蒸気圧
圧力(Pa) 1 10 100 1 k 10 k 100 k
温度 (K) 1790 1960 2165 2423 2755 3198
原子特性
酸化数 5, 4 , 3, 2, 1, -1[1]
(両性酸化物)
電気陰性度 1.88 (ポーリングの値)
イオン化エネルギー
(詳細)
第1: 760.4 kJ·mol-1
第2: 1648 kJ·mol-1
第3: 3232 kJ·mol-1
原子半径 125 pm
共有結合半径 126±3(低スピン), 150±7(高スピン) pm
その他
結晶構造 六方晶系
磁性 強磁性
電気抵抗率 (20 °C) 62.4 nΩ·m
熱伝導率 (300 K) 100 W·m-1·K-1
熱膨張率 (25 °C) 13.0 µm·m-1·K-1
音の伝わる速さ
(微細ロッド)
(20 °C) 4720 m/s
ヤング率 209 GPa
剛性率 75 GPa
体積弾性率 180 GPa
ポアソン比 0.31
モース硬度 5.0
ビッカース硬度 1043 MPa
ブリネル硬度 700 MPa
CAS登録番号 7440-48-4
最安定同位体
詳細はコバルトの同位体を参照
同位体 NA 半減期 DM DE (MeV) DP
56Co syn 77.27 d ε 4.566 56Fe
57Co syn 271.79 d ε 0.836 57Fe
58Co syn 70.86 d ε 2.307 58Fe
59Co 100 % 中性子32個で安定
60Co syn 5.2714 y β-, γ, γ 2.824 60Ni
ケイ酸コバルトによって青くなった瓶

コバルト (: cobalt: cobaltum) は、原子番号27の元素元素記号Co鉄族元素の1つ。安定な結晶構造は六方最密充填構造 (hcp) で、強磁性体。純粋なものは銀白色の金属である。722 K以上で面心立方構造 (fcc) に転移する。

より酸化されにくく、塩基にも強い。

歴史[編集]

1735年スウェーデンイェオリ・ブラント (Georg Brandt) により発見[2]。コバルトという名称と元素記号は、ドイツ語で地の妖精を意味するコーボルト (kobold または kobalt) に由来する。コバルト鉱物は冶金が困難なため、16世紀頃のドイツでは、コーボルトが坑夫を困らせるために魔法をかけたものと考えられていた。

産出地[編集]

この金属は、日本国内において産業上重要性が高いものの地殻存在度が低く供給構造が脆弱である。日本では国内で消費する鉱物資源の多くを他国からの輸入で支えている実情から、万一の国際情勢の急変に対する安全保障策として国内消費量の最低60分を国家備蓄すると定められている。

主要産出国は以下の通り(2011年実績)[3]。特にコンゴ民主共和国の産出量は多く、年間産出量の53%を占める。

用途[編集]

合金材料[編集]

単体金属としてのコバルトの用途はほとんどないが、、主に合金として重要であり工業的に利用される。初期のコバルト合金は、高速度工具鋼にコバルトを添加した超高速度工具鋼に用いられた。また切断工具材料としてそれまでの合金に添加されることで、コバルトの需要は増していった。現在、ニッケルクロムモリブデンタングステン、あるいはタンタルニオブを添加したコバルト合金は高温でも磨耗しにくく、腐食にも強いため、ガスタービンジェットエンジンといった、高温で高い負荷が生ずる装置などに用いられているほか、溶鉱炉石油化学コンビナートなどでも十分に役割を果たす。またステライトに代表される、コバルト・クロム・タングステンあるいはモリブデン炭素を使った4元系の合金は、磨耗に強く、表面強化が必要となる工業分野において幅広く利用され始めている。この合金は、鋳型として使用するほか、粉末として吹き付けることや溶射して利用することも可能であり、利用技術の発達によって、航空機の表面にコーディングすることなどをはじめ、広い分野で実用化が始まっている。コバルト-モリブデン-ケイ素合金は、耐摩耗性を有し摩擦係数が小さい(滑らかな)性質を示し、ベアリングの特徴を併せ持つなど、有用な特性を持った合金も開発されている。またコバルト-クロム-モリブデン合金コバルト-クロム-タングステン-ニッケル合金は腐食しにくいため歯科医療や外科手術などでも使われている。近年では飛躍的に進歩したものとして、ニッケル-コバルト-モリブデン鋼の大幅な特性向上があげられる。非常に強い強度と高い靭性を持ったこの合金は、多くの分野での応用が期待されており研究が進んでいる。

加えてコバルト合金は他にも磁気材料として鉄とともに最も重要な役割を果たしてきた。コバルトを添加することにより、磁性やキュリー値が上昇するなど磁気材料としての性能が高まる。コバルトを使った合金のひとつであるアルニコ合金はかつては最も幅広く用いられていた永久磁気材料であった。サマリウムコバルト磁石はコバルトとサマリウムの金属間化合物で、強い保磁力がある。

化合物[編集]

同位体[編集]

放射性同位体コバルト60は、γ線源として用いられる。医療分野での放射線療法ガンマ線滅菌、食品分野での食品照射ジャガイモの発芽防止)、工業分野での非破壊検査などに広く利用されている。

コバルト爆弾[編集]

レオ・シラードにより、核開発への警告として発表された核爆弾の一種で、原子爆弾又は水素爆弾のまわりをコバルトで包んだものである。具体的には、核反応が充分に進行しないうちに核物質が四散して爆発が不完全に終わるのを防ぐ「タンパー」と呼ばれる重金属の覆いにコバルトを用いる。コバルトの原子量は59であるが、核反応により放出される中性子を取り込んでコバルト60が生成され、これが爆弾の爆発と共に広範囲にまき散らされる。コバルト60は半減期5.3年でγ線を放射するため、コバルト爆弾は放射線兵器となる。中性子爆弾と共に SF第三次世界大戦など核戦争による世界破滅するジャンルでよく使用想定されていたが、中性子爆弾と違って、コバルト爆弾では半減期の長いコバルト60による汚染のため味方にも被害が及び、被災地の占領も困難であるなどの理由で実用化されることは無かった。

出典[編集]

  1. ^ Greenwood, Norman N.; Earnshaw, Alan. (1997), Chemistry of the Elements (2 ed.), Oxford: Butterworth-Heinemann, pp. 1117–1119, ISBN 0080379419 
  2. ^ 桜井 弘 『元素111の新知識』 講談社1998年、151頁。ISBN 4-06-257192-7 
  3. ^ 「Mineral Commodity Summaries 2012[1]」p47、USGS


関連項目[編集]