臭素

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索
セレン 臭素 クリプトン
Cl

Br

I
Element 1: 水素 (H), 非金属
Element 2: ヘリウム (He), 希ガス
Element 3: リチウム (Li), アルカリ金属
Element 4: ベリリウム (Be), 卑金属
Element 5: ホウ素 (B), 金属
Element 6: 炭素 (C), 非金属
Element 7: 窒素 (N), 非金属
Element 8: 酸素 (O), 非金属
Element 9: フッ素 (F), ハロゲン
Element 10: ネオン (Ne), 希ガス
Element 11: ナトリウム (Na), アルカリ金属
Element 12: マグネシウム (Mg), 卑金属
Element 13: アルミニウム (Al), 卑金属
Element 14: ケイ素 (Si), 金属
Element 15: リン (P), 非金属
Element 16: 硫黄 (S), 非金属
Element 17: 塩素 (Cl), ハロゲン
Element 18: アルゴン (Ar), 希ガス
Element 19: カリウム (K), アルカリ金属
Element 20: カルシウム (Ca), アルカリ土類金属
Element 21: スカンジウム (Sc), 遷移金属
Element 22: チタン (Ti), 遷移金属
Element 23: バナジウム (V), 遷移金属
Element 24: クロム (Cr), 遷移金属
Element 25: マンガン (Mn), 遷移金属
Element 26: 鉄 (Fe), 遷移金属
Element 27: コバルト (Co), 遷移金属
Element 28: ニッケル (Ni), 遷移金属
Element 29: 銅 (Cu), 遷移金属
Element 30: 亜鉛 (Zn), 卑金属
Element 31: ガリウム (Ga), 卑金属
Element 32: ゲルマニウム (Ge), 金属
Element 33: ヒ素 (As), 金属
Element 34: セレン (Se), 非金属
Element 35: 臭素 (Br), ハロゲン
Element 36: クリプトン (Kr), 希ガス
Element 37: ルビジウム (Rb), アルカリ金属
Element 38: ストロンチウム (Sr), アルカリ土類金属
Element 39: イットリウム (Y), 遷移金属
Element 40: ジルコニウム (Zr), 遷移金属
Element 41: ニオブ (Nb), 遷移金属
Element 42: モリブデン (Mo), 遷移金属
Element 43: テクネチウム (Tc), 遷移金属
Element 44: ルテニウム (Ru), 遷移金属
Element 45: ロジウム (Rh), 遷移金属
Element 46: パラジウム (Pd), 遷移金属
Element 47: 銀 (Ag), 遷移金属
Element 48: カドミウム (Cd), 卑金属
Element 49: インジウム (In), 卑金属
Element 50: スズ (Sn), 卑金属
Element 51: アンチモン (Sb), 金属
Element 52: テルル (Te), 金属
Element 53: ヨウ素 (I), ハロゲン
Element 54: キセノン (Xe), 希ガス
Element 55: セシウム (Cs), アルカリ金属
Element 56: バリウム (Ba), アルカリ土類金属
Element 57: ランタン (La), ランタノイド
Element 58: セリウム (Ce), ランタノイド
Element 59: プラセオジム (Pr), ランタノイド
Element 60: ネオジム (Nd), ランタノイド
Element 61: プロメチウム (Pm), ランタノイド
Element 62: サマリウム (Sm), ランタノイド
Element 63: ユウロピウム (Eu), ランタノイド
Element 64: ガドリニウム (Gd), ランタノイド
Element 65: テルビウム (Tb), ランタノイド
Element 66: ジスプロシウム (Dy), ランタノイド
Element 67: ホルミウム (Ho), ランタノイド
Element 68: エルビウム (Er), ランタノイド
Element 69: ツリウム (Tm), ランタノイド
Element 70: イッテルビウム (Yb), ランタノイド
Element 71: ルテチウム (Lu), ランタノイド
Element 72: ハフニウム (Hf), 遷移金属
Element 73: タンタル (Ta), 遷移金属
Element 74: タングステン (W), 遷移金属
Element 75: レニウム (Re), 遷移金属
Element 76: オスミウム (Os), 遷移金属
Element 77: イリジウム (Ir), 遷移金属
Element 78: 白金 (Pt), 遷移金属
Element 79: 金 (Au), 遷移金属
Element 80: 水銀 (Hg), 卑金属
Element 81: タリウム (Tl), 卑金属
Element 82: 鉛 (Pb), 卑金属
Element 83: ビスマス (Bi), 卑金属
Element 84: ポロニウム (Po), 金属
Element 85: アスタチン (At), ハロゲン
Element 86: ラドン (Rn), 希ガス
Element 87: フランシウム (Fr), アルカリ金属
Element 88: ラジウム (Ra), アルカリ土類金属
Element 89: アクチニウム (Ac), アクチノイド
Element 90: トリウム (Th), アクチノイド
Element 91: プロトアクチニウム (Pa), アクチノイド
Element 92: ウラン (U), アクチノイド
Element 93: ネプツニウム (Np), アクチノイド
Element 94: プルトニウム (Pu), アクチノイド
Element 95: アメリシウム (Am), アクチノイド
Element 96: キュリウム (Cm), アクチノイド
Element 97: バークリウム (Bk), アクチノイド
Element 98: カリホルニウム (Cf), アクチノイド
Element 99: アインスタイニウム (Es), アクチノイド
Element 100: フェルミウム (Fm), アクチノイド
Element 101: メンデレビウム (Md), アクチノイド
Element 102: ノーベリウム (No), アクチノイド
Element 103: ローレンシウム (Lr), アクチノイド
Element 104: ラザホージウム (Rf), 遷移金属
Element 105: ドブニウム (Db), 遷移金属
Element 106: シーボーギウム (Sg), 遷移金属
Element 107: ボーリウム (Bh), 遷移金属
Element 108: ハッシウム (Hs), 遷移金属
Element 109: マイトネリウム (Mt), 遷移金属
Element 110: ダームスタチウム (Ds), 遷移金属
Element 111: レントゲニウム (Rg), 遷移金属
Element 112: コペルニシウム (Cn), 卑金属
Element 113: ウンウントリウム (Uut), 卑金属
Element 114: フレロビウム (Fl), 卑金属
Element 115: ウンウンペンチウム (Uup), 卑金属
Element 116: リバモリウム (Lv), 卑金属
Element 117: ウンウンセプチウム (Uus), ハロゲン
Element 118: ウンウンオクチウム (Uuo), 希ガス
Bromine has a orthorhombic crystal structure
35Br
外見
気体/液体: 赤褐色
固体: 金属色
Bromine.jpg
一般特性
名称, 記号, 番号 臭素, Br, 35
分類 ハロゲン
, 周期, ブロック 17, 4, p
原子量 79.904(1) 
電子配置 [Ar] 4s2 3d10 4p5
電子殻 2, 8, 18, 7(画像
物理特性
液体
密度室温付近) (液体)3.1028 g·cm-3
融点 265.8 K, -7.2 °C, 19 °F
沸点 332.0 K, 58.8 °C, 137.8 °F
臨界点 588 K, 10.34 MPa
融解熱 (Br2) 10.571 kJ·mol-1
蒸発熱 (Br2) 29.96 kJ·mol-1
熱容量 (25 °C) (Br2) 75.69 J·mol-1·K-1
蒸気圧
圧力 (Pa) 1 10 100 1 k 10 k 100 k
温度 (K) 185 201 220 244 276 332
原子特性
酸化数 7, 5, 4, 3, 1, -1(強酸性酸化物
電気陰性度 2.96(ポーリングの値)
イオン化エネルギー 第1: 1139.9 kJ·mol-1
第2: 2103 kJ·mol-1
第3: 3470 kJ·mol-1
原子半径 120 pm
共有結合半径 120±3 pm
ファンデルワールス半径 185 pm
その他
結晶構造 斜方晶系
磁性 反磁性[1]
電気抵抗率 (20 °C) 7.8×1010Ω·m
熱伝導率 (300 K) 0.122 W·m-1·K-1
音の伝わる速さ (20 °C) 206 m/s
CAS登録番号 7726-95-6
最安定同位体
詳細は臭素の同位体を参照
同位体 NA 半減期 DM DE (MeV) DP
79Br 50.69 % 中性子44個で安定
81Br 49.31 % 中性子46個で安定

臭素(しゅうそ、: bromine)は、原子番号35の元素元素記号Brハロゲン元素の一つ。

単体(Br2、二臭素)は常温、常圧で液体[2](赤褐色)である。融点は−7.3 °C沸点は58.8 °C。反応性は塩素より弱い。刺激臭を持ち、猛毒である。海水中にも微量存在する。

歴史[編集]

アントワーヌ・バラールは、1826年にフランス学士院へ臭素発見に関する論文を提出している。フランスモンペリエにおいて、海水と塩素の反応によって発見された。バラールは後述するシリアツブリガイの当時の名称 murex から、新元素の名称として muride を提案した。しかし、フランス学士院は muride ではなく、ギリシャ語の悪臭 (bromos) に基づく bromine に決定した。なお、ドイツカール・レーヴィヒは、1825年に鉱泉から新元素を発見していたのだが、論文を提出する前にバラールの論文が発表されてしまった。

20世紀初頭、ドイツでは海水から臭素を得ていた。プールに導き入れた海水を塩素で酸化して、わずかに生じる臭素をアニリンと反応させて得られる2,4,6-トリブロモフェノールフェノールに臭素原子が3つ置換したもの)の沈殿を分解して臭素単体を得ていた。当時の価格は同質量のより高価であったという。アメリカ合衆国においては、ダウ・ケミカル創業者のハーバート・ダウが開発した電気分解法を鹹水鉱床に用いることで、臭素生産が始まった。後に海水にもダウの手法が適用された。

精神的な興奮状態、性欲を鎮める作用があるため、19世紀においては、興奮性の精神病の治療薬、鎮静剤、性欲抑制剤として臭化カリウムなどの臭化物を用いた。ただし、毒性があるため、現在ではほとんど用いない。

後に、イスラエル死海周辺の井戸から産する臭化マグネシウム水溶液から得られるようになった。臭素の価格は中東和平が達成されると下がり、軍事的緊張が続くと高騰するなど不安定であったが、アメリカ合衆国のユニオン郡 (アーカンソー州)の地下水から得られるようになり、現在ではこちらが最大の産出地である。

性質[編集]

非金属元素の中では常温・常圧で液体である唯一の元素で、二原子分子 (Br2) を形成する。色は暗赤色で、常温・常圧で蒸発しやすく、赤色の気体となる。同じハロゲン塩素と同様、強烈な不快臭を持つ。ハロゲン中での反応性は塩素より小さく、ヨウ素より大きい。には若干溶け、二硫化炭素脂肪族アルコール酢酸にはよく溶ける。多くの元素と容易に結合して強力な漂白作用を持つ。皮膚に臭素が触れると腐食を引き起こすため危険である。

臭素化合物にはオゾン層を破壊したり、生物濃縮するものがあるため、段階的に廃止される予定となっており、次第に工業的に製造されなくなってきている。

臭素は強力な酸化剤で、金属有機化合物と容易に反応する。

アメリカ合衆国ヴァンダービルト大学ビリー・ハドソン博士らは、ミバエへの給餌実験で臭素を除いた餌を食べ続けたグループは死滅したが、通常通り臭素を含む餌を食べた対照グループは生き残ったことから、臭素が動物にとって28番目の必須元素であることを確認したと2014年に発表した[3][4]

資源[編集]

工業的には臭化物イオンを含む水溶液を酸性条件下で塩素を吹き込み、酸化された臭素単体を蒸留精製する。臭素は海水中には65 ppm (0.0065%) 含まれ、推定資源量は100兆トン存在し、多くの国で海水を原料として臭素を生産している。一方、死海あるいは臭素の含有量が高い鉱水が知られており、アメリカ合衆国やイスラエルなどの国では、鉱水や死海の水を原料にして、同様に塩素で酸化して生産している。日本では海水に塩素を吹き込んで臭素を遊離させる海水法とにがりに含まれるMgBr2に塩素を吹き込んで臭素を遊離させるにがり法で生産され、生産量は2007年で26000t(推定)である[5]

米国地質調査所の2005年版統計[6]によると、全世界の臭素の生産量は約590,000トンである。その内訳は、1位の合衆国が222,000トン、2位のイスラエルが206,000トンであった。国連統計局の2002年度統計[7]によると、輸出量はリサイクルされたものも含めて1位のイスラエルが94,141,000ドル、2位のベルギーが34,412,092ドルであった。

2002年輸出金額(ドル) 2002年生産量(トン)
米国 16,820,987 225,000
イスラエル 94,141,000 206,000
中国 - 40,000
英国 15,922,613 50,000
日本国 - 20,000
ベルギー 34,412,092 -
オランダ 19,297,583 -
その他 13,877,164 9,000
194,471,439 550,000
説明図 臭素の生産量と輸出量

用途[編集]

シリアツブリガイ Bolinus brandaris(旧学名:Murex brandaris)が分泌する無色の液体が空気中で酸化されると、紫色(皇帝紫)の成分である6,6'-ジブロモインジゴが得られる。この貝は、現在のレバノン沿岸ティルスに産したため、染料はチリアンパープル (Tyrrian purple) とも呼ばれた。19世紀にアニリン染料モーブなど)が開発されるまでは、もっとも優れた紫色の染料として用いられていた。

工業的には、有鉛ガソリンの添加剤であるジブロモエタン、消火に用いる CBrClF2, CBrF3 などのハロン、土壌燻蒸剤の臭化メチルが主な用途であった。しかしながら、いずれも環境に与える影響が大きいとされ、生産・消費量は減少している。航空機新幹線車両などの内装材にも用いられ、難燃剤として優れるポリ臭素化ジフェニルエーテルは、そのほかの主な用途である。

写真の感光材として、臭素の化合物臭化銀 (silver bromide) が用いられている。このため、印画紙のことを英語では bromide paper と呼ぶ。これが転じて、アイドル等の写真であるブロマイドの語源となった。

高温で様々な無機物・有機物を含む温泉水の消毒剤として塩素剤だけでは不十分な場合があるため、BCDMH(ブロモクロロジメチルヒダントイン)を主成分とする塩素臭素剤が使用される[8]。海外では「Bromine Tablets」という一般名で市販されている。

臭素の化合物[編集]

詳細はCategory:臭素の化合物を参照。

臭素系有機化合物[編集]

詳細はCategory:有機ハロゲン化合物を参照。

臭素のオキソ酸[編集]

臭素のオキソ酸は慣用名を持つ。次にそれらを挙げる。

オキソ酸の名称 化学式(酸化数) オキソ酸塩の名称 備考
次亜臭素酸
(hypobromous acid)
HBrO (+I) 次亜臭素酸塩
( - hypobromite)
亜臭素酸
(bromous acid)
HBrO2 (+III) 亜臭素酸塩
( - bromite)
臭素酸
(bromic acid)
HBrO3 (+V) 臭素酸塩
( - bromate)
臭素酸塩は危険物第1類
過臭素酸
(perbromic acid)
HBrO4 (+VII) 過臭素酸塩
( - perbromate)
  • オキソ酸塩名称の '-' にはカチオン種の名称が入る。

同位体[編集]

出典[編集]

  1. ^ Magnetic susceptibility of the elements and inorganic compounds, in Handbook of Chemistry and Physics 81st edition, CRC press.
  2. ^ 常温で液体の元素は臭素と水銀だけである。中国語では、常温での状態を示すため、それぞれを漢字で「」、「」と書くが、水部の部品が含められている。
  3. ^ VU investigators confirm bromine's critical role in tissue development” (英語). Vanderbilt University (2014年6月). 2014年6月25日閲覧。
  4. ^ 「精留塔」『化学工業日報』2014年6月25日p1、東京、化学工業日報社。[1]
  5. ^ 『15509の化学商品』 化学工業日報社、2009年2月。ISBN 978-4-87326-544-5
  6. ^ http://minerals.usgs.gov/minerals/ Mineral Commodity Summaries
  7. ^ Commodity Trade Statistics Database
  8. ^ 社団法人空気調和・衛生工学会発行「浴場施設のレジオネラ対策指針」

関連項目[編集]

外部リンク[編集]

ハロゲン間化合物
フッ素 塩素 臭素 ヨウ素
フッ素 F2
塩素 ClF ClF3 ClF5 Cl2
臭素 BrF BrF3 BrF5 BrCl BrCl3 Br2
ヨウ素 IF IF3 IF5 IF7 ICl I2Cl6 IBr IBr3 I2