イットリウム

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索
ストロンチウム イットリウム ジルコニウム
Sc

Y

Lu
Element 1: 水素 (H), 非金属
Element 2: ヘリウム (He), 希ガス
Element 3: リチウム (Li), アルカリ金属
Element 4: ベリリウム (Be), 卑金属
Element 5: ホウ素 (B), 金属
Element 6: 炭素 (C), 非金属
Element 7: 窒素 (N), 非金属
Element 8: 酸素 (O), 非金属
Element 9: フッ素 (F), ハロゲン
Element 10: ネオン (Ne), 希ガス
Element 11: ナトリウム (Na), アルカリ金属
Element 12: マグネシウム (Mg), 卑金属
Element 13: アルミニウム (Al), 卑金属
Element 14: ケイ素 (Si), 金属
Element 15: リン (P), 非金属
Element 16: 硫黄 (S), 非金属
Element 17: 塩素 (Cl), ハロゲン
Element 18: アルゴン (Ar), 希ガス
Element 19: カリウム (K), アルカリ金属
Element 20: カルシウム (Ca), アルカリ土類金属
Element 21: スカンジウム (Sc), 遷移金属
Element 22: チタン (Ti), 遷移金属
Element 23: バナジウム (V), 遷移金属
Element 24: クロム (Cr), 遷移金属
Element 25: マンガン (Mn), 遷移金属
Element 26: 鉄 (Fe), 遷移金属
Element 27: コバルト (Co), 遷移金属
Element 28: ニッケル (Ni), 遷移金属
Element 29: 銅 (Cu), 遷移金属
Element 30: 亜鉛 (Zn), 卑金属
Element 31: ガリウム (Ga), 卑金属
Element 32: ゲルマニウム (Ge), 金属
Element 33: ヒ素 (As), 金属
Element 34: セレン (Se), 非金属
Element 35: 臭素 (Br), ハロゲン
Element 36: クリプトン (Kr), 希ガス
Element 37: ルビジウム (Rb), アルカリ金属
Element 38: ストロンチウム (Sr), アルカリ土類金属
Element 39: イットリウム (Y), 遷移金属
Element 40: ジルコニウム (Zr), 遷移金属
Element 41: ニオブ (Nb), 遷移金属
Element 42: モリブデン (Mo), 遷移金属
Element 43: テクネチウム (Tc), 遷移金属
Element 44: ルテニウム (Ru), 遷移金属
Element 45: ロジウム (Rh), 遷移金属
Element 46: パラジウム (Pd), 遷移金属
Element 47: 銀 (Ag), 遷移金属
Element 48: カドミウム (Cd), 卑金属
Element 49: インジウム (In), 卑金属
Element 50: スズ (Sn), 卑金属
Element 51: アンチモン (Sb), 金属
Element 52: テルル (Te), 金属
Element 53: ヨウ素 (I), ハロゲン
Element 54: キセノン (Xe), 希ガス
Element 55: セシウム (Cs), アルカリ金属
Element 56: バリウム (Ba), アルカリ土類金属
Element 57: ランタン (La), ランタノイド
Element 58: セリウム (Ce), ランタノイド
Element 59: プラセオジム (Pr), ランタノイド
Element 60: ネオジム (Nd), ランタノイド
Element 61: プロメチウム (Pm), ランタノイド
Element 62: サマリウム (Sm), ランタノイド
Element 63: ユウロピウム (Eu), ランタノイド
Element 64: ガドリニウム (Gd), ランタノイド
Element 65: テルビウム (Tb), ランタノイド
Element 66: ジスプロシウム (Dy), ランタノイド
Element 67: ホルミウム (Ho), ランタノイド
Element 68: エルビウム (Er), ランタノイド
Element 69: ツリウム (Tm), ランタノイド
Element 70: イッテルビウム (Yb), ランタノイド
Element 71: ルテチウム (Lu), ランタノイド
Element 72: ハフニウム (Hf), 遷移金属
Element 73: タンタル (Ta), 遷移金属
Element 74: タングステン (W), 遷移金属
Element 75: レニウム (Re), 遷移金属
Element 76: オスミウム (Os), 遷移金属
Element 77: イリジウム (Ir), 遷移金属
Element 78: 白金 (Pt), 遷移金属
Element 79: 金 (Au), 遷移金属
Element 80: 水銀 (Hg), 卑金属
Element 81: タリウム (Tl), 卑金属
Element 82: 鉛 (Pb), 卑金属
Element 83: ビスマス (Bi), 卑金属
Element 84: ポロニウム (Po), 金属
Element 85: アスタチン (At), ハロゲン
Element 86: ラドン (Rn), 希ガス
Element 87: フランシウム (Fr), アルカリ金属
Element 88: ラジウム (Ra), アルカリ土類金属
Element 89: アクチニウム (Ac), アクチノイド
Element 90: トリウム (Th), アクチノイド
Element 91: プロトアクチニウム (Pa), アクチノイド
Element 92: ウラン (U), アクチノイド
Element 93: ネプツニウム (Np), アクチノイド
Element 94: プルトニウム (Pu), アクチノイド
Element 95: アメリシウム (Am), アクチノイド
Element 96: キュリウム (Cm), アクチノイド
Element 97: バークリウム (Bk), アクチノイド
Element 98: カリホルニウム (Cf), アクチノイド
Element 99: アインスタイニウム (Es), アクチノイド
Element 100: フェルミウム (Fm), アクチノイド
Element 101: メンデレビウム (Md), アクチノイド
Element 102: ノーベリウム (No), アクチノイド
Element 103: ローレンシウム (Lr), アクチノイド
Element 104: ラザホージウム (Rf), 遷移金属
Element 105: ドブニウム (Db), 遷移金属
Element 106: シーボーギウム (Sg), 遷移金属
Element 107: ボーリウム (Bh), 遷移金属
Element 108: ハッシウム (Hs), 遷移金属
Element 109: マイトネリウム (Mt), 遷移金属
Element 110: ダームスタチウム (Ds), 遷移金属
Element 111: レントゲニウム (Rg), 遷移金属
Element 112: コペルニシウム (Cn), 卑金属
Element 113: ウンウントリウム (Uut), 卑金属
Element 114: フレロビウム (Fl), 卑金属
Element 115: ウンウンペンチウム (Uup), 卑金属
Element 116: リバモリウム (Lv), 卑金属
Element 117: ウンウンセプチウム (Uus), ハロゲン
Element 118: ウンウンオクチウム (Uuo), 希ガス
Yttrium has a hexagonal crystal structure
39Y
外見
銀白色
Yttrium sublimed dendritic and 1cm3 cube.jpg
一般特性
名称, 記号, 番号 イットリウム, Y, 39
分類 遷移金属
, 周期, ブロック 3, 5, d
原子量 88.90585 g·mol-1
電子配置 [Kr] 4d1 5s2
電子殻 2, 8, 18, 9, 2(画像
物理特性
密度室温付近) 4.472 g·cm-3
融点での液体密度 4.24 g·cm-3
融点 1799 K, 1526 °C, 2779 °F
沸点 3609 K, 3336 °C, 6037 °F
融解熱 11.42 kJ·mol-1
蒸発熱 365 kJ·mol-1
熱容量 (25 °C) 26.53 J·mol-1·K-1
蒸気圧
圧力 (Pa) 1 10 100 1 k 10 k 100 k
温度 (K) 1883 2075 (2320) (2627) (3036) (3607)
原子特性
酸化数 3, 2, 1(弱塩基性酸化物
電気陰性度 1.22(ポーリングの値)
イオン化エネルギー 第1: 600 kJ·mol-1
第2: 1180 kJ·mol-1
第3: 1980 kJ·mol-1
原子半径 180 pm
共有結合半径 190±7 pm
その他
結晶構造 六方晶系
磁性 常磁性[1]
電気抵抗率 (r.t.) (α, poly) 596 nΩ·m
熱伝導率 (300 K) 17.2 W·m-1·K-1
熱膨張率 (r.t.) (α, poly) 10.6 µm/(m·K)
音の伝わる速さ
(微細ロッド)
(20 °C) 3300 m/s
ヤング率 63.5 GPa
剛性率 25.6 GPa
体積弾性率 41.2 GPa
ポアソン比 0.243
ブリネル硬度 589 MPa
CAS登録番号 7440-65-5
最安定同位体
詳細はイットリウムの同位体を参照
同位体 NA 半減期 DM DE (MeV) DP
87Y syn 3.35 d ε - 87Sr
γ 0.48, 0.38 -
88Y syn 106.6 d ε - 88Sr
γ 1.83, 0.89 -
89Y 100% 中性子50個で安定
90Y syn 2.67 d β- 2.28 90Zr
γ 2.18 -
91Y syn 58.5 d β- 1.54 91Zr
γ 1.20 -

イットリウムラテン語: yttrium[2])は原子番号39の元素である。元素記号はYである。単体は軟らかく銀光沢をもつ金属である。遷移金属に属すがランタノイドと化学的性質が似ているので希土類元素に分類される[3]。唯一の安定同位体89Yのみ希土類鉱物中に存在する。単体は天然には存在しない。

1787年カール・アクセル・アレニウス英語版がスウェーデンのイッテルビーの近くで未知の鉱物を発見し、町名にちなんで「イッテルバイト」と名づけた[4]ヨハン・ガドリンはアレニウスの見つけた鉱物からイットリウムの酸化物を発見し、アンデルス・エーケベリはそれをイットリアと名づけた。1828年フリードリヒ・ヴェーラーは鉱物からイットリウムの単体を取り出した[5]。イットリウムは蛍光体に使われ、赤色蛍光体はテレビのブラウン管ディスプレイやLEDに使われている[6]。ほかには電極電解質電気フィルタレーザー超伝導体などに使われ、医療技術にも応用されている。イットリウムは生理活性物質ではないが、その化合物は人間の肺に害をおよぼす[7]

特徴[編集]

性質[編集]

イットリウムは軟らかく銀光沢を持つ金属である。第5周期第3族に属す遷移金属であり、周期律から予想されるとおり、第3族で第4周期スカンジウムより電気陰性度が小さく、第6周期ランタンよりも電気陰性度が大きい。また、第5族で第5周期のジルコニウムよりも電気陰性度が小さい[8][9]。第5周期元素のdブロック元素のなかではイットリウムがもっとも原子番号が小さい。

純粋な単体は空気中で比較的安定だが、これは酸化イットリウム(III) (Y2O3) の膜が金属表面を覆って不動態化するためである。水蒸気中で750 °C付近まで加熱すると、膜の厚さは10 µmに達することがある[10]。単体を細かくすると空気中で不安定となり、削り状のイットリウムは400 °C以上で自然発火しうる。窒素中では、単体を1,000 °Cに加熱すると窒化イットリウム (YN) が生成する[10]

ランタノイドとの類似点[編集]

イットリウムとランタノイド元素の性質はよく似ており、ともに希土類元素に属す[3]。天然の希土類鉱物英語版は必ず複数の希土類元素を含んでいる[11]

イットリウムは、周期表中で近くに位置する元素よりも、ランタノイドに性質が似ている[12]。もし物理的性質だけに着目すれば、イットリウムの原子番号は64.5–67.5に相当する。この値はガドリニウムエルビウムの中間である[13]。しかし、イットリウムの密度が4.47 g/cm3であるのに対してルテチウムが9.84 g/cm3、ジスプロシウムが8.56 g/cm3であるように、イットリウムはほかのランタノイドより密度が低く、物理的性質の相違もある[14]

また反応次数もほぼ同じであり[10]テルビウムジスプロシウムと化学反応性が似ている[6]。原子半径 (180 pm) やイオン半径 (88 pm) も類似しており、溶液中ではまるで重希土類のようにふるまうため、重希土類のイオンは「イットリウム族」と呼ばれることがある[10][15]。原子半径の類似性はランタノイド収縮による[16]

このようにイットリウムとランタノイドは非常に類似した化学的性質をもつが、相違点としては、イットリウムはもっぱら+3の原子価しか取らないのに対し、ランタノイドのおよそ半数は+3価以外の原子価も取ることが挙げられる[10]

化合物と化学反応[編集]

+3価の遷移金属として、イットリウムはさまざまな無機化合物をつくり、通常3つの価電子をすべて結合に使うため、酸化数は+3である[17]。たとえば酸化イットリウム(III) (Y2O3) は1つのイットリウム原子が6つの酸素原子と結合した構造をもち、白色固体の物質である[18]

フッ化物水素化物シュウ酸塩は水に溶けないが、臭化物塩化物ヨウ化物窒化物硫化物はすべて水に溶ける[10]。Y3+イオンは5d軌道と4f軌道に電子が存在しないため電子遷移による可視光の吸収が起こらず、その溶液は無色である[10]

イットリウムやその化合物はと容易に反応してY2O3が生成する[11]。濃硝酸フッ化水素酸との反応性は高くないが、ほかの強酸とは容易に反応する[10]

単体は200 °C以上でハロゲンと反応してフッ化イットリウム(III) (YF3)、塩化イットリウム(III) (YCl3)、臭化イットリウム(III) (YBr3) などのハロゲン化物をつくる[7]。同様に、高温で炭素リンセレンケイ素硫黄などと反応し、二元化合物をつくる[10]

炭素─イットリウム結合を持つ化合物を有機イットリウム化合物英語版という。そのなかには酸化数0のイットリウムを含むものがある[19][20][注 1]。ある三量体化反応の触媒として有機イットリウム化合物が使われることがある[20]。その化合物は、Y2O3と濃塩酸および塩化アンモニウムから得られるYCl3を出発物質として合成される[23][24]

ハプト数とは、隣接する配位子がどのように中心原子へ結合しているかを表すもので、ギリシャ文字のイータ η で表される。カルボランが d0 金属原子にハプト数 η7 で配位している錯体として最初に発見されたのはイットリウム錯体であった[20]炭素インターカレーション化合物英語版であるグラファイト-Yやグラファイト-Y2O3を気化することにより、Y@C82のような球状の炭素の檻の中にイットリウム原子を内包した原子内包フラーレン英語版が生成する[6]電子スピン共鳴による研究で、Y3+と(C82)3−のイオン対の生成が示されている[6]。またY3C、Y2C、YC2などの炭化物水素化すると炭化水素が得られる[10]

元素合成と同位体[編集]

太陽系のイットリウムは恒星内元素合成に由来し、約72%がs過程、約28%がr過程によるものである[25]。s過程は数千年かけてゆっくりと進み、脈動する赤色巨星の内部で起こる[26]。r過程は超新星爆発に伴って起こる速い反応である。いずれも軽い原子核中性子捕獲により質量数が増加する。

イットリウムはウラン核分裂反応の主要な生成物である。核廃棄物管理の観点で重要な同位体は、半減期58.51日の91Yと半減期64時間の90Yである[27]90Yは短い半減期を持ちながら、親核種のストロンチウム90 (90Sr) の半減期が29年と長いため永続平衡英語版状態になる。

第3族元素陽子の数は奇数なので安定同位体が少ない[8]。イットリウムの安定同位体は89Yのみであり、これは天然に存在する。ほかの過程で生成した同位体が電子放出(中性子 → 陽子)で崩壊するための十分な時間をs過程が与えることにより、89Yの存在量が多くなったと考えられている[26][注 2]。s過程では質量数A = 陽子 + 中性子)が90、138、208付近の原子核が選択的に生成する傾向がある[26][注 3]。このとき中性子数はそれぞれ50、82、126となる。このような同位体は電子をあまり放出しないので、結果として存在量が多くなる[5]89Yの質量数は90に近く、中性子数は50である。

質量数76から108まで、少なくとも32種のイットリウムの人工放射性同位体が確認されている[27]。最も不安定な同位体は半減期150 nsの106Yであり、その次は半減期200 nsの76Yである[27]。最も安定なものは半減期106.626日の88Yであり、その次は半減期58.51日の91Y、79.8時間の87Y、64時間の90Yである[27]。ほかの同位体の半減期はすべて1日以内であり、そのほとんどが1時間以内である[27]

質量数88以下のイットリウム同位体は、主にβ+崩壊(陽子 → 中性子)によりストロンチウム (Z = 38) の同位体になる[27]。質量数90以上のものは、主にβ崩壊(中性子 → 陽子)によりジルコニウム (Z = 40) の同位体になる[27]。また、質量数97以上のものはβ遅延中性子放出過程による崩壊が一部起こる[29]

質量数78から102まで、少なくとも20種の準安定同位体(励起状態の同位体)が知られている[27][注 4]80Yと97Yでは複数の励起状態が確認されている[27]基底状態より励起状態のほうが不安定なはずだが、78mY、84mY、85mY、96mY、98m1Y、100mY、102mYは基底状態のものより長い半減期を持つ。その理由は、これらは核異性体転移だけでなくβ崩壊によっても崩壊するためである[29]

歴史[編集]

1787年、軍隊中尉のかたわら化学者をしていたカール・アクセル・アレニウスは、スウェーデンのストックホルム近郊の村イッテルビーの古い石切り場で、黒色の重い岩石を発見した。彼はこれを、当時見つかったばかりのタングステンが含まれる未知の鉱物だと考え[30]、これを「イッテルバイト」と名づけた[注 5]。さらなる分析のため、その試料が多数の化学者に送られた[4]

酸化イットリウム(III)を発見したヨハン・ガドリン

1789年、ヨハン・ガドリンはオーボ大学 (University of Åbo) でアレニウスの試料から新たな酸化物を発見し(当時は「アース」と呼ばれた)、1794年、分析を完了してその成果を発表した[31]。1797年、アンデルス・エーケベリはこれを確認し、新たな酸化物を「イットリア (yttria)」と名づけた[32]。数十年後、アントワーヌ・ラヴォアジエによる元素の近代的定義により、アースは元素へと還元することができると考えられるようになり、新たなアースの発見はそれに含まれる新たな元素の発見と同義であることが認識された。そしてイットリアには「イットリウム」が含まれると考えられた[注 6]

1843年、カール・グスタフ・モサンデル英語版はイットリアから3種の酸化物、すなわち白色の酸化イットリウム(III)、黄色の酸化テルビウム(III,IV)(当時これは「エルビア」と呼ばれていた)、薔薇色の酸化エルビウム(これは「テルビア」と呼ばれていた)を発見した[33]。四つ目の酸化物、酸化イッテルビウムは1878年、ジャン・マリニャックにより単離された[34]。その後、新たな元素が単体としてこれらの酸化物から単離され、採石場のあったイッテルビー村にちなんで、それぞれイッテルビウムテルビウムエルビウムと命名された[35]。さらに数十年後、7種の新たな金属が「ガドリンのイットリア」から発見された[4]。イットリアは単一組成の酸化物ではなく鉱物であることがわかったため、マルティン・ハインリヒ・クラプロートはガドリンの名をとって、これをガドリナイトと改名した[4]

金属イットリウムは1828年、フリードリヒ・ヴェーラーが無水塩化イットリウムカリウムを加熱することによって初めて単離した[36][37]

YCl3 + 3 K → 3 KCl + Y

元素記号には1920年代初頭まで Yt が使われていたが、のちに Y が使われるようになった[38]

1987年に、イットリウム・バリウム・銅酸化物英語版高温超電導を示すことが発見された。この性質を示す物質としては2番目に見つかったもので[39]、窒素の沸点以上で超電導を示す物質としては、初めて見つかったものである[注 7]

産出[編集]

リン酸イットリウムを主成分とするゼノタイムの結晶

存在量[編集]

イットリウムはほとんどの希土類鉱石に含まれ[9]、いくつかのウラン鉱石にも含まれるが、単体は自然界に存在しない[40]。地殻中の存在量は約31 ppmであり、これは28番目に大きく、の400倍である[41]。土壌中には10–150 ppm(乾燥質量の平均で23 ppm)含まれ、海水中には9 pptほど含まれている[41]アポロ計画で採集された月の石は、イットリウムを比較的多く含む[35]

生体内での役割は知られていないが、ほとんどの生物に含まれ、ヒトでは肝臓、腎臓、脾臓、肺、骨に濃縮する傾向がある。ヒトの体には0.5 mg程度のイットリウムが含まれており、母乳には4 ppmほど含まれている[42]。新鮮な野菜や作物には20–100 ppmほど含まれ、なかでもキャベツに最も多く含まれる[42]。最も高濃度なのは樹木の種子であり、700 ppm以上含まれる[42]

生産[編集]

イットリウムとランタノイドの物性が似ていることから、ともに同じような過程で鉱石中に濃縮される。そのため、これらは同じ鉱石、すなわち希土類鉱物中に存在する。鉱石中での軽希土と重希土の分離はわずかであって、完全なものとはならない。原子量は小さいが、イットリウムは重希土の中で濃縮される[43][44]

希土類元素の主な産出源として以下の四つが知られる[45]が、モナザイトやバストネサイトなどの軽希土鉱物においては副生成物として少量のイットリウムが得られるのみであり、主要なイットリウム源はもっぱら重希土鉱物のゼノタイムに依る[46]

イットリウムのかけら。イットリウムと他の希土類元素を分離するのは困難である
  • 炭酸塩・フッ化物塩を含む軽希土であるバストネサイト ([(Ce, La, etc.)(CO3)F])。イットリウムの割合は平均0.1%で[5][43]、残り99.9%は他の16種の希土類元素である[43]。1960年から1990年にかけてのバストネサイトの主な産地はカリフォルニアのパス山希土鉱山であり、当時アメリカは最大の希土類産出国だった[43][45]
  • モナザイト ([(Ce, La, etc.)PO4]) は大部分がリン酸塩で、侵食を受けた花崗岩の移動や重力による分離でつくられた漂砂鉱床英語版を構成する。軽希土鉱石として、モナザイトは2%[43](または3%[47])ほどのイットリウムを含んでいる。19世紀初めに最大の鉱床がインドとブラジルで見つかり、両国は19世紀半ばまで最大のイットリウム産出国だった[43][45]
  • ゼノタイム英語版は希土類のリン酸塩で、リン酸イットリウム (YPO4) としてイットリウムを60%以上含む重希土鉱石である[43]。最大の鉱床は中国の白云鄂博(バイユンオボ)であり、1990年代にパス山鉱が閉山したため中国は最大の重希土輸出国となった[43][45]
  • イオン吸着型粘土(ログナン粘土)は花崗岩の風化によって形成され、重希土を1%程度含む[43]。濃縮物により鉱石は最終的に8%以上のイットリウムを含むようになる。イオン吸着型粘土は主に中国の華南地方で採掘される[43][45][48][49]。イットリウムはサマルスカイトフェルグソナイト英語版中にもみられる[41]

イットリウムを他の希土類から分離するのは困難であり、古典的な分離法である分別沈殿法では高純度なイットリウム化合物を得ることは事実上不可能である[50]。イットリウムを分離するための前処理として、鉱石中に含まれる希土類のリン酸塩を熱濃硫酸に溶解させて希土類溶液を得る硫酸法が用いられている。この希土類溶液にシュウ酸を加えて重希土類をシュウ酸塩として沈降させ軽希土類と分離し、これを酸素中で加熱乾燥させることで酸化イットリウム(III)を60%ほど含有したイットリウム濃縮物が得られる。得られた濃縮物は塩酸に溶解された後、イオン交換クロマトグラフィーや溶媒抽出法によって各元素に分けられる。イオン交換法におけるキレート剤としては通常エチレンジアミン四酢酸 (EDTA) にあらかじめ銅(II)イオンや亜鉛(II)イオンなどの2価の金属イオンを吸着させたものが利用される。希土類元素とEDTAとの結合力はそれぞれの元素によって異なるため、イオン交換塔に希土類溶液を通すとEDTAとの結合力が強い順に希土類の混合物が分離され、イットリウムはジスプロシウムテルビウムの間で得られる。この分離プロセスから明白なように、イオン交換膜法はバッチ処理を前提としているため大量生産には向いていないが、様々な組成の溶液を同一プロセスで処理できる利点がある。溶媒抽出法において利用される抽出剤としては、トリブチルリン酸やイソデカン酸などがある。イットリウムの抽出序列はランタノイド元素のほぼ中央にあり、また抽出序列の隣り合うランタノイド元素との分離効率がそれほど高くないため、抽出序列の異なる2種類の抽出剤を用いて2段階に分けて抽出される。溶媒抽出法は連続処理であるため大量生産に向いており、工業生産法としては溶媒抽出法が主流になっている[51]。さらにフッ化水素と反応させると、フッ化イットリウムが得られる[52]

世界の年間の酸化イットリウム(III)生産量は、2001年に600トンに達した。また、世界の保有量は推計で900万トンに上る[41]。毎年わずか数トンの金属イットリウムがフッ化イットリウムを酸化することにより生産され、カルシウムマグネシウム合金の金属スポンジに利用される。1,600 °C以上に加熱を行うアーク炉内でイットリウムを融解させることができる[41][52]

応用[編集]

日用品[編集]

Forty columns of oval dots, 30 dots high. First red than green than blue. The columns of red starts with only four dots in red from the bottom becoming more with every column to the right
イットリウムはブラウン管テレビの赤色を作り出すために使われる元素の一つである

ユウロピウムイオン (Eu3+) をドープした酸化イットリウム(III) (Y2O3)、オルトバナジン酸イットリウム (YVO4)、二酸化硫化イットリウム(III) (Y2O2S) は蛍光体として、カラーテレビブラウン管の赤色を出すために使われる[5][6][注 8]。イットリウムが電子銃からのエネルギーを集め、それを蛍光体へ渡すと、ユウロピウムから赤色の光が放出される[53]。Eu3+ のほかテルビウム (Tb3+) もドーパントとして用いられ、これは緑色の蛍光を発する。

イットリウム化合物はエチレン重合してポリエチレンを製造する際の触媒となる[5]。金属としては高性能点火プラグの電極に使われる[54]。また、プロパンを燃料とするランタンガスマントルの製造に、放射性物質であるトリウムの代替として使われる[55]

研究中の用途として、固体電極や自動車排気ガスの酸素センサーとして期待される、イットリウムで安定化したジルコニアが挙げられる[6]

ガーネット[編集]

直径0.5 cmのNd:YAGレーザーロッド

イットリウムはさまざまな人工ガーネット英語版の製造に使われる[56]。イットリウム・鉄・ガーネット (Y3Fe5O12, YIG) は高性能マイクロ波電子フィルタである[5]。イットリウム、アルミニウムガドリニウムのガーネット(Y3(Fe,Al)5O12、Y3(Fe,Ga)5O12 など)は磁性を持つ[5]。YIGを音響エネルギー発信機や変換器に用ると高効率のものが得られる[57]イットリウム・アルミニウム・ガーネット Y3A5O12 (YAG) はモース硬度8.5であり、模造ダイヤとして宝石に使われる[5]セリウムをドープしたイットリウム・アルミニウム・ガーネット (YAG:Ce) の結晶は、白色LEDの蛍光体に使われる[58][59][60]

YAG、酸化イットリウム(III)、テトラフルオロイットリウム(III)酸リチウム (LiYF4)、オルトバナジン酸イットリウム(III) (YVO4) に、ネオジムエルビウムイッテルビウムなどをドープしたものは、近赤外線レーザーに使われる[61][62]。YAGレーザーは高出力で作動させることができ、金属の切削に使われる[47]。ドープ済みYAG単結晶は通常チョクラルスキー法で生産される[63]

添加剤[編集]

クロムモリブデンチタンジルコニウムに微量のイットリウム (0.1–0.2%) を添加すると、その粒径が小さくなる[64]アルミニウムマグネシウムの合金に添加すると、強度が増加する[5]。一般に合金にイットリウムを添加すると、結晶の緻密化によって被加工性が向上し、強固な酸化被膜の形成によって高温条件下での再結晶や酸化、酸による腐食が起こりにくくなる[53][65]。このような合金への添加剤としての用途においては高純度であることを必要とされないことも多く、イットリウムの単離工程における中間生成物であるイットリウム濃縮物をそのまま還元して用いる場合もある[66]コバルトとの合金は永久磁石として利用される。

イットリウムはバナジウム非鉄金属を脱酸素するのに使われる[5]。酸化イットリウム(III)は、宝石である立方晶ジルコニアを安定化させる[67]。これは、純粋なジルコニアでは温度変化によって結晶系が単斜晶系から正方晶系へと変化して割れを生じるが、イットリウムを添加することで温度変化に関わらず常に正方晶系となるため熱耐性が得られることによる[68]

延性に富むダクタイル鋳鉄の製造用の球状化剤として、イットリウムが研究されている[5]酸化イットリウム(III)は高い融点を持ち、衝撃抵抗と低い熱膨張率を提供するので、セラミックガラスの製造に使われる[5]。これはたとえば、多孔性窒化ケイ素の生産における焼結添加物や、カメラレンズに使われる[69][41]。また、物質科学研究などに使われるイットリウム化合物を合成するための原料としても使われる。

医療[編集]

放射性同位体であるイットリウム90イットリウム90-dota-tyr3-オクトレオチド英語版イットリウム90イブリツモマブ・チウキセタンなどの医薬品に含まれている。これらの薬は悪性リンパ腫白血病、子宮、結腸直腸、骨などのの治療に用いられている[42]。これらはモノクローナル抗体に付着し、癌細胞へと結合して、これをイットリウム90の発するβ線で破壊する[70]

イットリウム90でできた針は、メスよりも正確に切断を行うことができるので、痛覚を伝達する脊髄の神経を切り離すのに使われる[30]。イットリウム90は、関節リウマチなどにより膝などに炎症を起こしている患者の治療のため、放射線滑膜切除術を行う際にも使われる[71]

ロボットを補助的に利用し、側枝神経や組織への損傷を減少する目的で行われた、イヌでの前立腺全摘除術実験に、ネオジムをドープしたYAGレーザーが用いられた[72]。一方、エルビウムがドープされたものは、美容外科において皮膚再生(スキン・リサーフェイシング)への利用が検討されている[6]

超伝導体[編集]

Dark grey pills on a watchglass. One cubic piece of the same material on top of the pills.
YBCO超伝導体

イットリウム・バリウム・銅酸化物 (YBa2Cu3O7, YBCO, 1-2-3) は1987年にアラバマ大学とヒューストン大学で開発された超伝導体である[39]。この超電導体は約93 Kでその性質を現すが、液体窒素の沸点77.1 Kより高いという点で有用である[39]。液体窒素は液体ヘリウムより安価なので、冷却のコストを大幅に減らすことができるためである。

イットリウム・バリウム・銅酸化物は化学式 YBa2Cu3O7−d で表されるが、超電導性を示すには d は0.7より小さくなければならない。その理由はわかっていないが、空孔が結晶中の特定の場所(平面状または鎖状の銅酸化物)にしか発生せず、銅固有の酸化数を上げることが知られていて、これが超電導性に関係しているのだろうとされている。

1957年にBCS理論が発表されてから、低温超伝導性の理論はよく理解されるようになった。基礎となるのは結晶中の2電子間の相互作用の独自性である。しかし、BCS理論では高温超電導性を説明できず、詳細な機構は明らかになっていない。わかっているのは、超電導性を起こすには銅酸化物の組成を正確に制御する必要があるということである[73]

YBCOは、黒緑色、多結晶、多相の無機物で、ペロブスカイト構造を基にしている。研究者はペロブスカイトについて、実用的な高温超電導体の開発を目指している[47]

危険性[編集]

水溶性イットリウム化合物はわずかに有害であると考えられているが、不溶性化合物は無害である[42]。動物実験により、イットリウムやその化合物は、種類によって程度は異なるが、肺や肝臓に損傷を与えることが示されている。ラットでは、クエン酸イットリウムの吸入により肺水腫呼吸困難が生じ、塩化イットリウム(III)では肝臓水種、胸水、肺の充血が生じた[7]

ヒトがイットリウム化合物に曝されると肺疾患の原因となる可能性がある[7]。バナジン酸イットリウムユウロピウムの粉塵に曝された労働者の目、肌、呼吸器に軽度の炎症が見つかった例があるが、これはイットリウムではなくバナジウムの影響による可能性もある[7]。イットリウム化合物に急激に曝されると、息切れ、咳、胸痛、チアノーゼが起こることがある[7]アメリカ国立労働安全衛生研究所 (NIOSH) では、許容曝露濃度 (PEL) は1 mg/m3生命と健康に対する危険性 (IDLH) は500 mg/m3を推奨している[74]。イットリウムの粉塵は引火性である[7]

脚注[編集]

注釈[編集]

  1. ^ イットリウムが+3以外の酸化数をとる例として、融解した塩化イットリウム(III)中で+2のものが[21]、酸化イットリウム(III)の気相中のクラスターで+1のものが観測された[22]
  2. ^ 正確には、中性子陽子になるとき電子反ニュートリノが放出される。
  3. ^ 魔法数を参照。この理由は中性子捕獲断面積が非常に低いことによるものと考えられている[28]
  4. ^ 準安定同位体は通常の核種よりも高いエネルギーを持っており、この状態はガンマ線転換電子を放出するまで続く。準安定同位体は質量数の横に m を記して示す。
  5. ^ イッテルバイト (ytterbite) は発見された場所の近くの村 (ytterby) の名前に由来し、語尾の -ite は鉱物であることを示している。
  6. ^ アースは語尾に -a が、元素は -ium が付く。
  7. ^ YBCO超伝導転移温度は93 Kで、窒素の沸点は77 Kである。
  8. ^ エムスリーによると、「普通はユウロピウム(III)をドープした二酸化硫化イットリウム(III)がカラーテレビの赤色成分として使われている。」[41]

出典[編集]

  1. ^ Magnetic susceptibility of the elements and inorganic compounds, in Handbook of Chemistry and Physics 81st edition”. CRC press. 2011年3月20日閲覧。
  2. ^ http://www.encyclo.co.uk/search.php
  3. ^ a b IUPAC contributors (2005). Edited by N G Connelly and T Damhus (with R M Hartshorn and A T Hutton). ed (PDF). Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. RSC Publishing. pp. 51. ISBN 0-85404-438-8. http://www.iupac.org/publications/books/rbook/Red_Book_2005.pdf 2007年12月17日閲覧。. 
  4. ^ a b c d Van der Krogt 2005
  5. ^ a b c d e f g h i j k l CRC contributors (2007–2008). “Yttrium”. In Lide, David R.. CRC Handbook of Chemistry and Physics. 4. New York: CRC Press. p. 41. ISBN 978-0-8493-0488-0. 
  6. ^ a b c d e f g Cotton, Simon A. (2006-03-15). Scandium, Yttrium & the Lanthanides: Inorganic & Coordination Chemistry. doi:10.1002/0470862106.ia211. 
  7. ^ a b c d e f g OSHA contributors (2007年1月11日). “Occupational Safety and Health Guideline for Yttrium and Compounds”. United States Occupational Safety and Health Administration. 2011年3月20日閲覧。 (public domain text)
  8. ^ a b Greenwood 1997, p. 946
  9. ^ a b Hammond, C. R.. “Yttrium” (pdf). The Elements. Fermi National Accelerator Laboratory. pp. 4–33. ISBN 0049100815. オリジナルのJune 26, 2008時点によるアーカイブ。. http://web.archive.org/web/20080626181434/http://www-d0.fnal.gov/hardware/cal/lvps_info/engineering/elements.pdf 2011年3月20日閲覧。. 
  10. ^ a b c d e f g h i j Daane 1968, p. 817.
  11. ^ a b Emsley 2001, p. 498
  12. ^ Daane 1968, p. 810
  13. ^ Daane 1968, p. 815
  14. ^ 新金属協会 (1980) 126頁。
  15. ^ Greenwood 1997, p. 945
  16. ^ Greenwood 1997, p. 1234
  17. ^ Greenwood 1997, p. 948
  18. ^ Greenwood 1997, p. 947
  19. ^ Cloke, F. Geoffrey N. (1993). “Zero Oxidation State Compounds of Scandium, Yttrium, and the Lanthanides”. Chem. Soc. Rev. 22: 17–24. doi:10.1039/CS9932200017. 
  20. ^ a b c Schumann, Herbert; Fedushkin, Igor L. (2006). “Scandium, Yttrium & The Lanthanides: Organometallic Chemistry”. Encyclopedia of Inorganic Chemistry. doi:10.1002/0470862106.ia212. 
  21. ^ Nikolai B., Mikheev; Auerman, L N; Rumer, Igor A; Kamenskaya, Alla N; Kazakevich, M Z (1992). “The anomalous stabilisation of the oxidation state 2+ of lanthanides and actinides”. Russian Chemical Reviews 61 (10): 990–998. doi:10.1070/RC1992v061n10ABEH001011. 
  22. ^ Kang, Weekyung; E. R. Bernstein (2005). “Formation of Yttrium Oxide Clusters Using Pulsed Laser Vaporization”. Bull. Korean Chem. Soc. 26 (2): 345–348. doi:10.5012/bkcs.2005.26.2.345. http://newjournal.kcsnet.or.kr/main/j_search/j_download.htm?code=B050237. 
  23. ^ Turner, Jr., Francis M.; Berolzheimer, Daniel D.; Cutter, William P.; Helfrich, John (1920). The Condensed Chemical Dictionary. New York: Chemical Catalog Company. pp. 492. http://books.google.com/?id=y8y0XE0nsYEC&pg=PA492&dq=%22Yttrium+chloride%22 2008年8月12日閲覧。. 
  24. ^ Spencer, James F. (1919). The Metals of the Rare Earths. New York: Longmans, Green, and Co. pp. 135. http://books.google.com/?id=W2zxN_FLQm8C&pg=PA135&dq=%22Yttrium+chloride%22 2008年8月12日閲覧。. 
  25. ^ Pack, Andreas; Sara S. Russell, J. Michael G. Shelley and Mark van Zuilen (2007). “Geo- and cosmochemistry of the twin elements yttrium and holmium”. Geochimica et Cosmochimica Acta 71 (18): 4592–4608. doi:10.1016/j.gca.2007.07.010. 
  26. ^ a b c Greenwood 1997, pp. 12–13
  27. ^ a b c d e f g h i NNDC contributors (2008年). Alejandro A. Sonzogni (Database Manager): “Chart of Nuclides”. Upton, New York: National Nuclear Data Center, Brookhaven National Laboratory. 2008年9月13日閲覧。
  28. ^ Greenwood 1997, pp. 12–13
  29. ^ a b Audi, Georges (2003). “The NUBASE Evaluation of Nuclear and Decay Properties”. Nuclear Physics A (Atomic Mass Data Center) 729: 3–128. doi:10.1016/j.nuclphysa.2003.11.001. 
  30. ^ a b Emsley 2001, p. 496
  31. ^ Gadolin 1794
  32. ^ Greenwood 1997, p. 944
  33. ^ Carl Gustav, Mosander (1843). “Ueber die das Cerium begleitenden neuen Metalle Lathanium und Didymium, so wie über die mit der Yttererde vorkommen-den neuen Metalle Erbium und Terbium” (German). Annalen der Physik und Chemie 60 (2): 297–315. doi:10.1002/andp.18431361008. 
  34. ^ Britannica contributors (2005年). Encyclopædia Britannica, Inc , "ytterbium"
  35. ^ a b Stwertka 1998, p. 115
  36. ^ Heiserman, David L. (1992). “Element 39: Yttrium”. Exploring Chemical Elements and their Compounds. New York: TAB Books. pp. 150–152. ISBN 0-8306-3018-X. 
  37. ^ Wöhler, Friedrich (1828). “Ueber das Beryllium und Yttrium”. Annalen der Physik 89 (8): 577–582. doi:10.1002/andp.18280890805. 
  38. ^ Coplen, Tyler B.; Peiser, H. S. (1998). “History of the Recommended Atomic-Weight Values from 1882 to 1997: A Comparison of Differences from Current Values to the Estimated Uncertainties of Earlier Values (Technical Report)”. Pure Appl. Chem. (IUPAC's Inorganic Chemistry Division Commission on Atomic Weights and Isotopic Abundances) 70 (1): 237–257. doi:10.1351/pac199870010237. 
  39. ^ a b c Wu, M. K.; Ashburn, J. R.; Torng, C. J.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J.; Wang, Y. Q. and Chu, C. W. (1987). “Superconductivity at 93 K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure”. Physical Review Letters 58 (9): 908–910. doi:10.1103/PhysRevLett.58.908. PMID 10035069. 
  40. ^ Lenntech contributors. “yttrium”. Lenntech. 2008年8月26日閲覧。
  41. ^ a b c d e f g Emsley 2001, p. 497
  42. ^ a b c d e Emsley 2001, p. 195
  43. ^ a b c d e f g h i j Morteani, Giulio (1991). “The rare earths; their minerals, production and technical use”. European Journal of Mineralogy; August; v.; no.; p. 3 (4): 641–650. http://eurjmin.geoscienceworld.org/cgi/content/abstract/3/4/641. 
  44. ^ Kanazawa, Yasuo; Masaharu Kamitani (2006). “Rare earth minerals and resources in the world”. Journal of Alloys and Compounds 408–412: 1339–1343. doi:10.1016/j.jallcom.2005.04.033. 
  45. ^ a b c d e Naumov, A. V. (2008). “Review of the World Market of Rare-Earth Metals”. Russian Journal of Non-Ferrous Metals 49 (1): 14–22. doi:10.1007/s11981-008-1004-6 (inactive 2010-03-20). 
  46. ^ 新金属協会 (1980) 117頁。
  47. ^ a b c Stwertka 1998, p. 116
  48. ^ Zheng, Zuoping; Lin Chuanxian (1996). “The behaviour of rare-earth elements (REE) during weathering of granites in southern Guangxi, China”. Chinese Journal of Geochemistry 15 (4): 344–352. doi:10.1007/BF02867008. 
  49. ^ Murakami, Hiroyasu; Ishihara, Shunso (2006), 西南日本の足摺岬地域及び山陽帯と中国南部の高REE花崗岩類における風化に伴う希土類鉱化作用, 115, pp. 508–515, http://www.geog.or.jp/journal/back/pdf115-4/p508-515.pdf .
  50. ^ 新金属協会 (1980) 119頁。
  51. ^ 新金属協会 (1980) 118–127頁。
  52. ^ a b Holleman, Arnold F.; Egon Wiberg, Nils Wiberg (1985). Lehrbuch der Anorganischen Chemie (91–100 ed.). Walter de Gruyter. pp. 1056–1057. ISBN 3-11-007511-3. 
  53. ^ a b Daane 1968, p. 818
  54. ^ Carley, Larry (December 2000). “Spark Plugs: What's Next After Platinum?”. Counterman (Babcox). オリジナルの2008-05-01時点によるアーカイブ。. http://web.archive.org/web/20080501064053/http://www.babcox.com/editorial/cm/cm120032.htm 2008年9月7日閲覧。. 
  55. ^ US patent 4533317, Addison, Gilbert J., "Yttrium oxide mantles for fuel-burning lanterns", issued 1985-08-06, assigned to The Coleman Company, Inc. 
  56. ^ Jaffe, H.W. (1951). “The role of yttrium and other minor elements in the garnet group” (pdf). American Mineralogist: 133–155. http://www.minsocam.org/ammin/AM36/AM36_133.pdf 2008年8月26日閲覧。. 
  57. ^ Vajargah, S. Hosseini; Madaahhosseini, H; Nemati, Z (2007). “Preparation and characterization of yttrium iron garnet (YIG) nanocrystalline powders by auto-combustion of nitrate-citrate gel”. Journal of Alloys and Compounds 430 (1–2): 339–343. doi:10.1016/j.jallcom.2006.05.023. 
  58. ^ US patent 6409938, Comanzo Holly Ann, "Aluminum fluoride flux synthesis method for producing cerium doped YAG", issued 2002-06-25, assigned to General Electrics 
  59. ^ GIA contributors (1995). GIA Gem Reference Guide. Gemological Institute of America. ISBN 0-87311-019-6. 
  60. ^ Kiss, Z. J.; Pressley, R. J. (October 1966). “Crystalline solid lasers”. Proceedings of the IEEE. 54. IEEE. pp. 1236–1248. issn: 0018-9219. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1447042 2008年8月16日閲覧。 
  61. ^ Kong, J.; Tang, D. Y.; Zhao, B.; Lu, J.; Ueda, K.; Yagi, H. and Yanagitani, T. (2005). “9.2-W diode-pumped Yb:Y2O3 ceramic laser”. Applied Physics Letters 86: 116. doi:10.1063/1.1914958. 
  62. ^ Tokurakawa, M.; Takaichi, K.; Shirakawa, A.; Ueda, K.; Yagi, H.; Yanagitani, T. and Kaminskii, A. A. (2007). “Diode-pumped 188 fs mode-locked Yb3+:Y2O3 ceramic laser”. Applied Physics Letters 90: 071101. doi:10.1063/1.2476385. 
  63. ^ Golubović, Aleksandar V.; Nikolić, Slobodanka N.; Gajić, Radoš; Đurić, Stevan; Valčić, Andreja (2002). “The growth of Nd: YAG single crystals”. Journal of the Serbian Chemical Society 67 (4): 91–300. doi:10.2298/JSC0204291G. 
  64. ^ PIDC contributors. Rare Earth metals & compounds. Pacific Industrial Development Corporation. http://www.pidc.com/products_imaterials_oth.html 2008年8月26日閲覧。. 
  65. ^ 新金属協会 (1980) 132頁。
  66. ^ 新金属協会 (1980) 131頁。
  67. ^ Berg, Jessica. “Cubic Zirconia”. Emporia State University. 2008年8月26日閲覧。
  68. ^ 新金属協会 (1980) 131頁。
  69. ^ US patent 5935888, "Porous silicon nitride with rodlike grains oriented", issued 1999-08-10, assigned to Agency Ind Science Techn (JP)and Fine Ceramics Research Ass (JP) 
  70. ^ Adams, Gregory P.; Shaller, Calvin C.; Dadachova, Ekaterina; Simmons, Heidi H.; Horak, Eva M.; Tesfaye, Abohawariat; Klein-Szanto, Andres J. P.; Marks, James D.; Brechbiel, Martin W.; Weiner, Louis M. (2004). “A Single Treatment of Yttrium-90-labeled CHX-A''–C6.5 Diabody Inhibits the Growth of Established Human Tumor Xenografts in Immunodeficient Mice”. Cancer Research 64 (17): 6200–6206. doi:10.1158/0008-5472.CAN-03-2382. PMID 15342405. 
  71. ^ Fischer, M.; Modder, G. (2002). “Radionuclide therapy of inflammatory joint diseases”. Nuclear Medicine Communications 23 (9): 829–831. doi:10.1097/00006231-200209000-00003. PMID 12195084. 
  72. ^ Gianduzzo, Troy; Colombo Jr, Jose R.; Haber, Georges-Pascal; Hafron, Jason; Magi-Galluzzi, Cristina; Aron, Monish; Gill, Inderbir S.; Kaouk, Jihad H. (2008). “Laser robotically assisted nerve-sparing radical prostatectomy: a pilot study of technical feasibility in the canine model”. BJU International (Cleveland: Glickman Urological Institute) 102 (5): 598. doi:10.1111/j.1464-410X.2008.07708.x. PMID 18694410. 
  73. ^ Yttrium Barium Copper Oxide - YBCO”. Imperial College. 2009年12月20日閲覧。
  74. ^ NIOSH contributors (2005年9月). “Yttrium”. NIOSH Pocket Guide to Chemical Hazards. National Institute for Occupational Safety and Health. 2008年8月3日閲覧。

参考文献[編集]

  • Daane, A. H. (1968). “Yttrium”. In Hampel, Clifford A.. The Encyclopedia of the Chemical Elements. New York: Reinhold Book Corporation. pp. 810–821. LCCN 68-29938. 
  • Emsley, John (2001). “Yttrium”. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 495–498. ISBN 0-19-850340-7. 
  • Gadolin, Johan (1794). “Undersökning af en svart tung Stenart ifrån Ytterby Stenbrott i Roslagen.”. Kongl. Vetenskaps Academiens Nya Handlingar 15: 137–155. 
  • Greenwood, N. N.; Earnshaw, A. (1997). Chemistry of the Elements (2nd ed.). Oxford: Butterworth-Heinemann. ISBN 0-7506-3365-4. 
  • Stwertka, Albert (1998). “Yttrium”. Guide to the Elements (Revised ed.). Oxford University Press. pp. 115–116. ISBN 0-19-508083-1. 
  • van der Krogt, Peter (2005年5月5日). “39 Yttrium”. Elementymology & Elements Multidict. 2008年8月6日閲覧。
  • 『レアアース』 新金属協会 希土類部会、新金属協会〈新金属早わかりシリーズ No.2〉、1980年、増補改訂版。