チタン

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索
スカンジウム チタン バナジウム
-

Ti

Zr
Element 1: 水素 (H), 非金属
Element 2: ヘリウム (He), 希ガス
Element 3: リチウム (Li), アルカリ金属
Element 4: ベリリウム (Be), 卑金属
Element 5: ホウ素 (B), 金属
Element 6: 炭素 (C), 非金属
Element 7: 窒素 (N), 非金属
Element 8: 酸素 (O), 非金属
Element 9: フッ素 (F), ハロゲン
Element 10: ネオン (Ne), 希ガス
Element 11: ナトリウム (Na), アルカリ金属
Element 12: マグネシウム (Mg), 卑金属
Element 13: アルミニウム (Al), 卑金属
Element 14: ケイ素 (Si), 金属
Element 15: リン (P), 非金属
Element 16: 硫黄 (S), 非金属
Element 17: 塩素 (Cl), ハロゲン
Element 18: アルゴン (Ar), 希ガス
Element 19: カリウム (K), アルカリ金属
Element 20: カルシウム (Ca), アルカリ土類金属
Element 21: スカンジウム (Sc), 遷移金属
Element 22: チタン (Ti), 遷移金属
Element 23: バナジウム (V), 遷移金属
Element 24: クロム (Cr), 遷移金属
Element 25: マンガン (Mn), 遷移金属
Element 26: 鉄 (Fe), 遷移金属
Element 27: コバルト (Co), 遷移金属
Element 28: ニッケル (Ni), 遷移金属
Element 29: 銅 (Cu), 遷移金属
Element 30: 亜鉛 (Zn), 卑金属
Element 31: ガリウム (Ga), 卑金属
Element 32: ゲルマニウム (Ge), 金属
Element 33: ヒ素 (As), 金属
Element 34: セレン (Se), 非金属
Element 35: 臭素 (Br), ハロゲン
Element 36: クリプトン (Kr), 希ガス
Element 37: ルビジウム (Rb), アルカリ金属
Element 38: ストロンチウム (Sr), アルカリ土類金属
Element 39: イットリウム (Y), 遷移金属
Element 40: ジルコニウム (Zr), 遷移金属
Element 41: ニオブ (Nb), 遷移金属
Element 42: モリブデン (Mo), 遷移金属
Element 43: テクネチウム (Tc), 遷移金属
Element 44: ルテニウム (Ru), 遷移金属
Element 45: ロジウム (Rh), 遷移金属
Element 46: パラジウム (Pd), 遷移金属
Element 47: 銀 (Ag), 遷移金属
Element 48: カドミウム (Cd), 卑金属
Element 49: インジウム (In), 卑金属
Element 50: スズ (Sn), 卑金属
Element 51: アンチモン (Sb), 金属
Element 52: テルル (Te), 金属
Element 53: ヨウ素 (I), ハロゲン
Element 54: キセノン (Xe), 希ガス
Element 55: セシウム (Cs), アルカリ金属
Element 56: バリウム (Ba), アルカリ土類金属
Element 57: ランタン (La), ランタノイド
Element 58: セリウム (Ce), ランタノイド
Element 59: プラセオジム (Pr), ランタノイド
Element 60: ネオジム (Nd), ランタノイド
Element 61: プロメチウム (Pm), ランタノイド
Element 62: サマリウム (Sm), ランタノイド
Element 63: ユウロピウム (Eu), ランタノイド
Element 64: ガドリニウム (Gd), ランタノイド
Element 65: テルビウム (Tb), ランタノイド
Element 66: ジスプロシウム (Dy), ランタノイド
Element 67: ホルミウム (Ho), ランタノイド
Element 68: エルビウム (Er), ランタノイド
Element 69: ツリウム (Tm), ランタノイド
Element 70: イッテルビウム (Yb), ランタノイド
Element 71: ルテチウム (Lu), ランタノイド
Element 72: ハフニウム (Hf), 遷移金属
Element 73: タンタル (Ta), 遷移金属
Element 74: タングステン (W), 遷移金属
Element 75: レニウム (Re), 遷移金属
Element 76: オスミウム (Os), 遷移金属
Element 77: イリジウム (Ir), 遷移金属
Element 78: 白金 (Pt), 遷移金属
Element 79: 金 (Au), 遷移金属
Element 80: 水銀 (Hg), 卑金属
Element 81: タリウム (Tl), 卑金属
Element 82: 鉛 (Pb), 卑金属
Element 83: ビスマス (Bi), 卑金属
Element 84: ポロニウム (Po), 金属
Element 85: アスタチン (At), ハロゲン
Element 86: ラドン (Rn), 希ガス
Element 87: フランシウム (Fr), アルカリ金属
Element 88: ラジウム (Ra), アルカリ土類金属
Element 89: アクチニウム (Ac), アクチノイド
Element 90: トリウム (Th), アクチノイド
Element 91: プロトアクチニウム (Pa), アクチノイド
Element 92: ウラン (U), アクチノイド
Element 93: ネプツニウム (Np), アクチノイド
Element 94: プルトニウム (Pu), アクチノイド
Element 95: アメリシウム (Am), アクチノイド
Element 96: キュリウム (Cm), アクチノイド
Element 97: バークリウム (Bk), アクチノイド
Element 98: カリホルニウム (Cf), アクチノイド
Element 99: アインスタイニウム (Es), アクチノイド
Element 100: フェルミウム (Fm), アクチノイド
Element 101: メンデレビウム (Md), アクチノイド
Element 102: ノーベリウム (No), アクチノイド
Element 103: ローレンシウム (Lr), アクチノイド
Element 104: ラザホージウム (Rf), 遷移金属
Element 105: ドブニウム (Db), 遷移金属
Element 106: シーボーギウム (Sg), 遷移金属
Element 107: ボーリウム (Bh), 遷移金属
Element 108: ハッシウム (Hs), 遷移金属
Element 109: マイトネリウム (Mt), 遷移金属
Element 110: ダームスタチウム (Ds), 遷移金属
Element 111: レントゲニウム (Rg), 遷移金属
Element 112: コペルニシウム (Cn), 卑金属
Element 113: ウンウントリウム (Uut), 卑金属
Element 114: フレロビウム (Fl), 卑金属
Element 115: ウンウンペンチウム (Uup), 卑金属
Element 116: リバモリウム (Lv), 卑金属
Element 117: ウンウンセプチウム (Uus), ハロゲン
Element 118: ウンウンオクチウム (Uuo), 希ガス
Titanium has a hexagonal crystal structure
22Ti
外見
銀白色
Titan-crystal bar.JPG
一般特性
名称, 記号, 番号 チタン, Ti, 22
分類 遷移金属
, 周期, ブロック 4, 4, d
原子量 47.867(1) g·mol-1
電子配置 [Ar] 4s2 3d2
電子殻 2, 8, 10, 2(画像
物理特性
固体
密度室温付近) 4.506 g·cm-3
融点での液体密度 4.11 g·cm-3
融点 1941 K, 1668 °C, 3034 °F
沸点 3560 K, 3287 °C, 5949 °F
融解熱 14.15 kJ·mol-1
蒸発熱 425 kJ·mol-1
熱容量 (25 °C) 25.060 J·mol-1·K-1
蒸気圧
圧力 (Pa) 1 10 100 1 k 10 k 100 k
温度 (K) 1982 2171 (2403) 2692 3064 3558
原子特性
酸化数 4, 3, 2, 1[1]
(両性酸化物)
電気陰性度 1.54(ポーリングの値)
イオン化エネルギー
詳細
第1: 658.8 kJ·mol-1
第2: 1309.8 kJ·mol-1
第3: 2652.5 kJ·mol-1
原子半径 147 pm
共有結合半径 160 ± 8 pm
その他
結晶構造 六方晶系
磁性 常磁性
電気抵抗率 (20 °C) 420 nΩ·m
熱伝導率 (300 K) 21.9 W·m-1·K-1
熱膨張率 (25 °C) 8.6 µm·m-1·K-1
音の伝わる速さ
(微細ロッド)
(r.t.) 5,090 m·s-1
ヤング率 116 GPa
剛性率 44 GPa
体積弾性率 110 GPa
ポアソン比 0.32
モース硬度 6.0
ビッカース硬度 970 MPa
ブリネル硬度 716 MPa
CAS登録番号 7440-32-6
最安定同位体
詳細はチタンの同位体を参照
同位体 NA 半減期 DM DE (MeV) DP
44Ti syn 63 y ε - 44Sc
γ 0.07, 0.08 -
46Ti 8.0% 中性子24個で安定
47Ti 7.3% 中性子25個で安定
48Ti 73.8% 中性子26個で安定
49Ti 5.5% 中性子27個で安定
50Ti 5.4% 中性子28個で安定

チタン: titanium: titanium)は、原子番号22の元素元素記号Ti第4族元素(チタン族元素)の一つで、金属光沢を持つ遷移元素である。チタニウムと呼ばれることもある。

地球を構成する地殻の成分として9番目に多い元素で、遷移元素としてはに次ぐ。普通に見られる造岩鉱物であるルチルチタン鉄鉱といった鉱物の主成分である。自然界の存在は豊富であるが、さほど高くない集積度や製錬の難しさから、金属として広く用いられる様になったのは比較的最近である。チタンの性質は化学的・物理的にジルコニウムに近い。酸化物である酸化チタン(IV)は非常に安定な化合物で、白色顔料として利用され、また光触媒としての性質を持つ。

特徴[編集]

チタンは酸化物が非常に安定で侵されにくく、空気中では不動態となるため、白金とほぼ同等の強い耐食性を持つ。室温では食塩水海水)などに対し高い耐食性を示し、少量の湿気が存在する場合は塩素系ガスとも反応しない。そのため純チタンはやや接着性に劣るが、逆に表面の汚れやごみなどの付着物を容易に取り除ける。しかし高温ではさまざまな元素と反応しやすくなるため、鋳造溶接には酸素窒素を遮断する大掛かりな設備を必要とする。炭素窒素とも反応してそれぞれ炭化物窒化物を作り、これらは超硬合金の添加物としてしばしば利用される。

特に純度の高いチタンは無酸素空間においての塑性に優れ、と似た色合いの銀灰色光沢を持つ。チタンは鋼鉄以上の強度を持つ一方、質量は鋼鉄の約55%と非常に軽い。チタンはアルミニウムと比較して、約60%重いものの、約2倍の強度を持つ。これらの特性により、チタンはアルミよりも金属疲労が起こりにくいが、工具鋼などの鉄鋼材料には劣る。

性質[編集]

外観は銀灰色を呈する金属元素であり、比重は4.5。融点は1812 °C(1667 °C、1668 °Cの報告もあり)、沸点は3285 °C(3287 °Cの報告もあり)であり、遷移金属としては平均的な値である。常温常圧で安定な結晶として六方最密充填構造を持つが、880 °C以上で体心立方構造転移する。純粋なものは耐食性が高く、展性・延性に富み、引張強度が大きい(硬くかつ粘り強い)。空気中では常温で酸化被膜を作り内部が保護される。フッ化水素酸には徐々に溶けフルオロ錯体 TiF62- を生成し、加熱下の塩酸に溶けて青紫色の3価のイオン Ti3+ を生成する。アルカリ水溶液とはほとんど反応しない。

150 °C以上でハロゲンと、700 °C以上で水素・酸素・窒素・炭素と反応する。安定な酸化数は+IIIまたは+IVである。磁石に僅かに引きつけられるほどの弱い常磁性や、極めて低い電気伝導性熱伝導性を持っている。

用途[編集]

窒化チタンでコーティングされたドリルの刃
チタンの円柱材

金属チタンは強度・軽さ・耐食性・耐熱性を備え、様々な分野で活用されている。しかし、金属チタンは製錬・加工が難しく、費用もかかるため大量には使われていない。化合物では酸化チタン(IV)が安価な白色顔料として広く用いられ、日常でも接する機会が多い。

金属素材[編集]

チタンあるいはチタン合金の持つ強度・軽さ・耐食性・耐熱性といった性質から、航空機潜水艦自転車ゴルフクラブなどの競技用機器、化学プラント生体インプラントの材料、打楽器[2]など多岐にわたって使用されるほか、合金鋼との脱酸剤や、ステンレス鋼において炭素含有量を減少させる目的などにも使用される。加工性はかなり難しくこれは鉄鋼材料がもつ熱処理による強度増幅能力が劣っているためである。金属チタン製の部品は高価になってしまうため、その用途は耐食性・耐熱性・軽量化と強度のバランスを考慮した狭い領域に限られる。

1952年に生体親和性が非常に高くと結合する(オッセオインテグレーション)ことが発見されると、デンタルインプラントのフィクスチャー(インプラント体)のほとんどがチタンを使用するようになった。拒絶反応金属アレルギーを防ぐため、グロー放電でクリーニングしたり、純度の高いチタンが使用される。また、人工関節/人工骨といった整形外科分野でも利用されている。

航空機用途[編集]

航空機用途において耐熱性・強度を優先すると、現在[いつ?]のチタン合金は1000 °Cを超える耐熱性を持たないので、ジェットエンジンのホットセクションには使われない。金属チタンは500 °C以下の部分で、ニッケル超合金よりも軽量化できるノズルなどに使われる。その他のより低温な機体構造には、より安価で軽量化できるアルミニウム合金を多用する。低温部でも鉄鋼よりも軽量化できることから、降着装置に用いた例もある。複合材料の発達により強度・軽量を求められる部位への使用量は減っており、機体重量においてチタン合金の使用割合が最も多いのは1950年代に開発開始されたSR-71であって、潤沢な製造原価を充てられる軍用機といえどもこれ以降に開発された機体への使用割合は多くはない。

建材[編集]

チタンは酸化皮膜の屈折率の違いによる独特な干渉色や、その表面加工による意匠性の高さ、汚れの付きにくさや強い耐蝕性によるメンテナンスの容易さなどを活かし、建材としての利用も行われている。

絵具[編集]

チタンの約95%は酸化チタン(IV)として、主に白色の顔料として絵具合成樹脂などに使用される。酸化チタン(IV)で作られた絵具は赤外線反射率が高いため、屋外での絵画の描写に向いているほか、セメントなどにも使用される。また光触媒としての性質を持ち、光を吸収して有機物を分解する。この性質によって、光のあたる場所では有機物による汚れが分解されるために白さが長く保たれる。しかし有機系の色素や合成樹脂も分解してしまうため、これらと混ぜて利用するのは難しい。

[編集]

酸化チタン(IV)はに織り込むという方法でも使用される。チタンを織り込むことで、白く丈夫で透けない良質の紙を作ることが可能となる。一方で、金属化合物であるため重くなる。広辞苑など、長期に亘って使用される分厚い書籍に利用されるようになっている。

その他[編集]

また、他にも以下の用途等に使用されている。

  • 海水への耐蝕性から、海水の淡水化プラントにおける熱交換器で利用される。
  • イオン化しにくいために金属アレルギーを引き起こしにくいことから、ピアスなどの装身具の材料として利用される。
  • 健康器具を兼ねたネックレスなどのアクセサリーの材料としての利用。
  • 軽量でさびにくく高強度であることから、チタンジルコニウム合金の刃物として利用される。
  • 酸化しにくい特徴を生かし、腕時計の腕に接する面での利用。
  • 形状記憶合金の材料としての利用。
  • ニオブなどとの合金による超伝導素材。
  • チタン酸バリウムあるいはチタン酸ストロンチウムは、その高誘電率により電子材料(積層セラミックコンデンサ)に用いられる。
  • チタン酸ストロンチウムは高屈折材料として人工宝石や光学材料に用いられる。
  • 塩化チタン(IV)ガラスの着色や、高湿度の空気中で発煙する性質を利用して煙幕空中文字へ利用される。
  • 酸化チタン(IV)の皮膚を保護する性質から日焼け止め剤としての利用される。
  • 酸化チタン(IV)は光触媒作用により有機物を分解するため、便器の表面に利用される。
  • オレフィン重合に係るチーグラー・ナッタ触媒としての利用。
  • チタン板をガスバーナーで熱するなど加工することによる、美術品の作成[3]

チタン製品の一覧[編集]

歴史[編集]

マルティン・ハインリヒ・クラプロート

チタンはイギリス1791年、聖職者のウィリアム・グレゴールが発見した。彼は自分の教区内のメナカン谷で発見したのでメナカイト (menachite) と命名したが、一般的には知れ渡らなかった。ほぼ同じ時期にミュラー・フォン・ライヒェンシュタインが同様の物質を作ったが、彼はそれをチタンと特定できなかった。

1795年にはドイツマルティン・ハインリヒ・クラプロートが鉱石(ルチルチタン鉄鉱のどちらかであるが、いずれかははっきりしていない)から独自に再発見し、ギリシア神話における地球最初の子であるティーターンに因んで「チタン」と命名された。しかしこの頃はまだチタンを単体として分離する手法が存在しなかった。

チタンの発見から100年以上経た1910年ニュージーランド出身でアメリカの化学者であるマシュー・A・ハンター[4]が、チタンを高純度 (99.9%) で分離することに成功した。

1946年には、ルクセンブルクの工学者であるウィリアム・クロールがマグネシウムで還元するクロール法を考え出し、さらに高純度のチタンを作り出すことに成功する。

1950年代 - 1960年代にかけての冷戦で、ソ連アメリカ軍がチタンを使用することを防ぐための戦術として世界中のチタン市場を買い占めることを試みたが失敗した。

また、当時発見されていたチタン鉱脈はほとんど東側諸国であったため、アメリカはチタンをソ連から調達していた。冷戦中ゆえアメリカはニセの会社を設立し、そこを通じてアメリカへ密輸入していた[5]

チタンの生産[編集]

99.999%の高純度を持つチタンの結晶。目に見える金属組織を持つ。

自然界には純粋なチタンの単体は殆ど存在せず、化合物として主に鉱石の中に含まれる。地殻の中に約0.6%存在し、火成岩やそこから得られた沈澱物の中に多く含まれ、地球上に広く分布している。チタンの鉱石鉱物には、チタン鉄鉱(イルメナイト、FeTiO3)やルチル(金紅石、TiO2)、板チタン石(TiO2)、灰チタン石(ペロブスカイト、CaTiO3)およびくさび石(チタナイト、CaTiSiO5)などが存在するが、特にチタン鉄鉱とルチルが経済的に重要な役割を持っている。チタンの主な採掘は、オーストラリア大陸スカンディナヴィア半島北アメリカ大陸などであり、1997年におけるチタンの世界のシェアは以下の順になっている。

アポロ17号が月面に到着した際に持ち出された岩石から12.1%の TiO2 が検出されたほか、隕石の中からも検出されており、太陽M型の恒星にも存在すると考えられている。

クロール法[編集]

チタン鉄鉱やルチルなどの、鉄分を含む鉱石からチタンを精錬する方法は、まず炭素と熱して鉄を除いた後、さらに炭素と熱しながら塩素を通じて塩化チタン(IV) TiCl4(沸点136 °C)とし、蒸留して精製する。

TiO2 + 2C + 2Cl2 → TiCl4 + 2CO

チタンは高温で炭化物窒化物を作りやすいので、アルゴン中約900 °Cにおいてマグネシウムで還元した後、塩化マグネシウムを真空分離して多孔質の金属チタンを得る。

TiCl4 + 2Mg → Ti + 2MgCl2

こうして得られたチタンは多孔質であるため、スポンジチタンと呼ばれる。通常はこの状態で出荷される。途中、真空蒸留により分離された塩化マグネシウムは、塩素とマグネシウムの原料として再利用される。これをクロール法と呼ぶ。チタンの製造は、プロセスが複雑で鉄鋼のように連続生産ができないため、製鉄よりも費用がかかり高価になる。

チタンの化合物[編集]

化合物中の原子価は+4価が最も安定であり、+2価および+3価のものも存在するが酸化されやすい。

同位体[編集]

チタンは5つの安定同位体を持つが、その中でも 48Ti が最も多く地球上に存在し、不安定同位体を含めたチタンの同位体は、39.99から57.966までの質量範囲(原子質量単位)を持つ。

出典・注釈[編集]

  1. ^ Andersson, N. et al. (2003). “Emission spectra of TiH and TiD near 938 nm”. J. Chem. Phys. 118: 10543. doi:10.1063/1.1539848. http://bernath.uwaterloo.ca/media/257.pdf. 
  2. ^ キタノドラム
  3. ^ 「山口さんのチタン画 「梅」と「天の川」銀座に」『毎日新聞』2006年7月6日、24面、地域のニュース。
  4. ^ http://periodic.lanl.gov/elements/22.html
  5. ^ 『ステルス戦闘機 スカンク・ワークスの秘密』ベン・R. リッチ (著)、増田 興司 (訳) 講談社 (1997/01) ISBN 4-06-208544-5

関連項目[編集]

外部リンク[編集]