ニオブ

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索
ジルコニウム ニオブ モリブデン
V

Nb

Ta
Element 1: 水素 (H), 非金属
Element 2: ヘリウム (He), 希ガス
Element 3: リチウム (Li), アルカリ金属
Element 4: ベリリウム (Be), 卑金属
Element 5: ホウ素 (B), 金属
Element 6: 炭素 (C), 非金属
Element 7: 窒素 (N), 非金属
Element 8: 酸素 (O), 非金属
Element 9: フッ素 (F), ハロゲン
Element 10: ネオン (Ne), 希ガス
Element 11: ナトリウム (Na), アルカリ金属
Element 12: マグネシウム (Mg), 卑金属
Element 13: アルミニウム (Al), 卑金属
Element 14: ケイ素 (Si), 金属
Element 15: リン (P), 非金属
Element 16: 硫黄 (S), 非金属
Element 17: 塩素 (Cl), ハロゲン
Element 18: アルゴン (Ar), 希ガス
Element 19: カリウム (K), アルカリ金属
Element 20: カルシウム (Ca), アルカリ土類金属
Element 21: スカンジウム (Sc), 遷移金属
Element 22: チタン (Ti), 遷移金属
Element 23: バナジウム (V), 遷移金属
Element 24: クロム (Cr), 遷移金属
Element 25: マンガン (Mn), 遷移金属
Element 26: 鉄 (Fe), 遷移金属
Element 27: コバルト (Co), 遷移金属
Element 28: ニッケル (Ni), 遷移金属
Element 29: 銅 (Cu), 遷移金属
Element 30: 亜鉛 (Zn), 卑金属
Element 31: ガリウム (Ga), 卑金属
Element 32: ゲルマニウム (Ge), 金属
Element 33: ヒ素 (As), 金属
Element 34: セレン (Se), 非金属
Element 35: 臭素 (Br), ハロゲン
Element 36: クリプトン (Kr), 希ガス
Element 37: ルビジウム (Rb), アルカリ金属
Element 38: ストロンチウム (Sr), アルカリ土類金属
Element 39: イットリウム (Y), 遷移金属
Element 40: ジルコニウム (Zr), 遷移金属
Element 41: ニオブ (Nb), 遷移金属
Element 42: モリブデン (Mo), 遷移金属
Element 43: テクネチウム (Tc), 遷移金属
Element 44: ルテニウム (Ru), 遷移金属
Element 45: ロジウム (Rh), 遷移金属
Element 46: パラジウム (Pd), 遷移金属
Element 47: 銀 (Ag), 遷移金属
Element 48: カドミウム (Cd), 卑金属
Element 49: インジウム (In), 卑金属
Element 50: スズ (Sn), 卑金属
Element 51: アンチモン (Sb), 金属
Element 52: テルル (Te), 金属
Element 53: ヨウ素 (I), ハロゲン
Element 54: キセノン (Xe), 希ガス
Element 55: セシウム (Cs), アルカリ金属
Element 56: バリウム (Ba), アルカリ土類金属
Element 57: ランタン (La), ランタノイド
Element 58: セリウム (Ce), ランタノイド
Element 59: プラセオジム (Pr), ランタノイド
Element 60: ネオジム (Nd), ランタノイド
Element 61: プロメチウム (Pm), ランタノイド
Element 62: サマリウム (Sm), ランタノイド
Element 63: ユウロピウム (Eu), ランタノイド
Element 64: ガドリニウム (Gd), ランタノイド
Element 65: テルビウム (Tb), ランタノイド
Element 66: ジスプロシウム (Dy), ランタノイド
Element 67: ホルミウム (Ho), ランタノイド
Element 68: エルビウム (Er), ランタノイド
Element 69: ツリウム (Tm), ランタノイド
Element 70: イッテルビウム (Yb), ランタノイド
Element 71: ルテチウム (Lu), ランタノイド
Element 72: ハフニウム (Hf), 遷移金属
Element 73: タンタル (Ta), 遷移金属
Element 74: タングステン (W), 遷移金属
Element 75: レニウム (Re), 遷移金属
Element 76: オスミウム (Os), 遷移金属
Element 77: イリジウム (Ir), 遷移金属
Element 78: 白金 (Pt), 遷移金属
Element 79: 金 (Au), 遷移金属
Element 80: 水銀 (Hg), 卑金属
Element 81: タリウム (Tl), 卑金属
Element 82: 鉛 (Pb), 卑金属
Element 83: ビスマス (Bi), 卑金属
Element 84: ポロニウム (Po), 金属
Element 85: アスタチン (At), ハロゲン
Element 86: ラドン (Rn), 希ガス
Element 87: フランシウム (Fr), アルカリ金属
Element 88: ラジウム (Ra), アルカリ土類金属
Element 89: アクチニウム (Ac), アクチノイド
Element 90: トリウム (Th), アクチノイド
Element 91: プロトアクチニウム (Pa), アクチノイド
Element 92: ウラン (U), アクチノイド
Element 93: ネプツニウム (Np), アクチノイド
Element 94: プルトニウム (Pu), アクチノイド
Element 95: アメリシウム (Am), アクチノイド
Element 96: キュリウム (Cm), アクチノイド
Element 97: バークリウム (Bk), アクチノイド
Element 98: カリホルニウム (Cf), アクチノイド
Element 99: アインスタイニウム (Es), アクチノイド
Element 100: フェルミウム (Fm), アクチノイド
Element 101: メンデレビウム (Md), アクチノイド
Element 102: ノーベリウム (No), アクチノイド
Element 103: ローレンシウム (Lr), アクチノイド
Element 104: ラザホージウム (Rf), 遷移金属
Element 105: ドブニウム (Db), 遷移金属
Element 106: シーボーギウム (Sg), 遷移金属
Element 107: ボーリウム (Bh), 遷移金属
Element 108: ハッシウム (Hs), 遷移金属
Element 109: マイトネリウム (Mt), 遷移金属
Element 110: ダームスタチウム (Ds), 遷移金属
Element 111: レントゲニウム (Rg), 遷移金属
Element 112: コペルニシウム (Cn), 卑金属
Element 113: ウンウントリウム (Uut), 卑金属
Element 114: フレロビウム (Fl), 卑金属
Element 115: ウンウンペンチウム (Uup), 卑金属
Element 116: リバモリウム (Lv), 卑金属
Element 117: ウンウンセプチウム (Uus), ハロゲン
Element 118: ウンウンオクチウム (Uuo), 希ガス
Niobium has a body-centered cubic crystal structure
41Nb
外見
銀白色
Niobium crystals and 1cm3 cube.jpg
一般特性
名称, 記号, 番号 ニオブ, Nb, 41
分類 遷移金属
, 周期, ブロック 5, 5, d
原子量 92.90638
電子配置 [Kr] 4d4 5s1
電子殻 2, 8, 18, 12, 1(画像
物理特性
固体
密度室温付近) 8.57 g·cm-3
融点 2750 K, 2477 °C, 4491 °F
沸点 5017 K, 4744 °C, 8571 °F
融解熱 30 kJ·mol-1
蒸発熱 689.9 kJ·mol-1
熱容量 (25 °C) 24.60 J·mol-1·K-1
蒸気圧
圧力 (Pa) 1 10 100 1 k 10 k 100 k
温度 (K) 2942 3207 3524 3910 4393 5013
原子特性
酸化数 5, 4, 3, 2, -1(弱酸性酸化物
電気陰性度 1.6(ポーリングの値)
イオン化エネルギー 第1: 652.1 kJ·mol-1
第2: 1380 kJ·mol-1
第3: 2416 kJ·mol-1
原子半径 146 pm
共有結合半径 164±6 pm
その他
結晶構造 体心立方
磁性 常磁性
電気抵抗率 (0 °C) 152 nΩ·m
熱伝導率 (300 K) 53.7 W·m-1·K-1
熱膨張率 7.3 µm/(m·K)
音の伝わる速さ
(微細ロッド)
(20 °C) 3480 m/s
ヤング率 105 GPa
剛性率 38 GPa
体積弾性率 170 GPa
ポアソン比 0.40
モース硬度 6.0
ビッカース硬度 1320 MPa
ブリネル硬度 736 MPa
CAS登録番号 7440-03-1
最安定同位体
詳細はニオブの同位体を参照
同位体 NA 半減期 DM DE (MeV) DP
91Nb syn 6.8×102 y ε - 91Zr
91mNb syn 60.86 d IT 0.104 e 91Nb
92Nb syn 10.15 d ε - 92Zr
γ 0.934 -
92mNb syn 3.47×107 y ε - 92Zr
γ 0.561, 0.934 -
93Nb 100% 中性子52個で安定
93mNb syn 16.13 y IT 0.031 e 93Nb
94Nb syn 2.03×104 y β- 0.471 94Mo
γ 0.702, 0.871 -
95Nb syn 34.991 d β- 0.159 95Mo
γ 0.765 -
95mNb syn 3.61 d IT 0.235 95Nb

ニオブ: niobium)は原子番号41の元素元素記号Nbバナジウム族元素の1つ。

概要[編集]

銀白色の軟らかい金属(遷移金属)。常温、常圧で安定な結晶構造は体心立方格子構造 (BCC) で、比重は8.56、融点は2415 °C(異なる実験値あり)、沸点は2900 °C(4758 °Cという実験値あり)。空気中で表面が不動態となる。耐食性、耐酸性があるが、酸化力のあるフッ化水素酸には可溶。水酸化カリウムに微溶。原子価は2価から5価までをとる。単体金属としては最高の絶対温度9.2 K(常圧下)で超伝導転移を起こす。

コルンブ石 (Fe,Mn)(Nb,Ta)2O6パイロクロア英語版鉱石にタンタルと共に含まれる。資源としては埋蔵・産出とも世界の90%以上をブラジルが占めている。日本名はドイツ語に由来。

タンタルに化学的性質がよく似ていて、鉱物中の結晶構造上でも共存している。金属としては、より軟らかく展性・延性に富み、加工し易い。

用途[編集]

鉄鋼添加剤としての用途が9割と大部分を占めているが、光学、電気、電子分野でも重要である。

鉄鋼添加剤
フェロニオブとして添加される。自動車や石油パイプライン用の高張力鋼、海水に対する耐蝕性を高めたステンレス鋼、発電所や戦闘機エンジンのタービン用耐熱超合金など
中のニオブが炭素を安定化し粒間腐食を防止する。これにより鋼材の微小構造が保たれ、耐蝕性、耐熱性、耐衝撃性を高める効果を発揮すると考えられている。
超硬工具
炭化ニオブを焼結したものが切削工具材(サーメットなど)に利用されている。
スパッタリングターゲット材
スズまたはチタンとの合金、高純度酸化物などが利用されている。
高屈折率レンズ
五酸化ニオブとして、光学ガラスの添加剤(鉛フリーの代替材としても検討されているが、価格が20倍)。
光学薄膜
主に蒸着スパッタリングによって形成される。自動車・建築資材用ガラスやディスプレイ装置用の低反射膜、光学ディスク装置用ミラーの多層膜。
光触媒
酸化ニオブ(ニオビア、niobia)やニオブ酸塩に見られ、層状酸化物から得られるナノシートを利用した触媒や吸着機能の研究が進められている。これを利用した防汚ガラスがJR西日本により開発され、新幹線への導入が計画されている。
超伝導磁石
Nb3Ti、Nb3Sn などの金属間化合物として、MRI装置で普及しているほか、リニアモーターカー核融合炉粒子加速器などへの利用が予想されている。セラミック系の高温超伝導物質を除けば、比較的高い超伝導転移温度を持ち、金属として加工しやすいことから実用化が進んだが、転移温度が10-20 Kと低いため、長期的には新素材へ移行するものと見られる。
圧電素子
ニオブ酸リチウム(ナトリウム、カリウム塩も同様)の単結晶強誘電体であることから、高周波発生装置、光変調素子(レーザー光の波長を変える)、表面弾性波フィルター(携帯電話などのノイズフィルタ)など。
熱電素子
チタン酸ストロンチウムにニオブを添加し、極薄導電体を挟み込んで熱電素子を作ると、温度差1 °Cに付き800 µVの起電力を発揮する。730 °C前後のエンジン/燃料電池排気の熱エネルギーを電気エネルギーとして回収できると期待されている[1]
コンデンサ
金属粉末を焼結するなどした酸化物による、ニオブコンデンサ(電解コンデンサとセラミックコンデンサ)の誘電体。
タンタルによる小型コンデンサが、携帯電話などの小型電子製品に不可欠となっている。埋蔵量が多く(タンタルの100倍とも)安定供給されているニオブを、その代替とする研究がすすめられてきた。
放射化学
天然安定同位体が1種しかないことから、人工同位体を作る材料として。
その他
高圧ナトリウムランプの電極部、垂直磁気記録方式の磁性体、ジョセフソン素子

主な産出国[編集]

  • ブラジル:特にミナスジェライス州のアラシャ (Araxá) 鉱山だけで総産出量の8割を担っている。
    • ブラジルのパイロクロア鉱石は露天掘りされる上に品位が高く、採掘時で数%のニオブを含んでおり、選鉱すると酸化ニオブ(V)として65%程度の精鉱が得られるという(価格安定の背景)。
  • カナダ:ブラジルに次ぐ。両者を合わせると99%に達する。

このほか精製副産物としてタンタルの産出国などで回収されている。鉱石中のニオブとタンタルの含有比率は一定しておらず、特にコルンブ石とタンタル石は同じ構造で、どちらが多いかで名称が変わるため、コルタンと総称される。

歴史[編集]

化学的性質がタンタルと似ていたため、元素と確認されるまで紆余曲折があった。

製造[編集]

ニオブの主要用途である製鋼向けフェロニオブは、大部分がブラジルで精製鉱石を直接テルミット還元して生産されている。日本でも1950年代から1995年まで生産されていたが、ブラジルとカナダが鉱石の輸出を停止したため、撤退した(鉱石は日本でも産出するがコスト面から)。

一方、金属や高純度酸化物を得るための精製は主にアメリカで行われている。方法としては溶媒抽出法が利用され、主成分が五酸化ニオブである精製鉱石を有機溶剤(MIBK、メチルイソブチルケトン)で抽出し酸で逆抽出する。条件を変えてタンタルとの分離を行い、またはアルカリ融解などでニオブ酸とした後、加水分解で酸化物を得る。これを、アルミニウムテルミット還元、水素還元、電解還元などにより精製し、金属ニオブが得られる。

ニオブの化合物[編集]

同位体[編集]

出典[編集]

関連項目[編集]