五角形

出典: フリー百科事典『ウィキペディア(Wikipedia)』
ナビゲーションに移動 検索に移動
正五角形

五角形(ごかくけい、ごかっけい、: pentagon)は、5つの頂点を持つ多角形の総称。

正五角形[編集]

正五角形は、各辺の長さが等しく、内角も108°中心角72°)と一定な五角形である。辺の長さを a とすると

面積
内接円の半径
外接円の半径

正五角形の作図[編集]

定規とコンパスによる作図例

正五角形(regular pentagon)は定規とコンパスによる作図が可能である。以下に示すのは古典的な方法の一つである。

(1) (2) (3) (4)
(1) (2) (3) (4)
  1. 直線上の一点Oを中心にとった円を描画し、直線と交わる二点をA, Bとする。ABの垂直二等分線、およびOAの垂直二等分線を作図する。
  2. OAとその垂直二等分線が交わる点をC、円OとABの垂直二等分線が交わる点のうち一つをDとする。CDを半径にとり、Cを中心にDからABまでを描画する。弧とABが交わる点をEとする。
  3. DEを半径にとり、Dを中心に弧を描画する。弧が円Oと交わる二点をF, Gとする。
  4. 同じ半径のままF, Gを中心とした弧を描画する。これらの弧が円Oと交わる五点D, F, G, I, Hを結ぶ図形が正五角形である。
正方形のマス目上での正五角形の描き方

定理[編集]

正五角形の対角線(五芒星)
  • 正五角形の一辺と対角線とのは、黄金比に等しい。
  • 正五角形の交わる対角線は、互いに他を黄金比に分ける。
  • 対角線の長さが互いに全て等しい正多角形は、正五角形と正四角形(正方形)のみである。
  • n 角形の対角線の本数を m 本としたとき n = m が成り立つのは n = 5、すなわち五角形だけである。

その他五角形に関する事項[編集]

紙片の結び目と正五角形 紙片の結び目と正五角形
紙片の結び目と正五角形
水平な底辺を持つ正五角形の右下の辺の傾きは「高さ×2÷底辺の長さ」となっている。
  • 五角形の対角線を繋いだ星形を五芒星(ペンタグラム)という。たとえば長崎市市章などはペンタグラムとなっている。
  • 細長い片、(またはリボン割り箸袋など)で一重結びの結び目を作ると正五角形が得られる。
  • アメリカ国防総省を俗にペンタゴンというが、これはワシントンD.C.にある本部庁舎が五角形であることに由来する。
  • 函館市五稜郭も外郭に突き出した三角形を組み合わせた五角形の「稜堡式(りょうほしき)」を採用した要塞である。これは、要塞設計と構造特性上、外敵からの攻撃に対する死角を防ぎ、稜堡の一辺が当時のの射程以内に収まり、どの方向から襲撃されても対応しやすいといった、守備に適した非常に合理的な形状と考えられたためである。
  • 飯塚伊賀七の作った茨城県つくば市谷田部にある五角堂は、五角形をした建築物である[1]
  • ヒトデウニなど、棘皮動物の体制は五放射相称を基本とする。
  • 植物の世界では、バラ科ナス科などのように五枚の花びらで構成された五弁花が多く、数列におけるフィボナッチ数であることが知られている。
  • で、これに黄金比を掛けると1/2になる。つまり、2sin18°は黄金比の逆数
  • 五角数多角数の一つである。
  • 野球で使用される本塁は、五角形をしている。本塁は正五角形ではなく正方形を元につくられる五角形である。
  • これも正五角形ではないが、将棋も先の尖った独特の五角形をしている。
  • 正五角形の1つの頂点からの2本の対角線と1辺とでできる三角形は黄金三角形である。
  • 水平な底辺を持つ正五角形の右下の辺の傾きは「高さ×2÷底辺の長さ」となっている。

関連項目[編集]

脚注[編集]

  1. ^ 「日研」新聞編集委員会 編(1991):184ページ

参考文献[編集]

  • 高木貞治『数学小景』岩波書店〈岩波現代文庫〉、2002年。ISBN 4006000812
  • 「日研」新聞編集委員会 編『茨城108景をめぐる』川崎松濤 監修、筑波書林、平成3年9月20日、219pp.