コンテンツにスキップ

# 二十一角形

## 正二十一角形

${\displaystyle S={\frac {21}{4}}a^{2}\cot {\frac {\pi }{21}}\simeq 34.83147a^{2}}$

${\displaystyle \cos(2\pi /21)}$を平方根と立方根で表すことが可能である。

${\displaystyle \cos {\frac {2\pi }{21}}=\cos \left({\frac {2\pi }{3}}-{\frac {4\pi }{7}}\right)}$
${\displaystyle \cos {\frac {2\pi }{21}}={\frac {1+{\sqrt {21}}+{\sqrt[{3}]{154-30{\sqrt {21}}+\left(42{\sqrt {3}}-18{\sqrt {7}}\right)i}}+{\sqrt[{3}]{154-30{\sqrt {21}}+\left(18{\sqrt {7}}-42{\sqrt {3}}\right)i}}}{12}}}$

Σcos(2kπ/(2n+1))=-1/2の関係式から

${\displaystyle 2\cos {\frac {2\pi }{21}}+2\cos {\frac {4\pi }{21}}+2\cos {\frac {6\pi }{21}}+2\cos {\frac {8\pi }{21}}+2\cos {\frac {10\pi }{21}}+2\cos {\frac {12\pi }{21}}+2\cos {\frac {14\pi }{21}}+2\cos {\frac {16\pi }{21}}+2\cos {\frac {18\pi }{21}}+2\cos {\frac {20\pi }{21}}=-1}$

ここで、以下の関係式を使って

{\displaystyle {\begin{aligned}&2\cos {\frac {14\pi }{21}}=2\cos {\frac {2\pi }{3}}=-1\,\\&2\cos {\frac {6\pi }{21}}+2\cos {\frac {12\pi }{21}}+2\cos {\frac {18\pi }{21}}=2\cos {\frac {2\pi }{7}}+2\cos {\frac {4\pi }{7}}+2\cos {\frac {6\pi }{7}}=-1\\\end{aligned}}}

${\displaystyle 2\cos {\frac {2\pi }{21}}+2\cos {\frac {4\pi }{21}}+2\cos {\frac {8\pi }{21}}+2\cos {\frac {10\pi }{21}}+2\cos {\frac {16\pi }{21}}+2\cos {\frac {20\pi }{21}}=1}$

{\displaystyle {\begin{aligned}&\alpha =2\cos {\frac {2\pi }{21}}+2\cos {\frac {8\pi }{21}}+2\cos {\frac {10\pi }{21}}\\&\beta =2\cos {\frac {4\pi }{21}}+2\cos {\frac {16\pi }{21}}+2\cos {\frac {20\pi }{21}}\end{aligned}}}

{\displaystyle {\begin{aligned}&\alpha +\beta =1\,\\&(\alpha -\beta )^{2}=21\\&\alpha -\beta ={\sqrt {21}}\\\end{aligned}}}