正多角形

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索

正多角形(せいたかっけい、せいたかくけい)とは、全てのの長さが等しく、全ての内角の大きさが等しい多角形である。

正多角形は線対称図形であり、正n角形に対称軸はn本ある。また、正偶数角形は点対称の図形でもある。

辺の数が同じ正多角形どうしは全て互いに相似である。

ユークリッド幾何学[編集]

緑の線分は正n角形をn等分してできた三角形の高さ

正多角形のすべての頂点は一つの円周上にある。つまり正多角形は円に内接する。最も角の数が少ないのは正三角形である。三角形では、すべての辺の長さが等しいもの、またはすべての角の大きさが等しいものは必ず正三角形になる。しかし他の多角形では辺の長さがすべて等しく、なおかつ角の大きさがすべて等しいものでなければ正多角形とはならない。例えば四角形では辺の長さがすべて等しいものは菱形、角の大きさがすべて等しいものは長方形であって必ずしも正四角形(正方形)にはならない。菱形でありなおかつ長方形でもある四角形が正方形である。

正n角形の一つの内角の大きさ(°)は

\frac{180(n-2)}{n} である。どの内角も180°よりは小さいので、すべての正多角形は凸多角形である。

正n角形の面積は一辺を a とすると

{na^2\over4}\cot{\pi\over{n}} と求められる。

この式は、正n角形の外心から、各頂点に向けて、線分を引き、n個の二等辺3角形に分割することで容易に証明できる。(それぞれの二等辺3角形の高さが{a\over2}\cot{\pi\over{n}}となる。)

ある適当な多角形Fがあって、その多角形Fの辺上に頂点があって、なおかつそれらを結んでできる多角形がもとの多角形Fの内部にあるとき、その多角形は多角形Fに内接するといい、逆に、多角形Fの頂点に接する直線を辺として持ち、Fの外部にあるような多角形は多角形Fに外接するという。 (例):正6角形ABCDEFがあって、辺AB,CD,EFの中点を頂点とする三角形PQRは正6角形ABCDEFに内接する図形である。

以上のことを踏まえたうえで、一辺の長さがaである正n角形Fに内接、外接するFに相似である多角形のうち、最も面積の小さいものの面積s,Sはそれぞれ、

s={na^2\over4}\cot{\pi\over{n}}\cos^2{\pi\over{n}}

S={na^2\over4\sin{2\pi\over{n}}}

と表される。[疑問点 ]

正多角形の重心は最長の対角線どうしの交点(正2n角形に限る)や外接円および内接円の中心に一致する。

正多角形は、角(辺)の数が増えるごとにに近づいていくので、「周の長さ÷外接円直径」を角の数が多い正多角形で計算すると、円周率に近づいていく。これは、初期の円周率の求め方で、円周率の歴史上の始まりに位置する。

また、上記のことを言い換えると「正多角形の極限は円になる」ということになる。これはつまり、「正∞角形を円とする」ということである。このような見方をする場合も増えている。

正偶数角形(正2n角形)のn組の対辺はすべて平行であるが、正奇数角形ではどの2辺も平行にはならない。

コンパスと定規を用いて描けるもの[編集]

素数 p のものを正p角形と呼ぶ。正p角形のうち、作図可能なものは、角(辺)の数 pフェルマー素数 (3、5、17、257、65537) である場合のみであり、それぞれ正三角形、正五角形、正十七角形、正二百五十七角形、正六万五千五百三十七角形である。角の数が素数でないものについては、その数を素因数分解した時に奇数因数がフェルマー素数のみでかつ、同じものが存在しない場合、または奇数の因数が存在しない(2の累乗数)場合のみ作図することが可能である。

例:正方形は、奇数の因数がないので (4=2×2) 作図することができる。正六角形や正十五角形は、奇数の因数がフェルマー素数のみなので (6=2×3、15=3×5) 作図する事ができる。正九角形は、奇数の因数はフェルマー素数のみだが同じ数の重複があるので (9=3×3) 作図できない。

正十七角形の作図可能性は、1796年3月30日カール・フリードリヒ・ガウスが発見した。さらにガウスは1801年に出版したDisquisitiones Arithmeticae(『ガウス整数論』)の第365条、第366条において、作図できる正多角形の必要十分条件も示している。

楕円幾何学[編集]

もっとも角が少ないのは正二角形である。二角形は必ず正二角形になる。

この幾何学上の正三角形は、内角の和は180°より大きく、ユークリッド幾何学上のルーローの三角形と同じ図形である。

双曲幾何学[編集]

もっとも角が少ないのは正三角形であり、内角の和は180°より小さい。


関連項目[編集]