コンテンツにスキップ

「オーロラ」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
MerlIwBot (会話 | 投稿記録)
m ロボットによる 追加: war:Aurora (astronomiya)
m編集の要約なし
(14人の利用者による、間の156版が非表示)
1行目: 1行目:
{{Otheruses|大気の発光現象|その他のオーロラ|オーロラ (曖昧さ回避)}}
{{Otheruses|大気の発光現象|その他のオーロラ|オーロラ (曖昧さ回避)}}
[[ファイル:Polarlicht 2.jpg|thumb|[[アラスカ]]のオーロラ]]
[[ファイル:Polarlicht 2.jpg|thumb|[[アラスカ]]のオーロラ]]
[[ファイル:Aurora Australis over Indian Ocean.ogv|thumb|[[第28次長期滞在]]のクルーが[[国際宇宙ステーション]]から撮ったオーロラの映像。撮影時刻はGMTで2011年9月7日17時38分03秒から17時49分15秒。場所は[[インド洋]]南部の[[フランス領南方・南極地域]]から南オーストラリア上空にかけて。]]
[[ファイル:Aurora Australis over Indian Ocean.ogv|thumb|[[第28次長期滞在]]のクルーが[[国際宇宙ステーション]]から撮ったオーロラの映像。撮影時刻は[[グリニッジ標準時]]で2011年9月7日17時38分03秒から17時49分15秒。場所は[[インド洋]]南部の[[フランス領南方・南極地域]]から南オーストラリア上空にかけて。]]


'''オーロラ''' ({{Lang-en|aurora}}) は[[天体]]の[[極域]]近辺に見られる[[大気]]の発光現象である。'''極光'''(きょっこう)ともいう<ref name="kaminuma141">[[#神沼|神沼 (2009)]]、141頁。</ref>。北極近辺では'''北極光'''(ほっきょっこう、{{Lang|en|northern lights}})、南極近辺では'''南極光'''(なんきょっこう、{{Lang|en|southern lights}})とも呼ばれる<ref name="kaminuma141" />。
'''オーロラ''' ({{Lang-en|aurora}}) は[[天体]]の[[極域]]近辺に見られる[[大気]]の発光現象である。'''極光'''(きょっこう)ともいう<ref name="kaminuma141">[[#神沼|神沼 (2009)]]、141頁。</ref>。


以下本項では特に断らないかぎり、[[地球]]のオーロラについて述べる。
== 発生の原理 ==
[[ファイル:Magnetosphere schematic.jpg|thumb|left|地球の夜側にプラズマシートが形成される。]]
[[太陽]]からは「[[太陽風]]」と呼ばれる[[プラズマ]]の流れが常に地球に吹きつけており、これにより[[磁気圏|地球の磁気圏]]は太陽とは反対方向、つまり地球の夜側へと吹き流されている。太陽から放出されたプラズマは[[地磁気|地球磁場]]と相互作用し、複雑な浸入過程を経て磁気圏内の夜側に広がる「[[プラズマシート]]」と呼ばれる領域を中心にたまる。このプラズマシート中のプラズマが何らかのきっかけで磁力線にそって加速し、地球[[大気]]([[電離層]])へ高速で降下することがある。大気中の粒子と衝突すると、大気粒子が一旦[[励起状態]]になり、それが元の状態に戻るときに[[発光]]する。これがオーロラである<ref>[[#神沼|神沼 (2009)]]、144–145頁。</ref><ref>[[#上出|上出 (2010)]]、42–45頁。</ref>。発光の原理だけならば、オーロラは[[蛍光灯]]や[[ネオンサイン]]と同じである<ref>[[#上出|上出 (2010)]]、45頁。</ref>。プラズマシートが地球の夜側に形成されるため、オーロラは基本的に夜間にのみ出現するものである。しかし昼間にもわずかながら出現することがある<ref>[[#上出|上出 (2010)]]、44頁。</ref>。


== 名称 ==
なぜプラズマが地球の磁力圏に入り込むのか、なぜプラズマが特定の部分にたまるのか、なぜ加速するのか、なぜ磁力線にそって高速で極域へ向かって降下するのかなど、発生原理の肝要な部分については未だ統一した見解はない<ref>[[#上出|上出 (2010)]]、45–46頁。</ref>。
[[ファイル:Jutrzenka Wilanów.jpg|thumb|180px|アウロラ]]
オーロラという名称は[[ローマ神話]]の暁の女神[[アウロラ]](Aurora)に由来する<ref name="Canada Yellowknife">{{cite web|url=http://www.canadaauroranetwork.com/index.php?Aurora-Toha|title=オーロラとは |publisher=カナダ イエローナイフ オーロラ情報局|accessdate=2012-09-27}}</ref><ref name="kamide2728">[[#上出|上出 (2010)]]、27–28頁。</ref><ref name="davis170">[[#デイビス|デイビス (1995)]]、170頁。</ref>が、科学術語になった過程については定説がない<ref>[[#赤祖父 (2006)|赤祖父 (2006)]]、117頁。</ref>。


この名称は[[17世紀]]頃から使用され始めたと考えられており、名付け親はフランスの[[ピエール・ガッサンディ]]という説があり<ref name="Canada Yellowknife" /><ref>{{cite web|url=http://plato.stanford.edu/entries/gassendi/|publisher=Stanford Encyclopedia of Philosophy|first=Saul |last=Fisher |title=Pierre Gassendi |date=2009-12-15 |accessdate=2012-09-27}}</ref>、[[エドモンド・ハレー]]が自らの論文の中でこの説を述べている<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、3頁。</ref>。その一方でイタリアの[[ガリレオ・ガリレイ]]が名付けたという説もある<ref name="Canada Yellowknife" /><ref name="kamide2728" /><ref>{{Cite web |url=http://www.nationalgeographic.co.jp/special/aurora/ |title=オーロラ特集 |publisher=ナショナルジオグラフィック |accessdate=2012-04-17}}</ref>。当時彼は宗教裁判による命令で天体に関することを書けなかったため、弟子の名を使ってこのことを著している<ref name="davis170" />。
オーロラが突如として一気に広がる現象をブレイクアップという<ref>[[#上出|上出 (2010)]]、47頁。</ref>。日本語ではオーロラ爆発とも訳される<ref>{{cite news|url=http://www.nationalgeographic.co.jp/news/news_article.php?file_id=2012032806&expand|title=アラスカ北極圏でオーロラ爆発|newspaper=ナショナルジオグラフィック ニュース|publisher=ナショナルジオグラフィック|date=2012-03-08|accessdate=2012-04-16}}</ref>。空から突然光が噴出し全天に広がり、色や形の変化が数分間続く。このブレイクアップに関しても、発生原因や発生過程などはあまり分かっていない<ref>[[#上出|上出 (2010)]]、48–49頁。</ref>。


オーロラという名称が浸透する以前からも現象そのものは紀元前から様々な地で確認・記録されており、[[アリストテレス]]や[[セネカ]]はオーロラを天が裂けたところであると考えていた。特にアリストテレスは『気象論』で「天の割れ目(CHASMATIS)」と表現した<ref>杉山久仁彦『極光物語』p.44、p.59</ref><ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、29頁。</ref>。また、[[日本]]では古くは「赤気」「紅気」などと表現されていた<ref name="nakazawa94">[[#中沢|中沢]]、94頁。</ref>。現代日本語では[[北極]]近辺のオーロラを'''北極光'''、[[南極]]近辺のオーロラを'''南極光'''と呼ぶこともある<ref name="kaminuma141" /><ref name="natiogio-fullmoon">{{cite web|url=http://www.nationalgeographic.co.jp/news/news_article.php?file_id=2012062606&expand#title|title=満月のオーロラ、スバールバル諸島|publisher=ナショナルジオグラフィック|accessdate=2012-08-01}}</ref>。
[[磁気圏サブストーム]]が原因であるともいわれている<ref>{{cite book|和書|title=最新宇宙学-研究者たちの夢と戦い|editor=粟野諭美、福江純(編)|publisher=裳華房|year=2004|page=|isbn=978-4785387617}}<!-- {{要ページ番号|date=2012-06-20}} --></ref>。


[[北アメリカ]]や[[スカンジナビア半島|スカンジナビア]]ではオーロラのことを{{Lang|en|northern lights}}(北の光)とも{{Lang|en|aurora}}とも呼ぶが、徐々に{{Lang|en|aurora}}も使うようになって来ている<ref name="davis170" /><ref>神沼克伊『北極と南極の100不思議』p.52</ref>。また北極光を{{Lang|en|northern lights}}、あるいは{{Lang|en|Aurora Borealis}}、南極光を{{Lang|en|southern lights}}、 あるいは{{Lang|en|Aurora Australis}}と呼ぶ<ref name="davis170" /><ref name="kaminuma141" />。[[オーストラリア]]ではオーロラのことを{{Lang|en|northern lights}}と呼ぶ<ref name="davis170" />。ときには{{Lang|en|Aurora polaris}}と呼ばれることもある<ref name="davis170" />。
=== 太陽の活動との関係 ===
オーロラの活動が活発になるには二つの原因がある。一つは[[太陽フレア]]という突発的な爆発現象、一つは[[コロナホール]]という高速の太陽風が噴出する場所が生成することである。太陽フレアは黒点の数と関係があり、およそ11年ごとに活発になる。コロナホールは数か月の間細く長く続く噴出箇所で、太陽の自転周期を計算するだけでオーロラの活動の予測ができる。また黒点周期の後半に多く生成する<ref>[[#上出|上出 (2010)]]、87–89頁。</ref>。これらのことから各旅行社は黒点周期の11年ごとに「オーロラの当たり年」「オーロラ最盛期」などとしてオーロラツアーを組むことがある<ref>{{cite web|url=http://skygate.weblogs.jp/blog/2012/02/111-431d.html|title=今年は11年に1度の当たり年 最高のオーロラと出会うイエローナイフの旅|work=スカイゲートスタッフ旅行記|author=鈴木博美|publisher=エアーリンク|date=2012-02-29|accessdate=2012-04-17}}</ref><ref name="yusen">{{cite web|url=http://www.ytk.co.jp/tabiyujin_hike/newinfo_aurora.html|title=オーロラの誘い|publisher=郵船トラベル|accessdate=2012-04-17}}</ref><ref>[[#上出|上出 (2010)]]、85頁。</ref>。確かにオーロラの活動と太陽の活動は連動しているものの、実際には11年ごとのピークを逃しても活発なオーロラが出現することがあり、たとえ黒点の数がゼロになっても太陽にコロナがある限り太陽風は吹き、オーロラは出現する<ref>[[#上出|上出 (2010)]]、87頁。</ref>。


=== 人工オーロラ ===
== 観測史 ==
日本の観測史については[[#日本の観測史|後述]]。
{{multiple image
=== 神話や伝承 ===
| image1 = Birkeland-terrella.jpg
{{Quote box|
| width1 = 156
そのころ、[[アンティオコス4世エピファネス|アンティオコス]]は再度のエジプト攻撃の準備をしていた。<br />折から、全市におよそ四十日にわたり、金糸の衣装をまとい、<br />槍と抜き身の剣で完全武装した騎兵隊が<br />空中を駆け巡るのが見えるという出来事が起きた。<br />すなわち、隊を整えた騎兵がおのおの攻撃や突撃をし、<br />盾が揺れ、槍は林立し、投げ槍が飛び、<br />金の飾りやさまざまな胸当てがきらめいた。<br />そこで人は皆、この出現が吉兆であるようにと願った。 |[[マカバイ記]]二 5章 1,2,3,4節 <ref>{{Cite web |url=http://www.bible.or.jp/vers_search/vers_search.cgi|title=聖書本文検索(新共同訳・口語訳)|publisher=日本聖書協会|accessdate=2012-09-09}}</ref><ref name="akasofu28" />}}
| caption1 = 人工オーロラの実験を行うビルケランド。
[[中国]]や[[西ヨーロッパ|西欧]]ほどの緯度ではオーロラの活動が活発な時にオーロラの上の部分、赤い部分が見える<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、208頁。</ref>。このことから中世ヨーロッパではオーロラの[[赤]]から[[血液]]を連想し、災害や戦争の前触れ、あるいは神の怒りであると解釈していた<ref name="fukushima2">[[#福島|福島 (1975)]]、2頁。</ref><ref name="kamide25">[[#上出|上出 (2010)]]、25頁。</ref><ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、29頁。</ref>。また中世までのヨーロッパでは、オーロラを「空に剣や長槍が現れ」て動いた・戦ったと表現することが多い。これはオーロラの縦縞が激しく動くさまを表している<ref name="akasofu28">[[#赤祖父 (2002)|赤祖父 (2002)]]、28頁。</ref>。
| image2 = Aurora borealis in a lab dsc04517.jpg
| width2 = 150
| caption2 = 磁石を真空中に置き、プラズマを当てる。
}}
オーロラの発生原理に基づいて、状況を人工的に再現すれば、実験室の中でもオーロラを発生させることができる<ref name="kaminuma124">[[#上出|上出 (2010)]]、124頁。</ref>。実際に[[ノルウェー]]の物理学者[[クリスチャン・ビルケランド]]は19世紀末、人工オーロラの発生実験を行った。まず[[真空]]状態にした箱の中に蛍光塗料を塗った中空の鉄球を置き、そこへ[[コイル]]を入れ磁場を作った。そして同じ箱のなかに[[電極]]を取り付け陰極とし、電子を鉄球に当てると、鉄球が陽極になって光らせることができた。この装置により、ビルケランドは電子が地球のどのあたりに当たるのか推定した<ref>[[#赤祖父|赤祖父 (2002)]]、107–108頁。</ref>。


ただし、[[彗星]]も空に現れる凶兆とされていたこともあって、オーロラなのか彗星なのか判別できない記述もある<ref>[[#|赤祖父 (2002)]]、30頁。</ref>。
この装置の原理を使った、オーロラなどのプラズマ現象を再現できる中高生向けの教材がある<ref>{{cite web|url=http://www.ee.saga-u.ac.jp/plasma/img/aurora.pdf|title=生徒体験型オーロラ実験に関する教材開発|author=藤田寛治、大津康徳、三沢達也|publisher=佐賀大学|accessdate=2012-05-14}}</ref>。他にも2012年現在、同じ原理のオーロラ発生装置がある科学館は日本に何箇所かある<ref name="kaminuma124" />。また、[[飯田産業]]と[[大阪市立大学]]は大型のオーロラ発生装置を開発して[[江ノ島]]アイランドスパに設置<ref>{{cite news|author=河合基伸|date=2006-07-10|url=http://techon.nikkeibp.co.jp/article/NEWS/20060710/119007/|publisher=日経BP|title=江の島にオーロラ出現,飯田産業が人工オーロラ発生装置を開発|newspaper=Tech-On!|accessdate=2012-05-14}}</ref>、さらにその改良型を上海万博に出展した<ref>{{cite web|url=http://www.osaka-cu.ac.jp/news/20100521163425/research.html|title=工学研究科・南教授が上海万博大阪館に「人工オーロラ発生装置」を出展中|publisher=大阪市立大学|accessdate=2012-05-14}}</ref>。

古代中国ではオーロラは天に住む赤い龍に見立てられ<ref name="kamide25" />、やはり西洋と同様に政治の大変革や不吉なことの前触れであると信じられていた<ref>[[#上出|上出 (2010)]]、26頁。</ref>。この他にも古代中国には赤い蛇のような体を持ち、体長が千[[里]]におよぶとされる[[燭陰]]という神がいた<ref>{{Cite book|和書|author=高馬三良訳|title=[[山海経]] 中国古代の神話世界|year=1994|publisher=[[平凡社]]|series=平凡社ライブラリー|isbn=978-4-582-76034-7|page=126}}</ref>。中国の神話学者・何新は、大地の最北極に住む燭陰はオーロラが神格化されたものではないかと論証している。その一方で中国の考古学者・徐明龍は、燭陰を、[[中国神話]]の神である[[祝融]]と同一神であるとし、[[太陽神]]、[[火炎崇拝|火神]]ではないかと述べている<ref>{{Cite book|和書|author=[[多田克己]]|title=百鬼解読|year=2006|publisher=[[講談社]]|series=[[講談社文庫]]|isbn=978-4-06-275484-2|pages=237–243}}</ref>。また中国の古文書の中で天狗、帰邪、赤気、白気、竜などと表現されている天文現象の中にも、オーロラのことを指しているのではないかと推測されるものがある<ref name="fukushima3">[[#福島|福島 (1975)]]、3頁。</ref>。

[[北欧神話]]においてオーロラは、夜空を駆ける[[ワルキューレ]]たちの甲冑の輝きだとされる<ref>{{Cite web |url=http://www.mythbiblio.com/category/scandinavian_myth/valkyria/index.html |title=ヴァルキューレ(ヴァルキリー) |publisher=神話用語辞典 |accessdate=2012-04-17}}</ref><ref name="yusen" />。北欧ではオーロラにより死者の世界と生者の世界が結びついている、と信じている人が未だにおり<ref>[[#上出|上出 (2010)]]、24頁。</ref>、またエスキモーの伝説では、生前の行いが良かった人は死後、オーロラの国(実質的に天国のこと)へ旅立つということになっている<ref>[[#上出|上出 (2010)]]、27頁。</ref>。

=== 近代 ===
[[ファイル:Brockhaus and Efron Encyclopedic Dictionary b48 475-2.jpg|thumb|left|150px|[[ロシア帝国|ロシア]]で[[1890年]]から[[1907年]]まで出版されていた百科事典に載っているオーロラの挿絵。]]
[[近代]]以降、両極を探検した人々がオーロラを記録に残し始めた。[[ジェームズ・クック]]は、[[1773年]]2月の航海誌に「天空に光が現れた」と残しており、世界で最初に南半球のオーロラを見たヨーロッパ人であると言われている<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、51頁。</ref>。

オーロラを世に広く知らしめ、社会のオーロラへの関心を大きく高めた出来事としては、[[ジョン・フランクリン]]隊の遭難が挙げられる<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、41頁。</ref>。フランクリンは[[北西航路]]を発見するために[[1845年]]に出港し、その後行方不明となった。消息の途絶えたカナダ北部へとフランクリン隊を探すために多くの救助隊が向かい、そこで見たオーロラを報告書や回顧録に残したのである<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、40–41頁。</ref>。

両極を探検した人々もオーロラを手記や記録に残している。[[フリチョフ・ナンセン]]の著書や日記には木版画や絵画のオーロラが掲載されている<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、50頁。</ref><ref>[[#上出|上出 (2010)]]、22頁。</ref>。また[[ロバート・スコット]]も日記にオーロラの様子を残している<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、52頁。</ref><ref name="kamide23">[[#上出|上出 (2010)]]、23頁。</ref>。
{{Quotation|折り畳まれ、揺れる光のカーテンが空に立ち上がり、そして広がり、ゆっくり消えて行く。かと思うと、また生き返る。このような美しい現象は、大自然への畏敬の念を持たずに見ることはできない。

オーロラが人の心を動かすのは、なにかとらえ難い、霊妙な生命にあふれたもの、静かな自信に満ちて、それでいて絶えず流れ来るものを暗示することによって、人々の想像力を刺激するからである。
<ref name="kamide23" />|ロバート・スコットの日記より}}

== 研究史 ==
オーロラの発生原理については、古くから多くの科学者たちが解明に努めてきた<ref name="fukushima2" />。特に18世紀から19世紀にかけてのオーロラ研究は[[電磁気学]]の誕生と発展そのものである、と言う研究者もいる<ref>[[#上出|上出 (2010)]]、165頁。</ref>。

=== 黎明期 ===
[[ファイル:Aurora - Norðurljós.jpg|thumb|180px|まるで地面から吹出したように見えるオーロラもある<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、84頁。</ref>。]]
[[エドモンド・ハレー]]は1716年3月にオーロラを観測して論文を発表した。ハレーはオーロラの縞模様と球形磁石の磁力線と一致しているのを認識し、「磁気原子」という仮想の原子が地球内部から吹き出してきて、それが磁力線にそって発光するのではないか、という仮説をたてた<ref name="akasofu8688">[[#赤祖父 (2002)|赤祖父 (2002)]]、86–88頁。</ref>。フランスのド・メラン([[:en:Jean-Jacques d'Ortous de Mairan|en]])はこの説を支持しなかったが、[[ジョン・ドルトン]]や[[ジャン=バティスト・ビオ]]は支持した。特にビオは、「磁気原子」の噴出は[[火山]]の噴火によるものだと主張した<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、88頁。</ref>。

ド・メランは1733年にオーロラに関する世界初の学術書を書いた。その中でド・メランは[[巻雲]]を原因とする説を退け、地球外物質を原因とした。[[黄道光]]を作る物質が地球の大気圏で発火する、という説を唱えたのである<ref name="akasofu86">[[#赤祖父 (2002)|赤祖父 (2002)]]、86頁。</ref>。[[太陽黒点]]の数とオーロラの発生頻度に相関関係があることを発見したのもド・メランである<ref name="akasofu86" />。また同著の中で、南半球にも北半球とよく似たオーロラが出るのではないかとも述べている<ref name="davis127">[[#デイビス|デイビス (1995)]]、127頁。</ref>。

発生頻度の研究も行われた。イライアス・ルーミス([[:en:Elias Loomis|en]])は[[1859年の太陽嵐]]をまとめ、1860年にオーロラの発生頻度分布図を作った<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、80頁。</ref>。図は約1世紀後の[[国際地球観測年]]により多くの情報を元に作られた分布図と比べても遜色のないほど正確である<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、82頁。</ref>。スイスのフリッツはルーミスの図を定量化し、一年でオーロラが発生する日数が同じ地点を線で結び、「アイソカズム」と名付けた<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、82-83頁。</ref>{{#tag:ref|例えば0.1の曲線が通っている地域ではオーロラが10年に1度見られるところである。0.1の曲線は[[スペイン]]の南端、[[キューバ]]、[[宗谷海峡]]を通っている。「カズム」という言葉は「天の割れ目(CHASMATIS)」と同じものである。<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、83頁。</ref>。|group="†"}}。

=== 電磁気学の発展 ===
[[ファイル:Størmer and Birkeland Alta 1910.jpg|thumb|180px|カール・ステルマー(左・[[:en:Carl Størmer|en]])と助手のビルケラント(右)。1910年撮影。]]
1741年、[[アンデルス・セルシウス]]とその助手 Olof Hiorter はオーロラが発生すると地球磁場も変動するということを発見した<ref name="fukushima2" /><ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、92–93頁。</ref>。また[[アレクサンダー・フォン・フンボルト]]は1845年から1862年にかけて刊行された『[[コスモス (フンボルト)|コスモス]]』の1章を割いてオーロラについて述べている<ref name="akasofu9495">[[#赤祖父 (2002)|赤祖父 (2002)]]、94–95頁。</ref>。彼は[[ベルリン]]から[[アルプス山脈|アルプス]]の高山から[[赤道]]から[[極地]]まで地球磁場を準定量的に測り、ロシアとイギリスの王立協会に地磁気観測所を進言して設立させ、地磁気の擾乱が全球的なものであることを突き止めた<ref name="akasofu9495" />。そして、世界中の磁場が乱れて高緯度地方に強いオーロラが出たり低緯度地方にオーロラが出たりする現象に対し、フンボルトは「地球磁場のカミナリ」という新しい術語を作った<ref name="kamide92">[[#上出|上出 (2010)]]、92頁。</ref><ref name="akasofu9495" />。20世紀に開かれた国際会議により、この現象は「[[磁気嵐]](Magnetic storms)」と再命名されている<ref name="kamide92" />。

19世紀末になると、[[X線]]の発見やその研究、また[[ジョゼフ・ジョン・トムソン]]による[[電子]]の発見に象徴される、真空管を用いた実験が盛んになっていった<ref name="akasofu107">[[#赤祖父 (2002)|赤祖父 (2002)]]、107頁。</ref>。トムソンは自著の中で放電管の光とオーロラの光は同一であろうと述べている<ref name="akasofu107" />。[[ノルウェー]]の物理学者、[[クリスチャン・ビルケランド]]は1896年の時点で、太陽から高速で飛んでくる電子が地球の大気に突入して光ったものがオーロラではないかと考えた。そして数多くの遠征や小さな地球を模した磁石(テレラ)による実験([[#テレラ|後述]])、地磁気擾乱の解析などを経て、1913年に研究結果を1冊の本にまとめた。この本の中で彼は既に、オーロラに沿って流れる大電流について述べている<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、109頁。</ref>。

カール・ステルマーはビルケランドのテレラを見て数学者から理論物理地球学者に転向し、磁場内での荷電粒子の動きを計算した。しかし算出されたオーロラの発生範囲が実際のオーロラと違うことからステルマーは実測に力を入れ始め、計4万枚のオーロラの写真を撮った。この研究により、オーロラの下端が100キロメートル上空にあることが確認された<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、112-114頁。</ref>。[[シドニー・チャップマン]]は1918年に「磁気嵐の理論の概要」という論文を発表した<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、119頁。</ref>。その後この論文に対する反論を受けて助手フェラローとともに1931年、地球の磁気圏は太陽風によって彗星のような形になっているという、チャップマン=フェラーロ理論を発表した<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、121頁。</ref>。太陽のプラズマの中に「未知のもの」があるはずだというチャップマンに学会は反発したものの、数年後に「未知のもの」とは太陽の磁場であることがわかった<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、123-124頁。</ref>。チャップマン=フェラーロ理論は約30年後のアメリカの[[人工衛星]][[エクスプローラー計画|エクスプローラー]]12号により1961年に実証された<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、161頁。</ref>。

[[ハンス・アルヴェーン]]は[[アルヴェーン波]]を予言し、「磁場の凍結」という概念を確立した[[ノーベル物理学賞]]受賞者である<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、125-126頁。</ref>。アルヴェーンは「磁場の凍結に固執するから太陽面爆発やオーロラを説明できないのだ」と自らの理論を軽んじて、若い研究者から異端として扱われた。実際に磁場の凍結でオーロラは説明できない<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、128頁。</ref>。その後チャップマンとアルヴェーンの間で磁気嵐を巡る論争が起こり、チャップマンは「数学的な解に十分な基礎をおかない思索を避けねばならない」といい、アルヴェーンは「プラズマは数式を嫌い、そしてまた数式の示すところに従いたがらない」といい、ステルマーは「オーロラがカーテン状である理由を説明できない理論はオーロラの理論と呼べない。結局私の理論が一番正しいはずである」といった<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、128-129頁。</ref>。

=== 分光 ===
オーロラの光そのものを分析し、何が光っているのかを調べる研究もなされていたが、[[分光学]]そのものの発展を待たねばならなかった<ref name="akasofu17">[[#赤祖父 (2002)|赤祖父 (2002)]]、17頁。</ref>。オーロラ分光学が始まったのは1850年台、そして最も代表的な緑白色の光の波長が正確に測定されたのは約70年後の1923年である<ref name="akasofu17" />。当時の真空放電の装置では緑白色の光を再現できなかったり、分光が不正確で間違った同定がなされたりもした<ref name="akasofu132">[[#赤祖父 (2002)|赤祖父 (2002)]]、132頁。</ref>。[[アルフレート・ヴェーゲナー]]は、大気の上層には「ゲオコロニウム」という下層に存在しない元素があり、これが発光のもとではないかと考えた<ref name="akasofu132" />。[[ウィリアム・ラムゼー]]は著書の中で、「太陽中の放射性元素から放出されて飛来する電子が、大気中の[[クリプトン]]を励起することによってオーロラは作られる」と述べている<ref name="akasofu132" />。

Lars Vegard([[:en:Lars Vegard|en]])は電離した窒素分子の出す光と電離してない窒素分子から出る光を同定した<ref name="akasofu134">[[#赤祖父 (2002)|赤祖父 (2002)]]、134頁。</ref>。また、窒素の放電管実験で出る光のうちにオーロラの中にも見られる光が一つ有ることを発見した。この光はアメリカのKaplanによって同定されたためVegard-Kaplan帯と呼ばれる<ref name="akasofu134" />。[[アンデルス・オングストローム]]は19世紀後半、オーロラの分光を行い、オーロラの光は太陽光とは違って、短波長の光と狭い範囲の光の集まりであることを発見したと言われている<ref name="akasofu17" />。そして緑白色の光の波長を556.7ナノメートルと測定した。正確には557.7ナノメートルである<ref name="akasofu17" />。その後1925年にこの光が酸素分子から出ていることが発見された<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、135頁。</ref>。酸素原子の出す光も1930年に同定されるなど、オーロラの元となる気体の大部分が判明していき、大気の上層の組成もまた判明していった<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、136頁。</ref>。

=== 全球的観測 ===
[[ファイル:Dominic Starfish-Prime nuke.jpg|thumb|120px|[[ドミニク作戦]]I・スターフィッシュプライム実験で発生したオーロラ。1962年7月。]]
やがて[[分光学]]と[[磁気嵐]]の研究は深化するとともに専門化していった<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、140頁。</ref>。事実上、20世紀半ばの時点ではオーロラの分布や動きに関する研究は全くといっていいほど進んでいなかった<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、136頁。</ref>。

水素原子の光を同定したガルトラインが1947年に全天カメラを考案しており、[[国際地球観測年]]の委員長シドニー・チャップマンは極地全域で全天カメラを撮影することを計画した<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、142頁。</ref>。さらにチャップマンは全天カメラ研究が一段落ついた1965年頃に、人工衛星から写真を撮ることを提案し、これも後述するように実現した<ref name="akasofu143">[[#赤祖父 (2002)|赤祖父 (2002)]]、143頁。</ref>。国際地球観測年ではロケットを2台、オーロラの光っている空域へ打ち込み、強力な電子ビームがあることもわかった<ref name="akasofu143" />。

人工的にオーロラを出現させる実験もこの頃に実施された。最初の実験はNASAによって1969年に行われた<ref name="davis145">[[#デイビス|デイビス (1995)]]、145頁。</ref>。しかし、この実験以前にも大気中[[核実験]]により期せずして人工のオーロラが発生したことがある<ref name="davis145" />。

フェルドシュタインはオーロラの発生する地域を1963年に初めて確定し、環状になっていることを突き止めた。太陽から見るとオーロラの環が固定されていることも発見した<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、152頁。</ref>。[[赤祖父俊一]]も全天カメラやジェット機からの撮影によりオーロラの環の存在を示し、フェルドシュタインとともに1971年、発表したものの支持されなかった<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、156頁。</ref>。しかしカナダのアンガーが人工衛星[[ISIS (人工衛星)|ISIS II]]によって実際に環を撮影すると、受け入れられた<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、156-157頁。</ref>。

== 発生原理 ==
[[ファイル:Magnetosphere schematic.jpg|thumb|left|地球の夜側にプラズマシートが形成される。]]
2012年現在では、オーロラの発生原理は以下のように考えられている。

[[太陽]]からは「[[太陽風]]」と呼ばれる[[プラズマ]]の流れが常に地球に吹きつけており、これにより[[磁気圏|地球の磁気圏]]は太陽とは反対方向、つまり地球の夜側へと吹き流されている。太陽から放出されたプラズマは[[地磁気|地球磁場]]と相互作用し、複雑な過程を経て磁気圏内に入り、地球磁気圏の夜側に広がる「[[プラズマシート]]」と呼ばれる領域を中心として溜まる。このプラズマシート中のプラズマが何らかのきっかけで磁力線にそって加速し、地球[[大気]]([[電離層]])へ高速で降下することがある。大気中の粒子と衝突すると、大気粒子が一旦[[励起状態]]になり、それが元の状態に戻るときに[[発光]]する。これがオーロラである<ref>[[#神沼|神沼 (2009)]]、144–145頁。</ref><ref>[[#上出|上出 (2010)]]、42–45頁。</ref>。

発光の原理だけならば、オーロラは[[蛍光灯]]や[[ネオンサイン]]と同じである<ref>[[#上出|上出 (2010)]]、45頁。</ref>。プラズマシートが地球の夜側に形成されるため、オーロラは基本的に夜間にのみ出現するものである。しかし昼間にもわずかながら出現することがある<ref>[[#上出|上出 (2010)]]、44頁。</ref>。

どのようにして太陽風が地球の磁力圏に入り込むのか、なぜプラズマは特定の部分にたまるのか、何がきっかけで加速されるのかなど、発生原理の肝要な部分については未だ統一した見解はない<ref>[[#上出|上出 (2010)]]、45–46頁。</ref>。最も有力な説は、入り込む理由や加速される理由を、地球の磁力線が反対向きの磁力線とくっつくこと(リコネクション)に求める説である<ref name="miyashita">{{cite web|url=http://www.isas.ac.jp/docs/PLAINnews/new/186_1.html|title=衛星データに基づいた地球磁気圏における サブストームに関する実証的研究|auther=宮下幸長|publisher=名古屋大学太陽地球環境研究所|accessdate=2012-08-29}}</ref>。

オーロラが突如として一気に広がる現象をブレイクアップという<ref>[[#上出|上出 (2010)]]、47頁。</ref>。日本語ではオーロラ爆発とも訳される<ref>{{cite news|url=http://www.nationalgeographic.co.jp/news/news_article.php?file_id=2012032806&expand|title=アラスカ北極圏でオーロラ爆発|newspaper=ナショナルジオグラフィック ニュース|publisher=ナショナルジオグラフィック|date=2012-03-08|accessdate=2012-04-16}}</ref>。空から突然光が噴出し全天に広がり、色や形の変化が数分間続く。このブレイクアップに関しても、発生原因や発生過程などはあまり分かっていない<ref>[[#上出|上出 (2010)]]、48–49頁。</ref>。


== 放出されるもの ==
== 放出されるもの ==
38行目: 97行目:
オーロラの色は、宇宙からの粒子が大気に衝突する際に何の成分に当たったかだけではなく、どれくらいの高度で、どれくらいの頻度で、どれくらいの時間をかけて衝突し、どれくらいのエネルギーを与えられて励起し、どの基底状態に戻ったのか、など様々な要素が複雑にからみ合って決まる<ref>[[#上出|上出 (2010)]]、113頁。</ref>。さらに、太陽光から特定の波長のみ吸収して起きる(共鳴散乱)オーロラがあるという説もあれば<ref>[[#上出|上出 (2010)]]、116頁。</ref>、励起する際に原子軌道から跳ね飛ばされた電子(二次電子)が別の原子を励起して別の色を出すこともある<ref name="kamide117">[[#上出|上出 (2010)]]、117頁。</ref>。
オーロラの色は、宇宙からの粒子が大気に衝突する際に何の成分に当たったかだけではなく、どれくらいの高度で、どれくらいの頻度で、どれくらいの時間をかけて衝突し、どれくらいのエネルギーを与えられて励起し、どの基底状態に戻ったのか、など様々な要素が複雑にからみ合って決まる<ref>[[#上出|上出 (2010)]]、113頁。</ref>。さらに、太陽光から特定の波長のみ吸収して起きる(共鳴散乱)オーロラがあるという説もあれば<ref>[[#上出|上出 (2010)]]、116頁。</ref>、励起する際に原子軌道から跳ね飛ばされた電子(二次電子)が別の原子を励起して別の色を出すこともある<ref name="kamide117">[[#上出|上出 (2010)]]、117頁。</ref>。


しかし実際には観測される色と出現する高度にはおおまかに相関関係がある<ref>[[#上出|上出 (2010)]]、114–117頁。</ref><ref>[[#神沼|神沼 (2009)]]、146–147頁。</ref><ref>{{cite web|url=http://www2.gi.alaska.edu/asahi/jsite/color_j.htm|title=オーロラの色は大気中の原子・分子によって決まる|work=オーロラの旅 - アサヒ・オーロラ教室|publisher=アラスカ大学地球物理学研究所|year=2003|accessdate=2012-04-28}}</ref>。
しかし実際には観測される色と出現する高度にはおおまかに相関関係がある<ref>[[#上出|上出 (2010)]]、114–117頁。</ref><ref>[[#神沼|神沼 (2009)]]、146–147頁。</ref><ref>{{cite web|url=http://www2.gi.alaska.edu/asahi/jsite/color_j.htm|title=オーロラの色は大気中の原子・分子によって決まる|work=オーロラの旅 - アサヒ・オーロラ教室|publisher=アラスカ大学地球物理学研究所|year=2003|accessdate=2012-04-28}}</ref>。なお、オーロラの色の見え方は人によってまちまちである。同じ緑白色のオーロラが人によっては黄緑や緑色に見えたり、ピンクのオーロラが赤色に見えたりする<ref>[[#デイビス|デイビス (1995)]]、26頁。</ref>。
*高度およそ数百キロメートルにある窒素分子が、入射してきた電子によりイオン化され、励起・発光すると301.4ナノメートル近辺(青)と427.8ナノメートル近辺(紫)の光をだす。どちらもオーロラの色に幅がある。青紫色のオーロラは、発光するための機構が複雑だったり、人間の目が不得手な波長だったりすることから、肉眼で観測できるのは非常に珍しい<ref>[[#上出|上出 (2010)]]、116頁。</ref>。
*高度およそ150から200キロメートル以上では大気の密度が低いため、エネルギーの小さい電子でも酸素原子を励起させることができる。酸素原子はすこし励起して波長630ナノメートルの光を出す。人の目には赤く見える。
*高度およそ100から150キロメートルでは大気の密度が高く、エネルギーの大きい電子でないと酸素原子を励起させられない。酸素原子は大いに励起してより波長の短い557.7ナノメートルの光を出す。同じくらいの高度にある窒素分子が、入射してきた電子によりイオン化され、励起・発光すると301.4ナノメートル近辺(青)と427.8ナノメートル近辺(紫)の光をだす。どちらもオーロラの色に幅がある{{#tag:ref|特に紫色のオーロラは、発光するための機序が複雑だったり、人間の目が不得手な波長だったりすることから、肉眼で観測できるのは非常に珍しい<ref>[[#上出|上出 (2010)]]、116頁。</ref>。|group="†"}}。人の目にはこれらの色が混ざり合って緑色や緑白色に見える。高緯度地域ではたいていこの色のオーロラが見られる。
*高度およそ150から200キロメートルよりも高い領域では大気の密度が低いため、エネルギーの小さい電子で酸素原子を励起させることができる。酸素原子はすこし励起して波長630ナノメートルの光を出す。人の目には赤く見える。
*高度およそ90から100キロメートルまで到達するによほどオーロラ活動くなくてはならない。この高度では素よりも窒素のほうが多いため、窒素原子励起して585.4ナノメートル以下の赤や青の光を出す。人の目にはこれらの色が混ざり合って緑色のオーロラのカーテンの縁に、ピンクまたは赤紫のフリル附属しているようにる。
*高度およそ100から150キロメートルの辺り大気の密度、エネルギーの大きい電子でいと酸素原子を励起させない。酸素原子は大いに励起してより波長の短い557.7ナノメートルの光を出す。人の目にはこれらの色が混ざり合って緑色や緑白色に見える。高緯度地域ではたいていこの色のオーロラが見られる。
*高度およそ90から100キロメートルの辺りまで到達するにはよほどオーロラ活動が強くなくてはならない。この高度では酸素よりも窒素のほうが多いため、窒素原子が励起して585.4ナノメートル以下の赤や青の光を出す。人の目にはこれらの色が混ざり合って、緑色のオーロラのカーテンの縁に、ピンクまたは赤紫のフリルが附属しているように見える。
このように、降り込む粒子のエネルギーが高いほど、平均的なオーロラの発光高度は低くなる。
このように、降り込む粒子のエネルギーが高いほど、平均的なオーロラの発光高度は低くなる。


太陽活動現象に伴う[[磁気嵐]]により、たまに日本や中国、西欧のような低緯度地方でも赤いオーロラが観測されることがある。これは[[磁気嵐]]によって磁力線が低緯度側にふれることや、中低緯度地域になると地球の丸みのために上部の赤いオーロラしか見えないことなどと関係がある<ref name="kamide80">[[#上出|上出 (2010)]]、80頁。</ref>。
太陽活動が活発なときは、たまに日本や中国、西欧のような低緯度地方でも赤いオーロラが観測されることがある。これは磁力線が低緯度側にふれることや、中低緯度地域になると地球の丸みのために上部の赤いオーロラしか見えないこと<ref name="kamide80">[[#上出|上出 (2010)]]、80頁。</ref>、オーロラの発光部分の上端が1000km以上に伸びること<ref name="akasofu207208">[[#赤祖父 (2002)|赤祖父 (2002)]]、207-208頁。</ref>などと関係がある


明るさは[[レイリー (単位)|レイリー]]で表される。おおよそ1700レイリーくらいが肉眼で見えるかどうかの境目である<ref name="hokkaido2000">{{cite news|url=http://www.astroarts.co.jp/news/2000/04/10aurora/index-j.shtml|title=北海道で8年ぶりの本格的な低緯度オーロラが観測された|newspaper=AstroArts|date=2000-04-10|accessdate=2012-06-14}}</ref>。オーロラの明るさを[[照度]]で表すと、普通のオーロラは0.1–0.01[[ルクス]]程度である。最も明るいオーロラでは数ルクスほどになり、満月の明るさに匹敵する<ref>[[#上出|上出 (2010)]]、75頁。</ref>。
明るさは[[レイリー (単位)|レイリー]]で表される。おおよそ1700レイリーくらいが肉眼で見えるかどうかの境目である<ref name="hokkaido2000">{{cite news|url=http://www.astroarts.co.jp/news/2000/04/10aurora/index-j.shtml|title=北海道で8年ぶりの本格的な低緯度オーロラが観測された|newspaper=AstroArts|date=2000-04-10|accessdate=2013-01-13}}</ref>。オーロラの明るさを[[照度]]で表すと、普通のオーロラは0.1–0.01[[ルクス]]程度である。最も明るいオーロラでは数ルクスほどになり、満月の明るさに匹敵する<ref>[[#上出|上出 (2010)]]、75頁。</ref>。ただし、満月が出ていてもオーロラを見たり撮影したりすることはできる<ref>{{cite web|url=http://www.canadaauroranetwork.com/index.php?MoonlightAurora|title=満月にオーロラは見える?見えない? |publisher=カナダ イエローナイフ オーロラ情報局|accessdate=2012-09-27}}</ref><ref name="natiogio-fullmoon" />。

またオーロラは肉眼で見えづらいものを含めれば、一晩中観測することが出来る。統計的には夜12時に近いほど見られやすいということが分かっている<ref>[[#デイビス|デイビス (1995)]]、26頁。</ref>。例えばアラスカではブレイクアップ(オーロラ爆発)は夜10時から翌3時までの間に起きやすい<ref>[[#デイビス|デイビス (1995)]]、49頁。</ref>。ブレイクアップそのものは普通おおよそ2~3分で終わるが、その前もその後もオーロラを見ることは可能である<ref>[[#デイビス|デイビス (1995)]]、50頁。</ref>。

==== 形と分類 ====
オーロラの形はよく[[カーテン]]に例えられる。これは下端がはっきりしていて襞があることに由来する<ref name="kamide73">[[#上出|上出 (2010)]]、73頁。</ref>。下端は飛び込んでくる粒子の限界高度が、襞は磁力線の方向が可視化された結果である<ref name="kamide73" />{{#tag:ref|カーテンは磁力線に沿ってできる。そのため、真東か真西を向いて撮ったオーロラの写真の、カーテンの角度を測ることにより撮影場所の地磁気緯度を特定することができる<ref>[[#上出|上出 (2010)]]、74頁。</ref>。|group="†"}}。カーテンの、東西の長さは数千キロメートル、厚さは約500メートル、下端は前述のとおり地上約100キロメートル、上端は約300から500キロメートルである<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、7頁。</ref>。オーロラの活動が活発なときには上端は1000キロメートル以上の高さになる<ref name="akasofu207208" />。

オーロラの形にはバンド(帯)、コロナ(冠、放射状)、アーク(弧)<ref name="akasofu9">[[#赤祖父 (2002)|赤祖父 (2002)]]、9頁。</ref>、トーチ(松明)、バルジ(腫れ)<ref name="kamide71">[[#上出|上出 (2010)]]、71頁。</ref>など様々な形がある。しかし、これらは単にカーテンの襞のサイズや数<ref name="akasofu9" />、カーテンの歪み方やねじれ方、曲がり方<ref name="kamide71" />のみで区別されているだけであり、オーロラそのものの種類が複数あるわけではない<ref name="akasofu9" /><ref name="kamide71" />。例えばコロナ型オーロラはカーテンが反物のように巻かれ、観測者がちょうど真下に立っている時に観測される<ref name="akasofu14">[[#赤祖父 (2002)|赤祖父 (2002)]]、14頁。</ref><ref name="davis57">[[#デイビス|デイビス (1995)]]、57頁。</ref>。細い線のように光っている部分をレイという。この部分はオーロラのカーテンが幾重にも重なっているため明るく見えるのである。たいてい水平方向(カーテンだったら引く方向)に移動する<ref name="davis57" />。

なおこれとは別に点滅するオーロラもあり、脈動オーロラと呼ばれる<ref>[[#上出|上出 (2010)]]、72頁。</ref>。


=== その他の波 ===
=== その他の波 ===
オーロラ領域から観測される[[電磁波]]は[[可視光]]だけではない。[[紫外線]]や[[赤外線]]<ref>[[#上出|上出 (2010)]]、110頁。</ref>、さらには「[[オーロラキロメートル電波]] (AKR)」と呼ばれる[[キロメートル波|キロメートル帯の電波]]など、様々な波長の電磁波が観測されている{{#tag:ref|AKRに関しては、太陽の活動が強くなるほどAKRが弱くなるという相関関係があり、未だ原因が解明されていない<ref>{{cite web|url=http://www.rish.kyoto-u.ac.jp/wave/wave01/WAVE01-02.pdf|title=オーロラキロメートル電波の太陽活動依存性|author=熊本篤志、小野高幸、大家寛|work=SGEPSS 波動分科会 WAVE01-02|year=2001|accessdate=2012-04-15}}</ref>。| group="†"}}。電磁波以外にもオーロラはヒトの[[聴覚#可聴域|可聴域]]よりも下の音({{仮リンク|可聴下音|en|infrasound}}、20&nbsp;[[ヘルツ|Hz]] 以下)を伝えていることが1960年代から知られている<ref name="UAF-Infrasound">{{cite web|url=http://www.gi.alaska.edu/infrasound/Infrasound253.htm|title=Auroral Infrasound|work=Infrasound Research Group|publisher=Geophysical Institute, University of Alaska Fairbanks|accessdate=2010-02-04}}</ref>。
オーロラ領域から観測される[[電磁波]]は[[可視光]]だけではない。[[紫外線]]や[[赤外線]]<ref>[[#上出|上出 (2010)]]、110頁。</ref>、さらには{{仮リンク|オーロラキロメートル電波|en|Auroral kilometric radiation}}と呼ばれる[[波|キロメートル帯の電波]]など、様々な波長の電磁波が観測されている{{#tag:ref|AKRに関しては、太陽の活動が強くなるほどAKRが弱くなるという相関関係があり、未だ原因が解明されていない<ref>{{cite web|url=http://www.rish.kyoto-u.ac.jp/wave/wave01/WAVE01-02.pdf|format=PDF|title=オーロラキロメートル電波の太陽活動依存性|author=熊本篤志、小野高幸、大家寛|work=SGEPSS 波動分科会 WAVE01-02|year=2001|accessdate=2012-04-15}}</ref>。| group="†"}}。電磁波以外にもオーロラはヒトの[[聴覚#可聴域|可聴域]]よりも下の音([[低周波音|可聴下音]]、20&nbsp;[[ヘルツ|Hz]] 以下)を伝えていることが1960年代から知られている<ref name="UAF-Infrasound">{{cite web|url=http://www.gi.alaska.edu/infrasound/Infrasound253.htm|title=Auroral Infrasound|work=Infrasound Research Group|publisher=Geophysical Institute, University of Alaska Fairbanks|accessdate=2010-02-04}}</ref>。

オーロラが可聴音を発しているのではないかという点に関しては[[#音|後述]]。


=== 電流と磁場 ===
=== 電流と磁場 ===
[[ファイル:MHD generator (En).png|thumb|220px|left|MHD発電の原理。管の中にプラズマを流し、流れる方向と直角に磁場をかけると、プラズマの流れとも磁場とも直角な方向に電流が発生する<ref>{{cite web|url=http://www.es.titech.ac.jp/okuno/kaisetsu.pdf|format=PDF|title=高効率エネルギー変換 -MHD発電-|author=東京工業大学 大学院総合理工学研究科 奥野喜裕|accessdate=2012-09-07}}</ref><ref>{{cite web|url=http://www.chuden.co.jp/kids/kids_denki/tsukuru/tsu_mhd/index.html|title=MHD発電のしくみ|publisher=中部電力|accessdate=2012-09-07}}</ref>。]]
オーロラの元である太陽から流れてくるプラズマと地球磁場とが相互作用することにより、[[起電力]]が生じる<ref name="kamide117" />。これは[[MHD発電]]と同じ原理であり、太陽風と地球の磁気圏がぶつかるところで発電されている<ref>[[#上出|上出 (2010)]]、120頁。</ref>。この「発電所」の出力は100万メガ[[ワット]]、出せる電圧は100キロ[[ボルト (単位)|ボルト]]であることがわかっている<ref>[[#赤祖父|赤祖父 (2002)]]、190–191頁。</ref>{{#tag:ref|[[柏崎刈羽原子力発電所]]の出力は1号機から7号機まですべてあわせておよそ8212メガワットである<ref>{{cite web|url=http://www.tepco.co.jp/nu/kk-np/intro/outline/outline-j.html|title=発電所の概要|work=柏崎刈羽原子力発電所|publisher=東京電力|accessdate=2012-05-27}}</ref>。|group="†"}}。太陽の活動が活発なときは1億メガワット出力できることも分かっている<ref name="akasofu191">[[#赤祖父|赤祖父 (2002)]]、191頁。</ref>。これらの電力と電圧から、電流は1000万[[アンペア]]と算出されるが、オーロラ内を流れる電流はその内の数百万アンペアである<ref name="akasofu191" />。
[[ファイル:Polar Cap Absorption.png|thumb|150px|left|極域に降り注いだエネルギーの高い陽子によって、電離層の吸収が高くなり、短波通信ができなくなることがある。これをPCAという<ref>{{cite web|url=http://www.jspf.or.jp/Journal/PDF_JSPF/jspf2006_11/jspf2006_11-739.pdf|format=PDF|title=2.宇宙環境擾乱による障害と宇宙天気予報|author=情報通信研究機構 亘慎一|accessdate=2012-09-07}}</ref>]]
オーロラの元である太陽から流れてくるプラズマと地球磁場とが相互作用することにより、[[起電力]]が生じる<ref name="kamide117" />。これは[[MHD発電]]と同じ原理であり、太陽風と地球の磁気圏がぶつかるところで発電されている<ref>[[#上出|上出 (2010)]]、120頁。</ref>。太陽風が速く、磁場が強く、磁場が南向きの時は発電量が多い<ref name="akasofu207">[[#赤祖父 (2002)|赤祖父 (2002)]]、207頁。</ref>。

<!-- 太陽風の速さをv km/s、[[磁束密度]]をB[[ナノ]][[テスラ]]、そして真北を0度とした時の太陽風の角度をθとすると、オーロラの発電力Pは以下の式で表される<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、198頁。</ref>。

<math> \mathbf{P} = 20\mathbf{v}\mathbf{B}^2\sin^4 \frac{\theta}{2}</math> -->

この「発電所」の出力はおよそ10の12乗[[ワット]]<ref>{{cite web|url=http://www.rish.kyoto-u.ac.jp/~kamide/essay/es_auroranobi.pdf|format=PDF|title=オーロラの美は方程式で描けるか|author=上出 洋介|accessdate=2012-11-11}}</ref>{{#tag:ref|[[柏崎刈羽原子力発電所]]の出力は1号機から7号機まですべてあわせておよそ8.212×10の9乗ワットである<ref>{{cite web|url=http://www.tepco.co.jp/nu/kk-np/intro/outline/outline-j.html|title=発電所の概要|work=柏崎刈羽原子力発電所|publisher=東京電力|accessdate=2012-11-11}}</ref>。|group="†"}}、出せる電圧は数百キロ[[ボルト (単位)|ボルト]]であることが推定されている<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、191頁。</ref><ref>[[#上出|上出 (2010)]]、81頁。</ref>。太陽の活動が活発なときはおよそ10の14乗ワット出力できることも分かっている<ref name="akasofu191">[[#赤祖父 (2002)|赤祖父 (2002)]]、191頁。</ref>。なおこれらの電力と電圧から、電流はおよそ数百万から数千万[[アンペア]]と算出されるが<ref>[[#上出|上出 (2010)]]、82頁。</ref>、オーロラ内を流れる電流はその内の数百万アンペアである<ref name="akasofu191" />。電流の強さとオーロラの明るさはおおよそ比例するが、絶対に比例するというわけではない<ref name="kamide125" />。

オーロラが光るぐらいの高さは[[電離層]]という領域で、太陽の出す紫外線やX線により大気成分の一部がその名の示すように電離している。つまり電流が流れやすくなっている。オーロラを発生させる粒子が降ってくると、さらに大気が電離し、オーロラが明るい場所を中心に電流が流れる<ref name="kamide125">[[#上出|上出 (2010)]]、125頁。</ref>。つまり、上記の「発電所」と回路が繋がることになる<ref>[[#上出|上出 (2010)]]、127頁。</ref>。[[ファラデーの電磁誘導の法則]]から分かるように、電流が流れると磁場が変化する。オーロラ電流による磁場の変化を読み取ることにより、極地にいなくてもどれくらいのオーロラ電流が流れているか算出することができる<ref>[[#上出|上出 (2010)]]、125–126頁。</ref>。


オーロラが引き起こした電磁場の変動により被害が出たこともある。例えば磁場の変動により[[変電所]]の[[変圧器]]に[[誘導電流]]が流れて壊れ、その結果停電が起きたり<ref>[[#柴田|柴田 (2010)]]、108-110頁。</ref><ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、204頁。</ref>、[[パイプライン輸送|パイプライン]]に誘導電流が流れて腐食したり<ref name="shibata112">[[#柴田|柴田 (2010)]]、112頁。</ref><ref>{{cite web|url=http://asahi-classroom.gi.alaska.edu/jsite/j_ima/aurpipeline.htm|title=オーロラと石油パイプライン|work=オーロラの旅 - アサヒ・オーロラ教室|publisher=アラスカ大学地球物理学研究所|year=2003|accessdate=2012-08-31}}</ref>、伝書鳩が正しい方向へ向かえなくなったりしたことがある<ref name="shibata112" /><ref>[[#上出|上出 (2010)]]、94-95頁。</ref>。またオーロラの電流が通電する電離層は、電波が伝送・反射する領域でもあるため、オーロラとともに電波障害が起こり、航空機と空港の間で無線連絡が難しくなることもある<ref>{{cite web|url=http://www.eweek.com/c/a/IT-Infrastructure/Space-Weather-The-New-Frontier/|title=NASA Puts IT to Work Tracking Solar Storms|author=Chris Preimesberger|publisher=eWEEK|year=2008|accessdate=2012-08-31}}</ref><ref>[[#柴田|柴田 (2010)]]、110頁。</ref>。
オーロラが光るぐらいの高さは[[電離層]]という領域で、太陽の出す紫外線やX線により大気成分の一部がその名の示すように電離している。つまり電流が流れやすくなっている。オーロラを発生させる粒子が降ってくると、さらに大気が電離し、オーロラが明るい場所を中心に電流が流れる<ref name="kamide125">[[#上出|上出 (2010)]]、125頁。</ref>。つまり、上記の「発電所」と回路が繋がることになる<ref>[[#上出|上出 (2010)]]、127頁。</ref>。電流の強さとオーロラの明るさは大抵比例するが、必ず比例するわけではない<ref name="kamide125" />。[[ファラデーの電磁誘導の法則]]から分かるように、電流が流れると磁場が変化する。オーロラ電流による磁場の変化を読み取ることにより、極地に居なくてもどれくらいのオーロラ電流が流れているか算出することができる<ref>[[#上出|上出 (2010)]]、125–126頁。</ref>。


=== 熱 ===
=== 熱 ===
さらにオーロラの電流により電離層の大気が[[誘導加熱]]され、熱も出る<ref name="akasofu190">[[#赤祖父|赤祖父 (2002)]]、190頁。</ref>。上記のオーロラ発電機の出力はこの熱から算出されたものである<ref name="akasofu190" />。オーロラに伴って発生した熱によって大気が膨張し、そこへ人工衛星が突入することがある<ref name="kamide82">[[#上出|上出 (2010)]]、82頁。</ref>。大気の密度の違いによって、膨らみに突入した人工衛星の軌道が変わり、墜落したことも何度かある<ref name="kamide82" />。オーロラの熱が赤道近辺まで届く[[テレコネクション|大気振動]]を起こしていることも分かっている<ref name="kamide83">[[#上出|上出 (2010)]]、83頁。</ref>。オーロラの熱が水平方向に伝播して気圧配置に関わる可能性も指摘されているが、あまり研究は進んでいない<ref name="kamide83" />。
さらにオーロラの電流により電離層の大気が[[誘導加熱]]され、熱も出る<ref name="akasofu190">[[#赤祖父 (2002)|赤祖父 (2002)]]、190頁。</ref>。上記のオーロラ発電機の出力はこの熱から算出されたものである<ref name="akasofu190" />。オーロラの熱が赤道近辺まで届く[[テレコネクション|大気振動]]を起こしていることも分かっている<ref name="kamide83">[[#上出|上出 (2010)]]、83頁。</ref>。オーロラの熱が水平方向に伝播して気圧配置に関わる可能性も指摘されているが、あまり研究は進んでいない<ref name="kamide83" />。


オーロラに伴って発生した熱によって大気が膨張し、そこへ人工衛星が突入することがある<ref name="kamide82">[[#上出|上出 (2010)]]、82頁。</ref>。大気の密度の違いによって、膨らみに突入した人工衛星の軌道が変わり、墜落したことも何度かある<ref name="kamide82" />{{#tag:ref|例えば、1993年に打ち上げられた[[あすか (人工衛星)|人工衛星あすか]]は2000年7月に膨張した大気へ突入し姿勢が崩れた。その後2001年3月、大気圏に突入し、消滅した。<ref>{{cite web|url=http://www.isas.ac.jp/j/enterp/missions/asca/index.shtml|title=X線天文衛星「あすか」ASTRO-D / 科学衛星|publisher=ISAS|accessdate=2012-08-06}}</ref><ref>[[#柴田|柴田 (2010)]]、111頁。</ref>。|group="†"}}。
== 見られる場所 ==
[[ファイル:Map auroral oval mostly canada.png|thumb|left|200px|オーロラ帯は[[地磁気極]]を中心とする楕円である<ref>[[#赤祖父|赤祖父 (2002)]]、149頁。</ref>。青点は北極点、赤点は地磁気極]]
[[ファイル:Aurora australis 20050911.jpg|thumb|left|200px|宇宙から見た南極付近のオーロラオーバル(背景の地球は合成)]]
オーロラは完全な両極点近傍ではあまり発生しない。地磁気の[[緯度]]でいえば、昼側では75度を中心としておよそ77度から78度のあたり、夜側では65度を中心としておよそ68度から70度のあたりに、地球の[[磁極]]を取り巻くドーナツ状の領域に発生する。オーロラの発生している領域を「オーロラオーバル」と呼ぶ<ref>[[#神沼|神沼 (2009)]]、147–148頁。</ref><ref>[[#上出|上出 (2010)]]、54頁。</ref>。そしてオーロラがよく発生する領域をオーロラ帯(オーロラベルト)という。地磁気の[[緯度]]でいえばおよそ60度から70度のあたりである<ref>[[#上出|上出 (2010)]]、52頁。</ref><ref>{{cite web|url=http://polaris.nipr.ac.jp/~aurora/aboutAurora/aboutAurora_frame.html|title=南極におけるオーロラ研究|author=門倉昭|publisher=国立極地研究所|accessdate=2012-05-01}}</ref>。オーロラ発光の原因である[[プラズマ]]粒子がほぼ[[磁力線]]に沿って動くという性質を持っていることと関係している。オーロラを起こす粒子が主要な供給源であるプラズマシートから地球電離層まで磁力線に沿って進入すると、このドーナツ上の領域にたどり着くため、そこでオーロラが発光しやすいのである<ref>[[#上出|上出 (2010)]]、119頁。</ref>。


== 出現地域 ==
カナダの[[イエローナイフ]]<ref>{{cite web|url=http://www.canadaauroranetwork.com|title=カナダ イエローナイフ オーロラ情報局|accessdate=2012-05-25}}</ref>やユーコン準州の[[ドーソンシティ]]<ref>{{cite web|url=http://auroranavi.com/tours/dawson/details.html|title=浴びるオーロラ ドーソンツアー|publisher=ヤムナスカ|accessdate=2012-05-25日}}</ref>、アラスカの[[フェアバンクス]]<ref>{{cite web|url=http://www.explorefairbanks.com/go/fairbanks-jp/%E3%82%AA%E3%83%BC%E3%83%AD%E3%83%A9-%28northern-lights%29/90|title=Northern Lights|work=Explore Our Area|publisher=Fairbanks Convention & Visitors Bureau|accessdate=2012-05-25}}</ref>、スウェーデンの[[キルナ]]<ref>{{cite web|url=http://www.kirunalapland.se/Global/images/Broschyrer/Northern%20Lights%20products%20in%20Kiruna.pdf|title=KIRUNA スウェーデン・ラップランド地方、キールナ市上空に広がるオーロラ|accessdate=2012-05-25}}</ref>がオーロラがよく見られる場所として有名で、多くの観光客や写真家が訪れる。
[[ファイル:Map auroral oval mostly canada.png|thumb|200px|オーロラ帯は[[地磁気極]]を中心とする楕円である<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、149頁。</ref>。青点は北極点、赤点は地磁気極]]
[[ファイル:Aurora australis 20050911.jpg|thumb|200px|宇宙から見た南極付近のオーロラオーバル(背景の地球は合成)<br />[http://commons.wikimedia.org/wiki/File:Aurora_Australis.gif アニメーションで見る]]]
[[ファイル:Amundsen-Scott marsstation ray h edit.jpg|thumb|200px|[[南極点]]で撮影されたオーロラ]]
オーロラは完全な両極点近傍ではあまり観測されない。地磁気の[[緯度]]{{#tag:ref|地磁気の経緯度とは、地磁気極を元に定めた経緯度である。地磁気極とは、地球の磁場を[[磁気双極子]](小さな棒磁石)で近似した時に、双極子の延長線と地表面が交差する地点2箇所のことである。なお、地磁気北極・地磁気南極はそれぞれ[[北磁極]]・[[南磁極]]とは違う場所にある。|group="†"}}でいえば、昼側では75度を中心としておよそ77度から78度のあたり、夜側では65度を中心としておよそ68度から70度のあたりに、地球の[[磁極]]を取り巻くドーナツ状の領域に発生する。オーロラの発生している領域を「オーロラオーバル」と呼ぶ<ref>[[#神沼|神沼 (2009)]]、147–148頁。</ref><ref>[[#上出|上出 (2010)]]、54頁。</ref>。そして、昼夜を平均すると地磁気の緯度でおよそ60度から70度のあたりにオーロラがよく発生するので、この領域を「オーロラ帯」(オーロラベルト)という。<ref>[[#上出|上出 (2010)]]、52頁。</ref><ref>{{cite web|url=http://polaris.nipr.ac.jp/~aurora/aboutAurora/aboutAurora_frame.html|title=南極におけるオーロラ研究|author=門倉昭|publisher=国立極地研究所|accessdate=2012-05-01}}</ref>。オーロラ発光の原因である[[プラズマ]]粒子がほぼ[[磁力線]]に沿って動くという性質を持っていることと関係している。オーロラを起こす粒子が主要な供給源であるプラズマシートから地球電離層まで磁力線に沿って進入すると、このドーナツ上の領域にたどり着くため、そこでオーロラが発光しやすいのである<ref>[[#上出|上出 (2010)]]、119頁。</ref>。最もオーロラの見られる頻度が高い地域では、一年に250日くらい見える。つまり、[[白夜]]ではない夜ならばほぼ毎日見られるのである<ref>[[#上出|上出 (2010)]]、53頁。</ref>。オーロラの活動が活発なとき、オーロラオーバルは大きくなり、より低緯度側に現れる{{#tag:ref|北半球なら南下し、南半球なら北上する。|group="†"}}<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、207頁。</ref>。


カナダの[[イエローナイフ]]<ref>{{cite web|url=http://www.canadaauroranetwork.com|title=カナダ イエローナイフ オーロラ情報局|accessdate=2012-05-25}}</ref>やユーコン準州の[[ドーソンシティ]]<ref>{{cite web|url=http://auroranavi.com/tours/dawson/details.html|title=浴びるオーロラ ドーソンツアー|publisher=ヤムナスカ|accessdate=2012-05-25日}}</ref>、アラスカの[[フェアバンクス]]<ref>{{cite web|url=http://www.explorefairbanks.com/go/fairbanks-jp/%E3%82%AA%E3%83%BC%E3%83%AD%E3%83%A9-%28northern-lights%29/90|title=Northern Lights|work=Explore Our Area|publisher=Fairbanks Convention & Visitors Bureau|accessdate=2012-05-25}}</ref>、スウェーデンの[[キルナ]]<ref>{{cite web|url=http://www.kirunalapland.se/Global/images/Broschyrer/Northern%20Lights%20products%20in%20Kiruna.pdf|format=PDF|title=KIRUNA スウェーデン・ラップランド地方、キールナ市上空に広がるオーロラ|accessdate=2012-05-25}}</ref>がオーロラがよく見られる場所として有名で、多くの観光客や写真家が訪れる。
南極の[[昭和基地]]はオーロラ帯の真下にありオーロラがよく見られ、ロケット、衛星、地上光学機器、レーダーなどを使った観測が行われている<ref>{{cite web|url=http://www.nipr.ac.jp/jare/topics/gaibuhyouka/chapter1-4.html|title=第1章 学術研究活動に関する評価 4 超高層物理の研究領域|work=南極地域観測事業外部評価書|author=南極地域観測事業外部評価委員会|publisher=国立極地研究所|accessdate=2012-05-25}}</ref>。第一次越冬隊(1957年)では徹夜でオーロラを普通のカメラで撮影し変遷や角度をメモするだけであった<ref>[[#西堀|西堀 (1958)]]、116頁。</ref>。その後研究設備が充実するにつれ、オーロラの発生している領域へロケットを打ち込んだり<ref>[[#小野、柴田|小野、柴田 (2006)]]、170頁、176–177頁。</ref>、レーダーや磁気計や全天カメラによる自動観測を行ったりしている<ref>{{cite web|url=http://www8.cao.go.jp/cstp/tyousakai/hyouka/haihu92/sanko2-3-12.pdf|title=南極地域観測事業の概要 資料1 モニタリング研究観測: (1) 宙空圏変動のモニタリング|work=総合科学技術会議 第92回評価専門調査会 議事次第配布資料|publisher=内閣府 科学技術政策・イノベーション担当|accessdate=2012-05-12}}</ref>。


1980年代に開始された人工衛星による観測で、まるでオーロラベルトの直径を示すかのように夜側から昼側へ延びる形のオーロラが発見され、その形からシータオーロラと命名された<ref>[[#上出|上出 (2010)]]、134頁。</ref>。
1980年代に開始された人工衛星による観測で、まるでオーロラベルトの直径を示すかのように夜側から昼側へ延びる形のオーロラが発見され、その形からシータオーロラと命名された<ref>[[#上出|上出 (2010)]]、134頁。</ref>。
73行目: 155行目:
オーロラは北極と南極で同じような形態(色や形)で発生することが知られている。これは同一の磁力線に沿ってオーロラを起こす粒子が同時に降下するからである<ref name="kaminuma150" />。このように同じ磁力線で繋がっている地点を共役点という<ref>[[#上出|上出 (2010)]]、61頁。</ref>。共役点は地磁気の経緯度が同じである<ref name="yuiitsu">{{cite web|url=http://polaris.nipr.ac.jp/~aurora/nsato_conj_obs.html/IandS/obs-point.html|title=世界唯一の観測点|work=共役点オーロラ|publisher=国立極地研究所|author=佐藤夏雄|accessdate=2012-06-07}}</ref>。オーロラ帯の下にあって、地磁気の緯度が同じで、なおかつ南北共に陸上である地点は、地球上ではかなり限られている<ref name="yuiitsu" />。
オーロラは北極と南極で同じような形態(色や形)で発生することが知られている。これは同一の磁力線に沿ってオーロラを起こす粒子が同時に降下するからである<ref name="kaminuma150" />。このように同じ磁力線で繋がっている地点を共役点という<ref>[[#上出|上出 (2010)]]、61頁。</ref>。共役点は地磁気の経緯度が同じである<ref name="yuiitsu">{{cite web|url=http://polaris.nipr.ac.jp/~aurora/nsato_conj_obs.html/IandS/obs-point.html|title=世界唯一の観測点|work=共役点オーロラ|publisher=国立極地研究所|author=佐藤夏雄|accessdate=2012-06-07}}</ref>。オーロラ帯の下にあって、地磁気の緯度が同じで、なおかつ南北共に陸上である地点は、地球上ではかなり限られている<ref name="yuiitsu" />。


1970年代頃、日本の昭和基地の共役点は運良く陸上に、[[アイスランド]]の[[レイキャヴィーク]]付近にあったため<ref>[[#小野、柴田|小野、柴田 (2006)]]、178頁。</ref><ref name="yuiitsu" /><ref name="sato">{{cite web|url=http://polaris.nipr.ac.jp/~aurora/nsato_conj_obs.html/IandS/mv-conjugate.html|title=共役点は動く|work=共役点オーロラ|publisher=国立極地研究所|author=佐藤夏雄|accessdate=2012-06-16}}</ref>、1980年代に[[アイスランド大学]]と協力して昭和基地とアイスランドでの同時観測を開始した<ref name="kaminuma150">[[#神沼|神沼 (2009)]]、150頁。</ref>。その後2010年には昭和基地の共役点はアイスランド島を出ていってしまったが<ref name="sato" />、共役点観測は2013年まで続けられている<ref>{{cite web|url=http://www-arctic.nipr.ac.jp/directory/web_D2011/2011J/pdf_J/kadokura2011J.pdf|title=アイスランド - 昭和基地オーロラ共役点観測|publisher=国立極地研究所 北極観測センター|accessdate=2012-05-07}}</ref>。観測の結果、同じような形態のオーロラを観測することもあったが、形態の異なるオーロラを観測することもあった<ref>[[#小野、柴田|小野、柴田 (2006)]]、178頁。</ref>。共役点でなぜ違うオーロラが発生することもあるのかについては、未だ解明されていない<ref name="kaminuma150" />。
1970年代頃、日本の[[昭和基地]]の共役点は運良く陸上に、[[アイスランド]]の[[レイキャヴィーク]]付近にあったため<ref>[[#小野、柴田|小野、柴田 (2006)]]、178頁。</ref><ref name="yuiitsu" /><ref name="sato">{{cite web|url=http://polaris.nipr.ac.jp/~aurora/nsato_conj_obs.html/IandS/mv-conjugate.html|title=共役点は動く|work=共役点オーロラ|publisher=国立極地研究所|author=佐藤夏雄|accessdate=2012-06-16}}</ref>、1980年代に[[アイスランド大学]]と協力して昭和基地とアイスランドでの同時観測を開始した<ref name="kaminuma150">[[#神沼|神沼 (2009)]]、150頁。</ref>。その後2010年には昭和基地の共役点はアイスランド島を出ていってしまったが<ref name="sato" />、共役点観測は2013年まで続けられている<ref>{{cite web|url=http://www-arctic.nipr.ac.jp/directory/web_D2011/2011J/pdf_J/kadokura2011J.pdf|format=PDF|title=アイスランド - 昭和基地オーロラ共役点観測|publisher=国立極地研究所 北極観測センター|accessdate=2012-05-07}}</ref>。
この観測の結果、同じような形態のオーロラを観測することもあったが、形態の異なるオーロラを観測することもあった<ref>[[#小野、柴田|小野、柴田 (2006)]]、178頁。</ref>。共役点でなぜ違うオーロラが発生することもあるのかについては、未だ解明されていない<ref name="kaminuma150" />。


=== 地上の寒さとの関係 ===
=== 地上の寒さとの関係 ===
オーロラは地球の高緯度地域でのみ見られ、主に冬に、特に寒い日によく見られる。しかし前述のとおりオーロラは大気圏上層で起きる現象であり、地上の気温は関係ない<ref name="kamide78">[[#上出|上出 (2010)]]、56頁。</ref><ref name="samusa">{{cite web|url=http://auroranavi.com/auroranavi/faq_aurora.html#Q4|title=オーロラに関するQ&A 寒さとオーロラの関係はありますか?|work=オーロラ情報館|publisher=ヤムナスカ|accessdate=2012-04-28}}</ref>。高緯度地域で見らのは地球のオーロラ帯がたまたま高緯度地域にあるためである<ref name="kamide78" />。夏に見られず冬に見られのは高緯度地域の[[極夜]]および[[白夜]]のためである<ref name="samusa" />。寒い日に見られのは、晴れた日には[[放射冷却]]が起こりやすいので<ref>{{cite journal|和書|author=近藤純正|year=2011|title=放射冷却―最低気温,結氷,夜露―|url=http://www.metsoc.jp/tenki/pdf/2011/2011_06_0075.pdf|journal=天気|volume=58|number=6|pages=555–558頁(75–78頁)}}</ref>、オーロラが綺麗に見られるような快晴時は寒くなりがちなためである<ref>[[#上出|上出 (2010)]]、57–58頁。</ref>。
オーロラは地球の高緯度地域でのみ見られ、主に冬に、特に寒い日によく見られる。しかし前述のとおりオーロラは大気圏上層で起きる現象であり、地上の気温は関係ない<ref name="kamide56">[[#上出|上出 (2010)]]、56頁。</ref><ref name="samusa">{{cite web|url=http://auroranavi.com/auroranavi/faq_aurora.html#Q4|title=オーロラに関するQ&A 寒さとオーロラの関係はありますか?|work=オーロラ情報館|publisher=ヤムナスカ|accessdate=2012-04-28}}</ref>。
高緯度地域でやすいのは地球のオーロラ帯がたまたま高緯度地域にあるためである<ref name="kamide56" />。夏にあまり見られず冬に見られやすいのは高緯度地域の[[極夜]]および[[白夜]]のためである<ref name="samusa" />。寒い日に見られやすいのは、晴れた日には[[放射冷却]]が起こりやすいので<ref>{{cite journal|和書|author=近藤純正|year=2011|title=放射冷却―最低気温,結氷,夜露―|url=http://www.metsoc.jp/tenki/pdf/2011/2011_06_0075.pdf|format=PDF|journal=天気|volume=58|number=6|pages=555–558頁(75–78頁)}}</ref>、オーロラが綺麗に見られるような快晴時は寒くなりがちなためである<ref>[[#上出|上出 (2010)]]、57–58頁。</ref>。

== 出現時間 ==
多様な出現形態を持つオーロラという現象全体をみると、出現時間も多様である<ref name="maeda1967">{{cite journal|和書|author=前田嘉一、石川業六|title=極地高層大気と極光|url=http://www.metsoc.jp/tenki/pdf/1967/1967_11_0401.pdf|format=PDF|journal=天気|publisher=日本気象学会|volume=14|issue=11|pages=1-22頁|date=1967-11}}</ref><ref name="kitamura1958">{{cite journal|和書|author=北村泰一|title=昭和基地におけるオーロラ観測(1957-58)|journal=南極資料|publisher=国立極地研究所|volume=5|pages=234-255頁|date=1958-09|naid=110001181112}}</ref><ref name="yamaguchi1958">{{cite journal|和書|author=山口協|title=オーロラ覚え書|url=http://www.metsoc.jp/tenki/pdf/1958/1958_04_0106.pdf|format=PDF|journal=天気|publisher=日本気象学会|volume=5|issue=4|pages=10-16頁|date=1958-04}}</ref>。

オーロラ帯(後述)における典型的なオーロラの出現パターンの例を挙げると、夜21時や22時頃([[太陽時]])から極側にかすかなオーロラが見え始め、それが次第に低緯度側へ拡大し西の方へ広がっていき、弱い場合は東の方から消滅していくが、強い場合はブレイクアップに伴う鮮やかなオーロラが一時的に現れたあと弱いオーロラが継続し、翌朝6時頃明るくなるに伴い消滅していく<ref name="maeda1967"/>。

ただし、例としてオーロラ帯にある南極昭和基地における1957年冬の観測例を見ると、1時間程度で終わってしまう場合もあれば8時間続く場合もあるし、弱いものが続く場合もあれば強弱変化を繰り返す場合もあり、深夜3時になって出現し始める場合もある<ref name="kitamura1958"/>。

また低緯度でオーロラが多発した時期にあたる1957-1958年の日本での観測例を見ると、概ね夜18時-21時(日本標準時)に出現しその日のうちに消滅するものが多く、時間は数分の場合もあれば数時間続いた場合もあった<ref name="yamaguchi1958"/>。

また極域全体を暈のように覆う形状の弱い光を放つオーロラの例では、強弱を繰り返しながら日を跨いで数日間以上継続する場合がある<ref name="maeda1967"/>。

== 出現回数 ==
一日の内でオーロラが光ったことをカメラ・肉眼で観測した時、オーロラが一回出現したこととすることが多い<ref>{{Cite journal |url=http://jairo.nii.ac.jp/0201/00000806/en|title=極域昼間側に見られるオーロラの動形態と粒子源に関する研究|author=鮎川優|page=20-21 |date=1999 |accessdate=2013-01-13}}</ref><ref name="hokkaido2000" />。

過去のオーロラの変動に関して、複数の報告から1500年から1948年の北半球中緯度におけるオーロラの年間観測日数をまとめた研究がある。これによると、日数変化は[[太陽活動]]との相関性が高く、[[太陽黒点]]数のグラフに似た変動をする。[[16世紀]]・[[17世紀]]の間は年間数日から10日程度であったものが1710年頃から増え始め、1730年頃に約50日のピークに達した後、1760年頃に数日程度と底を打った後再び増加、1790年頃には100日近くになる。1810年頃には1日程度に急減して底を打つが、その後再び数十日程度に増加、[[19世紀]]後半は50 - 100日程度を推移し、1900 - 1910年頃10 - 20日程度に減少した後、[[20世紀]]前半は40 - 80日程度で推移した<ref>{{Cite journal |url=http://onlinelibrary.wiley.com/doi/10.1029/92RG01571/abstract |title=Secular variation of the aurora for the past 500 years |author=S. M. Silverman |journal=Reviews of Geophysics |volume=30 |issue=4 |page=333-351 |date=1992-01 |doi=10.1029/92RG01571 |accessdate=2013-01-08}}</ref><ref>{{Cite journal |url=http://onlinelibrary.wiley.com/doi/10.1029/RG018i003p00647/abstract |title=Evidence in the auroral record for secular solar variability |author=George L. Siscoe |journal=Reviews of Geophysics |volume=18 |issue=3 |page=647-658 |date=1980-01 |doi=10.1029/RG018i003p00647 |accessdate=2013-01-08}}</ref>。過去100年の中では、2005年から2010年のオーロラの観測件数が最も少なくなっていることがわかっている<ref>{{Cite web |url=http://www.afpbb.com/article/environment-science-it/science-technology/2762184/6262895 |title=オーロラが100年ぶりの減少、フィンランド気象庁 |publisher=AFPBB News|accessdate=2012-04-17}}</ref>。


== 日本とオーロラ ==
=== 日本国内での観測 ===
=== 日本国内での観測 ===
稀ではあるが日本でもオーロラを観測できることがある。太陽の活動が活発な時期([[#太陽の活動との関係|後述]])には[[北海道]]や[[本州]]北部で、肉眼では観測しづらいほどの弱光ながらも、赤いオーロラが出現する<ref>{{cite web|url=http://stdb2.stelab.nagoya-u.ac.jp/div2/project.html#LL_AR|title=低緯度オーロラの研究|work=研究紹介|publisher=名古屋大学太陽地球環境研究所電磁気圏環境部門|date=2005-03-03|accessdate=2012-04-15}}</ref><ref name="hokkaido2000" />。北海道で北の空を染める赤いオーロラを見た住民が山火事と勘違いして消防車が出動した記録もある<ref name="tankenmag">{{cite web|url=http://hokkaido-tanken.com/right/hyakumonogatari/rikubetsu/town/town1.html|title=オーロラが降り、星が空を埋め尽くすまち 陸別町|work=北海道探検マガジン|accessdate=2012-05-10}}</ref><ref>[[#上出|上出 (2010)]]、79頁。</ref>。また[[新潟県]]で、日本海上空が赤く輝く様子を見て、[[第九管区海上保安本部]]が火事ではないかと巡視船を出す騒ぎになったこともある<ref name="nakazawa98">[[#中沢|中沢]]、98頁。</ref>。
[[ファイル:Aurora australis.jpg|thumb|オーストラリアで撮影された写真。日本ほどの低緯度でオーロラが観測される時もこのように山際が赤く染まる]]
稀ではあるが日本でもオーロラを観測できることがある。太陽の活動が活発な時期には[[北海道]]や[[本州]]北部で、肉眼では観測しづらいほど弱光ながらも、赤いオーロラが出現する<ref>{{cite web|url=http://stdb2.stelab.nagoya-u.ac.jp/div2/project.html#LL_AR|title=低緯度オーロラの研究|work=研究紹介|publisher=名古屋大学太陽地球環境研究所電磁気圏環境部門|date=2005-03-03|accessdate=2012-04-15}}</ref><ref name="hokkaido2000" />。北の空を染める赤いオーロラを見た住民が山火事と勘違いして消防車が出動した記録もある<ref name="tankenmag">{{cite web|url=http://hokkaido-tanken.com/right/hyakumonogatari/rikubetsu/town/town1.html|title=オーロラが降り、星が空を埋め尽くすまち 陸別町|work=北海道探検マガジン|accessdate=2012-05-10}}</ref><ref>[[#上出|上出 (2010)]]、79頁。</ref>。[[1958年]][[2月11日]]には[[北陸]]から[[関東]]にかけて、さらに[[1770年]][[9月17日]]には[[長崎]]でも観測されたという記録が残っている<ref name="NAO News">{{cite news|url=http://www.astroarts.co.jp/news/2003/10/30nao680/index-j.shtml|title=日本でも赤いオーロラが見られた!国立天文台・天文ニュース (680)|newspaper=AstroArts|date=2003-10-03|accessdate=2012-04-15}}</ref>。


さらに、肉眼で見えないものも含めれば、比較的低緯度にある日本においても、磁気嵐の時にはオーロラが比較的頻繁に起きていることもわかっている<ref name="nakazawa99">[[#中沢|中沢]]、99頁。</ref>。
北海道の[[陸別町]]は[[1989年]]10月にオーロラが出現したことを契機として<ref name="tankenmag" />、オーロラを[[観光資源]]の一つとしている町である<ref>{{cite web|url=http://www.tokachibare.jp/what/rikubetsu/index.html|title=陸別町|publisher=十勝観光連盟公式サイト|accessdate=2012-05-10}}</ref>。町域にSuperDARN(スーパーデュアルオーロラレーダーネットワーク)の短波レーダーがある(北海道-陸別HFレーダー)<ref>{{cite web|url=http://center.stelab.nagoya-u.ac.jp/hokkaido/indexj.html|title=SuperDARN 北海道-陸別レーダー|publisher=名古屋大学太陽地球環境研究所|accessdate=2012-05-10}}</ref>ほか、[[道の駅オーロラタウン93りくべつ]]がある。


北海道の[[陸別町]]は[[1989年]]10月にオーロラが出現したことを契機として<ref name="tankenmag" />、オーロラを[[観光資源]]の一つとしている町である<ref>{{cite web|url=http://www.tokachibare.jp/what/rikubetsu/index.html|title=陸別町|publisher=十勝観光連盟公式サイト|accessdate=2012-05-10}}</ref>。町域にSuperDARN(スーパーデュアルオーロラレーダーネットワーク)の短波レーダーがある(北海道-陸別HFレーダー)<ref>{{cite web|url=http://center.stelab.nagoya-u.ac.jp/hokkaido/indexj.html|title=SuperDARN 北海道-陸別レーダー|publisher=名古屋大学太陽地球環境研究所|accessdate=2012-05-10}}</ref>ほか、[[道の駅オーロラタウン93りくべつ]]がある<ref>{{Cite web |url=http://www.hkd.mlit.go.jp/zigyoka/z_doro/station/69.htm |title=オーロラタウン93りくべつ |publisher=国土交通省北海道開発局 |accessdate=2012-08-26}}</ref>。
見られる機会が非常に少ない現象ではあるが、日本語では古来「赤気(せっき)」という名前がついていた<ref name="NAO News" />。最古の記述は[[日本書紀]]まで遡り、[[推古天皇]]統治時代の[[620年]]に、「天に赤気があり、その形は雉の雄に似ていた。長さは一丈(約3.8メートル)あまりであった」という記録が残っている<ref name="kamide78">[[#上出|上出 (2010)]]、78頁。</ref>。[[藤原定家]]の[[明月記]]にも、「北の空から赤気が迫ってきた。その中に白い箇所が5個ほどあり、筋も見られる。恐ろしいことだ。」と、オーロラのことだと推定される記録が残されている<ref name="kamide78" />。

=== 昭和基地 ===
南極の昭和基地はオーロラ帯の真下にありオーロラがよく見られ、ロケット、衛星、地上光学機器、レーダーなどを使った観測が行われている<ref>{{cite web|url=http://www.nipr.ac.jp/jare/topics/gaibuhyouka/chapter1-4.html|title=第1章 学術研究活動に関する評価 4 超高層物理の研究領域|work=南極地域観測事業外部評価書|author=南極地域観測事業外部評価委員会|publisher=国立極地研究所|accessdate=2012-05-25}}</ref>。第一次越冬隊(1957年)では徹夜でオーロラを普通のカメラで撮影し変遷や角度をメモするだけであった<ref>[[#西堀|西堀 (1958)]]、116頁。</ref>。その後研究設備が充実するにつれ、レーダーや磁気計や全天カメラによる自動観測を行ったり<ref>{{cite web|url=http://www8.cao.go.jp/cstp/tyousakai/hyouka/haihu92/sanko2-3-12.pdf|format=PDF|title=南極地域観測事業の概要 資料1 モニタリング研究観測: (1) 宙空圏変動のモニタリング|work=総合科学技術会議 第92回評価専門調査会 議事次第配布資料|publisher=内閣府 科学技術政策・イノベーション担当|accessdate=2012-05-12}}</ref>、オーロラが発光している空域へロケットを打ち込んだり<ref>[[#小野、柴田|小野、柴田 (2006)]]、170頁、176–177頁。</ref>している。

=== 日本の観測史 ===
見られる機会が非常に少ない現象ではあるが、日本語では古来「赤気(せっき)」という名前がついていた<ref name="NAO News" /><ref name="fukushima3" />。「紅気(せっけ)」という記述もある<ref name="nakazawa94">[[#中沢|中沢]]、94頁。</ref><ref>[[#赤祖父 (2006)|赤祖父 (2006)]]、116頁。</ref>。最古の記述は[[日本書紀]]まで遡り、[[推古天皇]]の統治時代である[[620年]][[12月30日]]には<ref name="nakazawa94" />、「天に赤気があり、その形は雉の尾に似ていた。長さは一丈(約3.8メートル)あまりであった{{#tag:ref|原文{{Quotation|十二月庚寅朔、天有赤氣。長一丈餘。形似雉尾<ref>{{Cite web |url=http://www.seisaku.bz/nihonshoki/shoki_22.html|title=日本書紀、全文検索 底本は岩波古典文学大系本(卜部兼方・兼右本)/1990年発行版 |work=日本書紀巻第廿二 豐御食炊屋姬天皇 推古天皇|publisher=フジタ企画 |accessdate=2012-08-26}}</ref>。}}|group="†"}}。」という記録が残されている<ref name="kamide78">[[#上出|上出 (2010)]]、78頁。</ref>。[[藤原定家]]の[[明月記]]でも、[[1204年]][[2月21日]]に「北の空から赤気が迫ってきた。その中に白い箇所が5個ほどあり、筋も見られる。恐ろしいことだ。」と、オーロラのことだと推定される記録が残されている<ref name="nakazawa96">[[#中沢|中沢]]、96頁。</ref><ref name="kamide78" />。さらに[[1770年]][[9月17日]]に出現したオーロラは、およそ40種の文献に登場しており、[[肥前国]]([[長崎県]]・[[佐賀県]])でも観測されたという記録が残っている<ref name="nakazawa96" /><ref name="NAO News">{{cite news|url=http://www.astroarts.co.jp/news/2003/10/30nao680/index-j.shtml|title=日本でも赤いオーロラが見られた!国立天文台・天文ニュース (680)|newspaper=AstroArts|date=2003-10-03|accessdate=2012-04-15}}</ref>。

日本では[[明治]]期から「赤気」という言葉ではなく、「極光」や「オーロラ」が使われるようになった<ref name="nakazawa98" />。[[白瀬矗]]は[[1912年]]3月に南極から帰る際に現れたオーロラをスケッチし、報告書『南極』に残している<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、54頁。</ref>。日本社会へは[[1934年]]に開始された[[南極海]]での[[捕鯨]]により、オーロラが少しずつ紹介され始めた<ref name="kaminuma141" />。[[1958年]][[2月11日]]には天候に恵まれたこともあって、[[北陸]]から[[関東]]ににかけて赤い、一部では脈動や黄色も見られるオーロラが出現した<ref name="yamaguchi1958"/><ref name="nakazawa98">[[#中沢|中沢]]、98頁。</ref><ref name="NAO News" /><ref name="nakazawa96" />。ちょうど国際地球観測年に当たる1957年から気象庁は各地の測候所へオーロラ観測を命令していたため、この日は[[長野県]]・[[東北地方]]・北海道などでも観測された<ref name="yamaguchi1958"/><ref name="nakazawa98"/>。オーロラが出現した日は世界中で電波障害が起き、ヨーロッパでもオーロラが見られた<ref name="nakazawa98" />。1989年にも北海道や東北地方などで肉眼で見えるオーロラが出現した<ref name="nakazawa99" />。

{{Wide image|Aurora australis panorama.jpg|720px|オーストラリアで撮影された写真。 日本ほどの低緯度でオーロラが観測される時もこのように山際が赤黒く染まる。}}

== 太陽の活動との関係 ==
[[ファイル:Magnetosphere rendition.jpg|thumb|300px|太陽活動とオーロラの活動には深い関係がある。太陽風の磁力線と地球の磁力線の再結合、そして夜側の磁力線の再結合により、オーロラが起きる。]]
オーロラの原因となる太陽の活動としては、[[太陽フレア]]の発生<ref name="kamide87">[[#上出|上出 (2010)]]、87頁。</ref>、突発的な[[コロナ質量放出]]により放出された[[コロナ]]の地球磁気圏への衝突<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、206-207頁。</ref>、高速の太陽風が噴出する[[コロナホール]]の生成<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、208-209頁。</ref>の3つが挙げられる<ref name="kamide87" />。

この中でも特にコロナホールは数か月の間ほとんど同じ場所で継続するため、太陽の自転周期を計算するだけでオーロラの活動の予測ができる<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、209-210頁。</ref>。またコロナホールは黒点のピークの年から数年経った後、つまり黒点周期の後半に多く生成する<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、210頁。</ref><ref>[[#上出|上出 (2010)]]、87–89頁。</ref>。

旅行会社は黒点周期の11年ごとに「オーロラの当たり年」「オーロラ最盛期」などとしてオーロラツアーを組むことがある<ref>{{cite web|url=http://skygate.weblogs.jp/blog/2012/02/111-431d.html|title=今年は11年に1度の当たり年 最高のオーロラと出会うイエローナイフの旅|work=スカイゲートスタッフ旅行記|author=鈴木博美|publisher=エアーリンク|date=2012-02-29|accessdate=2012-04-17}}</ref><ref name="yusen">{{cite web|url=http://www.ytk.co.jp/tabiyujin_hike/newinfo_aurora.html|title=オーロラの誘い|publisher=郵船トラベル|accessdate=2012-04-17}}</ref><ref>[[#上出|上出 (2010)]]、85頁。</ref>。確かにオーロラの活動と太陽の活動は連動しているものの、実際には11年ごとのピークを逃しても活発なオーロラが出現することがあり、たとえ黒点の数がゼロになっても太陽にコロナがある限り太陽風は吹き、ある程度のオーロラは出現する<ref name="kamide87" />。

=== 磁力線の再結合 ===
地球の地磁気は、北極がS極、南極がN極になっているため、磁力線は南から北へと向かっている<ref name="shibata102">[[#柴田|柴田 (2010)]]、102頁。</ref>。そのため太陽風の磁場が南向きの時は、太陽風の磁力線と地球の磁力線が再結合(磁気リコネクション)し、プラズマは磁気圏の中へ磁力線をたどって侵入できるようになる<ref name="shibata102" /><ref>[[#上出|上出 (2010)]]、119頁。</ref>。つまり、太陽からやってくる磁場が南向きの時は爆発的なオーロラが発達しやすく、逆に北向きの時は静かなオーロラが出やすいのである<ref name="akasofu207" />。ただし1980年代には、より多くのプラズマで地球の磁気圏の中が満たされるのは、太陽風の向きが北向きの時である、ということが判明した<ref>{{cite web|url=http://www.isas.ac.jp/j/forefront/2006/hasegawa/index.shtml|title=オーロラの起源粒子を運ぶ宇宙空間ガスの渦|publisher=ISAS|auther=長谷川洋|accessdate=2012-08-29}}</ref>。その原因は、地球磁気圏と太陽風の間では[[ケルビン・ヘルムホルツ不安定性]]によって渦が発生していることから、この渦によりプラズマが地球磁気圏へ混ぜ込まれるのではないかという説がある<ref>{{cite web|url=http://sprg.isas.jaxa.jp/researchTeam/spacePlasma/projects/hase_research/hase_research.html|title=太陽風プラズマの磁気圏流入メカニズムの研究|publisher=ISAS|auther=長谷川洋|accessdate=2012-08-29}}</ref><ref>{{cite web|url=http://www.eps.s.u-tokyo.ac.jp/epphys/space/earth-magnetosphere.html|title=地球磁気圏|publisher=東京大学理学部地球惑星物理学科|accessdate=2012-08-29}}</ref>。

太陽風が速いと、地球の磁気圏がより引き伸ばされ、夜側(太陽の反対側)でも磁気リコネクションがおきることがある<ref name="shibata102" />。磁力線はリコネクションによりV字型になると、丁度[[スリングショット|パチンコ]]のゴムひものように急激に縮み、周りにくっついていたプラズマをパチンコ弾のようにとばす性質がある<ref>{{cite web|url=http://www.kwasan.kyoto-u.ac.jp/hosizora/astron/astron4/astron4_P33-39.pdf|format=PDF|title=最新太陽像と宇宙天気予報 その2|publisher=柴田一成|accessdate=2012-08-28}}</ref><ref>[[#柴田|柴田 (2010)]]、59頁。</ref>。磁気リコネクションによってプラズマ粒子が磁力線をなぞるように両極へなだれ込み、オーロラが出るのである<ref name="shibata102" /><ref>{{cite web|url=http://www.isas.jaxa.jp/j/enterp/missions/geotail/achiev.shtml|title=磁気圏尾部観測衛星 GEOTAIL / 科学的成果|publisher=ISAS|accessdate=2012-08-29}}</ref>。リコネクションとオーロラの因果関係は未だ認められていないものの<ref>{{cite web|url=http://www.isas.ac.jp/docs/PLAINnews/new/186_1.html|title=PLAINニュース サブストーム開始に伴う磁気圏尾部の時間発展の最新描像|auther=宮下幸長|publisher=名古屋大学太陽地球環境研究所|accessdate=2012-08-29}}</ref>、相関関係は認められており<ref>{{cite web|url=http://center.stelab.nagoya-u.ac.jp/kaken/reco0307.pdf|format=PDF|title=太陽・地球磁気圏の磁気リコネクションのモデリングとシミュレーション|publisher=名古屋大学太陽地球環境研究所|accessdate=2012-08-29}}</ref>、プラズマの加速理由を磁気リコネクションに求める説は、数十年来続くオーロラ発生機構の議論の中では最も有力な説である<ref name="miyashita" />。


== 地球以外の惑星におけるオーロラ ==
== 地球以外の惑星におけるオーロラ ==
[[ファイル:Aurora Saturn.jpg|thumb|230px|[[ハッブル宇宙望遠鏡]]が捉えた土星のオーロラ。地球以外の惑星でも、南北に同じようなオーロラが現れる。オーロラは紫外線、土星本体は可視光で撮影。<br />[http://commons.wikimedia.org/wiki/File:Saturns_Northern_Aurora_in_Motion.gif アニメーションで見る] ]]

オーロラは地球に限らず、これまで[[火星]]<ref>{{Cite web|url=http://www.universetoday.com/am/publish/mars_express_aurorae.html?1722006 |title=Mars Express Finds Auroras on Mars|accessdate=2012-06-14}}</ref>や[[金星]]、[[木星]]、[[土星]]、[[天王星]]、[[海王星]]でも観測されており<ref name="autogenerated1">{{cite web
オーロラは地球に限らず、これまで[[火星]]<ref>{{Cite web|url=http://www.universetoday.com/am/publish/mars_express_aurorae.html?1722006 |title=Mars Express Finds Auroras on Mars|accessdate=2012-06-14}}</ref>や[[金星]]、[[木星]]、[[土星]]、[[天王星]]、[[海王星]]でも観測されており<ref name="autogenerated1">{{cite web
| url=http://www.esa.int/esaCP/SEMLQ71DU8E_index_0.html
| url=http://www.esa.int/esaCP/SEMLQ71DU8E_index_0.html
92行目: 219行目:
| publisher=Esa.int
| publisher=Esa.int
| date=2004-08-11
| date=2004-08-11
|accessdate=2010-08-05}}</ref><ref name="kamide90">[[#上出|上出 (2010)]]、90頁。</ref>、大気と固有の磁場をもつ[[惑星]]ならばオーロラが出現する可能性がある<ref name="kamide90" />。
|accessdate=2010-08-05}}</ref><ref name="kamide90">[[#上出|上出 (2010)]]、90頁。</ref>、大気と固有の磁場をもつ[[惑星]]ならばオーロラが出現する可能性があるとされる<ref name="kamide90" />。逆に言えば、[[月]]と[[水星]]にオーロラがほぼ出ないのは、[[月の大気]]も[[水星の大気]]も殆どないに等しいためである<ref name="kamide90" />。
=== 地球型惑星 ===
[[2004年]]8月14日に[[マーズ・エクスプレス]]が搭載するSPICAM(紫外・赤外大気スペクトロメータ)により火星でもオーロラが観測された。場所は火星の東経177度南緯52度周辺。広がった時の大きさは30キロメートルで、上空およそ8キロメートルに出現した。[[マーズ・グローバル・サーベイヤー]]が収集したデータにある、地殻の磁力が異常な地帯と比べて分析したところ、出現した場所は磁場が一番強い所だと判明した。この関係が示唆するのは、やはり、オーロラの光は電子などが磁力線に沿って動き火星上空の大気を励起させた結果だ、ということである<ref name="autogenerated1" /><ref>{{cite web
| date=February 18, 2006
| url=http://www.universetoday.com/am/publish/mars_express_aurorae.html?1722006
| title=Mars Express Finds Auroras on Mars
| publisher=Universe Today
| accessdate=5 August 2010}}</ref>。


ただし、金星には固有の(惑星が持っている)磁場はないにも拘らず、夜側にぼんやりとした、形の定まっていないオーロラが出る<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、195頁。</ref><ref name="Charles Q. Choi" />。近年の観測により、金星には引き伸ばされた磁気圏があってそれに伴い磁気リコネクションが発生していることが分かり、オーロラの原因を説明できるのではないかとされている<ref name="Charles Q. Choi">{{cite web
木星と土星の磁場は地球と比べてかなり強く(木星の磁場は赤道付近でおよそ4.3[[ガウス]]。地球の磁場は赤道付近でおよそ0.3ガウス。)、どちらも放射線帯を持っている。[[ハッブル宇宙望遠鏡]]により綺麗に観測できる<ref name="autogenerated1" />。巨大ガス惑星に現れるオーロラは地球と同じで太陽風により出現しているらしい。しかしながらそれに加えて木星では木星の衛星が、特に[[イオ (衛星)|イオ]]がオーロラの強力な発生源である。惑星の自転と衛星が惑星の周りを公転することにより、惑星とその衛星は相対的に位置が変わり続けているため、ダイナモ機構によって力線に沿った電流が起きているのである。活発な火山と電離層を持っているイオは特に強い発生源であり、1955年の研究開始以来電流とそれに伴う電波が出続けている。ハッブル宇宙望遠鏡によりイオ、[[エウロパ (衛星)|エウロパ]]、[[ガニメデ (衛星)|ガニメデ]]そのものでもオーロラが出現していることが分かった。金星には固有の(惑星が持っている)磁場はないので、強く明るくぼんやりとした、形の定まっていないまだら状のオーロラが出る。時折分散して現れ惑星全体を覆うことすらある。金星のオーロラは太陽風を起源とする電子が金星の夜側の大気へ降り注ぐことによりもたらされる。[[2004年]]8月14日に[[マーズ・エクスプレス]]が搭載するSPICAMにより火星でオーロラが観測された。場所は火星の緯度にして東経177度南緯52度周辺。広がった時の大きさは30kmで、上空およそ8kmに出現した。[[マーズ・グローバル・サーベイヤー]]が収集したデータにある、地殻の磁力が異常な地帯と比べて分析したところ、出現した場所は磁場が一番強い所だと判明した。この関係が示唆するのは、やはり、オーロラの光は電子などが磁力線に沿って動き火星上空の大気を励起させた結果だ、ということである<ref name="autogenerated1" /><ref>{{cite web|date=February 18, 2006 |url=http://www.universetoday.com/am/publish/mars_express_aurorae.html?1722006 |title=Mars Express Finds Auroras on Mars |publisher=Universe Today |accessdate=5 August 2010}}</ref>。
| author=Charles Q. Choi
| url = http://www.space.com/15171-venus-auroras-magnetic-field.html
| title = Surprise! Venus May Have Auroras Without a Magnetic Field
| publisher =SPACE.com
| accessdate = 2011-09-07}}</ref> 。


=== 木星型惑星 ===
<Gallery>
木星と土星の磁場は地球と比べてかなり強く、どちらも強磁場により生じる放射線帯(地球における[[ヴァン・アレン帯]]に相当)を持っている。[[ハッブル宇宙望遠鏡]]により明瞭なオーロラが観測できる<ref name="autogenerated1" />。
File:Aurora Saturn.jpg|[[ハッブル宇宙望遠鏡]]が捉えた土星のオーロラ。地球以外の惑星でも、南北に同じようなオーロラが現れる。オーロラは紫外線、土星本体は可視光で撮影。
File:Polar aurora on Uranus HST.jpg|天王星のオーロラ。横倒しの地軸周辺ではなく、更にひっくり返っている地磁気局の周辺に現れる<ref>{{Cite news |url=http://zasshi.news.yahoo.co.jp/article?a=20120416-00000002-natiogeo-int |title=天王星のオーロラ、ハッブルが初撮影 |newspaper= Yahoo!ニュース |accessdate=2012-06-09}}</ref>。
File:Jupiter.Aurora.HST.UV.jpg|木星のオーロラ。
</Gallery>


木星のオーロラオーバルは地球3個分の大きさであり<ref name="akasofu196">[[#赤祖父 (2002)|赤祖父 (2002)]]、196頁。</ref>、エネルギーは地球のオーロラの1000倍ほどである<ref name="tosa">{{cite web
== 観測の歴史 ==
| author=土佐誠
=== 神話や伝承 ===
| url = http://alpo-j.asahikawa-med.ac.jp/Conference/2008/report.htm
[[ファイル:Jutrzenka Wilanów.jpg|thumb|180px|アウロラ]]
| title = 天体の磁場‐磁場の起源:ダイナモ理論
オーロラという名称は[[ローマ神話]]の暁の女神[[アウロラ]](Aurora)に由来する。名付け親はイタリアのガリレオ・ガリレイという説が有力である<ref>[[#上出|上出 (2010)]]、27–28頁。</ref><ref>{{Cite web |url=http://www.nationalgeographic.co.jp/special/aurora/ |title=オーロラ特集 |publisher=ナショナルジオグラフィック |accessdate=2012-04-17}}</ref>。前述のとおり、中国や西欧ほどの緯度ではオーロラの活動が活発な時に赤いオーロラが見える。中世ヨーロッパでは赤いオーロラから血を連想し、災害や戦争の前触れ、あるいは神の怒りであると解釈していた<ref name="kamide25">[[#上出|上出 (2010)]]、25頁。</ref><ref>[[#赤祖父|赤祖父 (2002)]]、29頁。</ref>。また中世までのヨーロッパでは、オーロラを「空に剣や長槍が現れ」て動いた・戦ったと表現することが多い。これはオーロラの縦縞が激しく動くさまを表している<ref>[[#赤祖父|赤祖父 (2002)]]、28頁。</ref>。ただし、彗星も凶兆とされていたこともあって、オーロラなのか彗星なのか判別できない記述もある<ref>[[#赤祖父|赤祖父 (2002)]]、30頁。</ref>。
| publisher =月惑星研究会
| accessdate = 2011-09-07}}</ref>。これほど強力なオーロラが出る理由は、木星の磁場が強いことも挙げられるが、それ以外にも木星の衛星、とりわけ活発な火山を持っている[[イオ (衛星)|イオ]]も強力な発生源の一つとしてあげられる。[[イオの火山活動]]によって吹き出した[[硫黄]]や[[酸素]]の[[イオン]]が木星の磁場圏を満たしているのである<ref>[[#上出|上出 (2010)]]、92頁。</ref><ref name="tosa" />。なおオーロラの色は[[木星の大気]]の水素を反映したピンク色になる<ref name="akasofu196" />。


天王星のオーロラは赤道付近に出る。これは軌道面から98度傾いている地軸周辺に天王星の地磁気軸がなく、地軸から更に60度ひっくり返っているところにあるためである<ref>{{Cite news
[[北欧神話]]においてオーロラは、夜空を駆ける[[ワルキューレ]]たちの甲冑の輝きだとされる<ref>{{Cite web |url=http://www.mythbiblio.com/category/scandinavian_myth/valkyria/index.html |title=ヴァルキューレ(ヴァルキリー) |publisher=神話用語辞典 |accessdate=2012-04-17}}</ref><ref name="yusen" />。北欧ではオーロラにより死者の世界と生者の世界が結びついている、と信じている人が未だにおり<ref>[[#上出|上出 (2010)]]、24頁。</ref>、またエスキモーの伝説では、生前の行いが良かった人は死後、オーロラの国(実質的に天国のこと)へ旅立つということになっている<ref>[[#上出|上出 (2010)]]、27頁。</ref>。
| url=http://www.nationalgeographic.co.jp/news/news_article.php?file_id=20120416002&expand
| title=天王星のオーロラ、ハッブルが初撮影
| publisher= ナショナルジオグラフィック ニュース
| accessdate=2012-09-08}}</ref><ref name="akasofu196" />。


<Gallery>
古代中国ではオーロラは天に住む赤い龍に見立てられ<ref name="kamide25" />、やはり西洋と同様に政治の大変革や不吉なことの前触れであると信じられていた<ref>[[#上出|上出 (2010)]]、26頁。</ref>。この他にも古代中国には赤い蛇のような体を持ち、体長が千[[里]]におよぶとされる[[燭陰]]という神がいた<ref>{{Cite book|和書|author=高馬三良訳|title=[[山海経]] 中国古代の神話世界|year=1994|publisher=[[平凡社]]|series=平凡社ライブラリー|isbn=978-4-582-76034-7|page=126}}</ref>。中国の神話学者・何新は、大地の最北極に住む燭陰はオーロラが神格化されたものではないかと論証している。その一方で中国の考古学者・徐明龍は、燭陰を、[[中国神話]]の神である[[祝融]]と同一神であるとし、[[太陽神]]、[[火炎崇拝|火神]]ではないかと述べている<ref>{{Cite book|和書|author=[[多田克己]]|title=百鬼解読|year=2006|publisher=[[講談社]]|series=[[講談社文庫]]|isbn=978-4-06-275484-2|pages=237–243}}</ref>。
ファイル:Jupiter's aurora.jpg|木星でも南北に同じようなオーロラが現れる。オーロラは紫外線、木星本体は可視光で撮影。

ファイル:Jupiter.Aurora.HST.UV.jpg|木星のオーロラ拡大図。参考:[http://commons.wikimedia.org/w/index.php?title=File:Jupiter.Aurora.HST.mod.svg 英語による説明画像]
=== 近代 ===
ファイル:Jupiter magnetosphere schematic.jpg|木星の磁気圏。青い線が磁力線。緑の線がイオの磁束管。
[[ファイル:Brockhaus and Efron Encyclopedic Dictionary b48 475-2.jpg|thumb|150px|[[ロシア帝国|ロシア]]で[[1890年]]から[[1907年]]まで出版されていた百科事典に載っているオーロラの挿絵。]]
ファイル:Polar aurora on Uranus HST.jpg|天王星のオーロラ。
[[近代]]以降、両極を探検した人々がオーロラを記録に残し始めた。[[ジェームズ・クック]]は、[[1773年]]2月の航海誌に「天空に光が現れた」と残しており、世界で最初に南半球のオーロラを見たヨーロッパ人であると言われている<ref>[[#赤祖父|赤祖父 (2002)]]、51頁。</ref>。オーロラを世に広く知らしめ、社会のオーロラへの関心を大きく高めた出来事としては、[[ジョン・フランクリン]]隊の遭難が挙げられる<ref>[[#赤祖父|赤祖父 (2002)]]、41頁。</ref>。フランクリンは[[北西航路]]を発見するために[[1845年]]に出港し、その後行方不明となった。消息の途絶えたカナダ北部へとフランクリン隊を探すために多くの救助隊が向かい、そこで見たオーロラを報告書や回顧録に残したのである<ref>[[#赤祖父|赤祖父 (2002)]]、40–41頁。</ref>。[[白瀬矗]]も、[[1912年]]3月に南極から帰る際、現れたオーロラをスケッチに残している<ref>[[#赤祖父|赤祖父 (2002)]]、54頁。</ref>。日本社会へは[[1934年]]に開始された[[南極海]]での[[捕鯨]]により、オーロラが少しずつ紹介され始めた<ref name="kaminuma141" />。
</Gallery>

== 形と分類 ==
オーロラの形はよくカーテンに例えられる。これは下端がはっきりしていて襞があることに由来する<ref name="kamide73">[[#上出|上出 (2010)]]、73頁。</ref>。下端は飛び込んでくる粒子の限界高度が、襞は磁力線の方向が可視化された結果である<ref name="kamide73" />{{#tag:ref|カーテンは磁力線に沿ってできる。そのため、真東か真西を向いて撮ったオーロラの写真の、カーテンの角度を測ることにより撮影場所の地磁気緯度を特定することができる<ref>[[#上出|上出 (2010)]]、74頁。</ref>。|group="†"}}。カーテンの、東西の長さは数千キロメートル、厚さは約500メートル、下端は前述のとおり地上約100キロメートル、上端は約300から500キロメートルである<ref>[[#赤祖父|赤祖父 (2002)]]、7頁。</ref>。

オーロラの形にはバンド(帯)、コロナ(冠、放射状)、アーク(弧)<ref name="akasofu9">[[#赤祖父|赤祖父 (2002)]]、9頁。</ref>、レイ(細い線)、トーチ(松明)、バルジ(腫れ)<ref name="kamide71">[[#上出|上出 (2010)]]、71頁。</ref>など様々な形がある。しかし、これらは単にカーテンの襞のサイズや数<ref name="akasofu9" />、カーテンの歪み方やねじれ方、曲がり方<ref name="kamide71" />のみで区別されているだけであり、オーロラそのものの種類が複数あるわけではない<ref name="akasofu9" /><ref name="kamide71" />。例えばコロナ型オーロラはカーテンが反物のように巻かれ、観測者がちょうど真下に立っている時に観測される<ref name="akasofu14">[[#赤祖父|赤祖父 (2002)]]、14頁。</ref>。なおこれとは別に点滅するオーロラもあり、脈動オーロラと呼ばれる<ref>[[#上出|上出 (2010)]]、72頁。</ref>。


== 音 ==
== 音 ==
[[ファイル:Aurora Australis From ISS.JPG|thumb|地上約100キロメートルよりも上空でオーロラは光っている]]
[[ファイル:ISS006-E-28961-cropped.jpg|thumb|地上約100キロメートルよりも上空でオーロラは光っている]]
[[磁気嵐]]のときに現れるような強いオーロラが、まれに音を発したという話が古くより数多く存在しており<ref name="Silverman1973">{{cite journal
[[磁気嵐]]のときに現れるような強いオーロラが、まれに音を発したという話が古くより数多く存在しており<ref name="Silverman1973">{{cite journal
| first=S.M. | last=Silverman
| first=S.M. | last=Silverman
134行目: 273行目:
| work=Auroral Sounds
| work=Auroral Sounds
| accessdate=2011-02-27
| accessdate=2011-02-27
}}</ref>、その実在をめぐって議論が行われている。 この'''オーロラの音''' ({{Lang|en|auroral sound}}) は聞こえるとしても非常にまれであり、強いオーロラが出ても何も聞こえないことも多い。また、同時に多く人が聞いた例もあれば、隣同士にいて方にしか聞こえなかった例もある。 多くの体験者はこの音がその眼に見えるオーロラの動きと同調して変化すると主張しており、音波の伝播による時間遅れはほとんどみられない。 音は「バチッバチッ」<ref name="akasofu203">[[#赤祖父|赤祖父 (2002)]]、203頁。</ref>や、葉音・衣ずれにしばしば例えられる<ref name="kamide84">[[#上出|上出 (2010)]]、84頁。</ref>「シュー」「ヒューッ」<ref name="kamide84" /><ref name="akasofu203" />といったノイズ音が代表的である。
}}</ref>、その実在をめぐって議論が行われている。 この'''オーロラの音''' ({{Lang|en|auroral sound}}) は聞こえるとしても非常にまれであり、強いオーロラが出ても何も聞こえないことも多い。日本南極観測隊・第次越冬隊の隊長である[[西堀栄三郎]]は自身の私記の中で
{{Quotation|三月二日。(中略)夜はすばらしいオーロラを見た。東北の空から西南にかけて、ほとんど全天に乱舞している。木星とともに、実に美しい。頭上をうねりたくるドンチョウが風でゆれるがごとく。気味がわるくなる。恐ろしいようだ。何の音もしない静かな夜だが、ものすごい音を立てて動いているような錯覚におちいる<ref>[[#西堀|西堀 (1958)]]、15頁。</ref>。}}と記している。

同時に多くの人が聞いた例もあれば、隣同士にいて一方にしか聞こえなかった例もある。 多くの体験者はこの音がその眼に見えるオーロラの動きと同調して変化すると主張しており、音波の伝播による時間的遅れはほとんどみられない。 音は「バチッバチッ」<ref name="akasofu203">[[#赤祖父 (2002)|赤祖父 (2002)]]、203頁。</ref>や、葉音・衣ずれにしばしば喩えられる<ref name="kamide84">[[#上出|上出 (2010)]]、84頁。</ref>「シュー」「ヒューッ」<ref name="kamide84" /><ref name="akasofu203" />といったノイズ音が代表的である。


既にローマ時代の[[タキトゥス]]の『[[ゲルマニア (書物)|ゲルマニア]]』にも、それを表しているともされる記述があるが<ref name="Rouse1881">{{cite journal
既にローマ時代の[[タキトゥス]]の『[[ゲルマニア (書物)|ゲルマニア]]』にも、それを表しているともされる記述があるが<ref name="Rouse1881">{{cite journal
188行目: 330行目:
}}</ref>、これらの説は必ずしも証言をうまく説明するものとはなっていない。
}}</ref>、これらの説は必ずしも証言をうまく説明するものとはなっていない。


オーロラが、ヒトの耳に聞こえないような20&nbsp;[[ヘルツ|Hz]] 以下の[[可聴下音]]を伝えていることは1960年代から知られており、これはオーロラから直接伝わってくる音波である<ref name="UAF-Infrasound" />。耳に聞こえる音もこうしたオーロラからの直接の音波ではないかともされる。しかし、こうした音はオーロラから届くまでに数分の時間がかかり同調して変化するという証言に合わない上、1&nbsp;Hz かそれ以下で顕著なものであり、いくらか高い周波数、例えば 40&nbsp;Hz では地上に届くまでにエネルギーが 1/1000 にまで減衰してしまう<ref name="Vaivads-Theories" />。
オーロラが、ヒトの耳に聞こえないような20&nbsp;[[ヘルツ|Hz]] 以下の[[低周波音|可聴下音]]を伝えていることは1960年代から知られており、これはオーロラから直接伝わってくる音波である<ref name="UAF-Infrasound" />。耳に聞こえる音もこうしたオーロラからの直接の音波ではないかともされる。しかし、こうした音はオーロラから届くまでに数分の時間がかかり同調して変化するという証言に合わない上、1&nbsp;Hz かそれ以下で顕著なものであり、いくらか高い周波数、例えば 40&nbsp;Hz では地上に届くまでにエネルギーが 1/1000 にまで減衰してしまう<ref name="Vaivads-Theories" />。


[[ファイル:Aurora 1 in Kiruna.JPG|thumb|250px|[[キルナ]]のオーロラ。]]
[[ファイル:Aurora 1 in Kiruna.JPG|thumb|left|250px|[[キルナ]]のオーロラ。]]
カナダの[[天文学者]][[クラレンス・チャント]]は、20世紀の初めより学術雑誌上でオーロラの音に関する多くの情報を集め、1923年には音が'''ブラシ放電'''による[[コロナ放電|コロナ音]]の可能性が最も高いと結論した<ref name="Keay1990" /><ref name="Chant1923">{{cite journal
カナダの[[天文学者]][[クラレンス・チャント]]は、20世紀の初めより学術雑誌上でオーロラの音に関する多くの情報を集め、1923年には音が'''ブラシ放電'''による[[コロナ放電|コロナ音]]の可能性が最も高いと結論した<ref name="Keay1990" /><ref name="Chant1923">{{cite journal
| first=C.A. | last=Chant
| first=C.A. | last=Chant
239行目: 381行目:
| volume=78 | pages=145&ndash;150
| volume=78 | pages=145&ndash;150
| url=http://adsabs.harvard.edu//abs/1984JRASC..78..145W
| url=http://adsabs.harvard.edu//abs/1984JRASC..78..145W
}}</ref>。
}}</ref>。[[ドーンコーラス]]も参照


一方、オーロラの音波を直接録音しようとした試みははっきりとした成果をあげていない。アラスカでは1960年代に録音が試みられたが、太陽の活動が不活発な時期に当たっていたこともあり成功していない<ref name="Silverman1973" />。[[2000年]]からは[[フィンランド]]で、音声記録と低周波の電波の測定実験が行われている<ref name="Laine">{{cite web
一方、オーロラの音波を直接録音しようとした試みははっきりとした成果をあげていない。アラスカでは1960年代に録音が試みられたが、太陽の活動が不活発な時期に当たっていたこともあり成功していない<ref name="Silverman1973" />。[[2000年]]からは[[フィンランド]]で、音声記録と低周波の電波の測定実験が行われている<ref name="Laine">{{cite web
246行目: 388行目:
| work=Laboratory of Acoustics and Audio Signal Processing, Helsinki University of Technology
| work=Laboratory of Acoustics and Audio Signal Processing, Helsinki University of Technology
| accessdate=2010-01-30
| accessdate=2010-01-30
}}</ref>。[[2001年]]の1晩のデータだけからの解析では、オーロラの活動が活発なときに音波の変動が大きくなることが示され、また音響記録と地磁気の変動との間で時間遅れのない相関が見出されたとしている。しかし、電場との相関はなく、記録された音がオーロラの音と同じものなら、局所的な電場あるいはその変動がオーロラの音の原因とは考えにくく<ref name="Laine2002">{{cite conference
}}</ref>。最初の録音は2000年に行われたが<ref>{{citation | title={{lang|fi|Revontulien äänistä uusia todisteita}} | year=2000 | url=http://www.mtv3.fi/uutiset/kotimaa.shtml/revontulien-aanista-uusia-todisteita/2000/04/18797 | publisher=[[MTV3]] | accessdate=2012-10-26 }}</ref><ref>{{citation | title={{lang|fi|Taivaanloimujen äänet taltioitiin nauhalle}} | year=2000 | url=http://www.verkkouutiset.fi/arkisto/Arkisto_2000/29.syyskuu/revo3900.htm | archiveurl=http://web.archive.org/web/20030223190005/http://www.verkkouutiset.fi/arkisto/Arkisto_2000/29.syyskuu/revo3900.htm | archivedate=2003-02-23 }}</ref>、不完全なものだった。[[2001年]]の1晩のデータだけからの解析では、オーロラの活動が活発なときに音波の変動が大きくなることが示され、また音響記録と地磁気の変動との間で時間遅れのない相関が見出されたとしている。しかし、電場との相関はなく、記録された音がオーロラの音と同じものなら、局所的な電場あるいはその変動がオーロラの音の原因とは考えにくく<ref name="Laine2002">{{cite conference
| first=Unto K. | last=Laine | coauthors=Esa Turunen, Jyrki Manninen, Heikki Nevanlinna
| first=Unto K. | last=Laine | coauthors=Esa Turunen, Jyrki Manninen, Heikki Nevanlinna
| year=2002
| year=2002
261行目: 403行目:
| url=http://lib.tkk.fi/Dipl/2005/urn007898.pdf | format=PDF
| url=http://lib.tkk.fi/Dipl/2005/urn007898.pdf | format=PDF
}}</ref>、これはブラシ放電や電磁波音という説明が成立しないことを示唆している。
}}</ref>、これはブラシ放電や電磁波音という説明が成立しないことを示唆している。

[[2011年]]、フィンランドのライネ(Unto K. Laine)らはオーロラに伴う複数の音を3つのマイクで同時観測し、[[2012年]]、音源は約70メートル上空だとする分析を発表した<ref>
{{citation | title={{lang|en|Sounds of Northern Lights are born close to ground}} | publisher=[[アールト大学]] | url=http://www.aalto.fi/en/current/news/view/2012-07-09/ | year=2012 | accessdate=2012-10-26 }}
</ref>。それによると、これらの微小な可聴音はオーロラと連動しており、恐らくオーロラを生じさせているのと同じ粒子の流れ(いわば目に見えないオーロラの裾)によるものだという。音が鳴る仕組みは依然解明されていない。「オーロラの音」とされるものの中には、実際には複数種類の別の現象が含まれていると予想される。ライネは、録音例について「幻聴・錯覚・ノイズなどではない」と強調している<ref>
{{citation | title={{lang|en|AURORAL ACOUSTICS - AURORA RELATED SOUNDS – NEWS}} | url=http://www.acoustics.hut.fi/projects/aurora/ASoundsNews.html | accessdate=2012-10-26 }}
</ref>。

== 人工オーロラ ==
オーロラの発生原理に基づいて、状況を人工的に再現すれば、人工的にオーロラを発生させることができる。実験室の中でもオーロラを発生させることができる。

[[1969年]]から[[1970年代]]にかけて、ロケットに[[電子銃]]をのせてオーロラが出る高度で発射する実験が行われた<ref>[[#デイビス|デイビス (1995)]]、146-147頁。</ref>。この実験により、電子ビームは南北半球を磁力線にそって往復してもエネルギーを殆ど失わないこと、磁力線の長さと形は算出・予想の通りだったことがわかった<ref>[[#デイビス|デイビス (1995)]]、147頁。</ref>。

{{see also|宇宙花火}}
電離しやすく色がある程度はっきり出る物質をロケットにつみこんで、上空約100キロメートル以上の空域でトレーサーとして撒けば、人工オーロラが出る<ref>[[#上出|上出 (2010)]]、122頁。</ref><ref>{{cite web|url=http://www.isas.jaxa.jp/j/researchers/symp/2012/image/0301_proc/P-10.pdf|format=PDF|title=WIND-IIキャンペーンにおいて観測された電離圏電子密度及びプラズマ波動|author=遠藤 研, 小野 高幸, 熊本 篤志, 佐藤 由佳, 寺田 直樹, 加藤 雄人|publisher=東北大学大学院理学研究科|accessdate=2012-10-02}}</ref>。使われる物質は、最初期の実験では[[ナトリウム]]<ref>[[#デイビス|デイビス (1995)]]、147頁。</ref>、その後はより残留する明るい物質として[[セシウム]]、[[リチウム]]、[[ストロンチウム]]、[[バリウム]]などが、また[[蛍光物質]]も使われることもある<ref>[[#デイビス|デイビス (1995)]]、148-151頁。</ref>。最も良いトレーサーはバリウムの蒸気が太陽光によって共鳴散乱してできる雲である<ref name="davis151">[[#デイビス|デイビス (1995)]]、151頁。</ref>。このバリウムの雲は、赤色と黄色の2色で輝いてから緑色に変わるものと、紫色から青色に変わるものの2種類できる<ref name="davis151" />。普通この実験はオーロラの仕組みを調べることよりも、上空の風や電磁場を調べるために行われる<ref name="kaminuma123" /><ref name="davis151" />。電離するためには太陽光が必要であり、なおかつ人工オーロラの光は太陽光にかき消されるほど弱いので、実験はたいてい[[宵]]や[[明け方]]に行われる<ref name="kaminuma123">[[#上出|上出 (2010)]]、123頁。</ref><ref>[[#デイビス|デイビス (1995)]]、148頁。</ref>。赤道付近で人工オーロラを発生させると、赤道付近は磁力線が地面とおおよそ並行になっているため、横長なオーロラが出現する<ref name="kaminuma124">[[#上出|上出 (2010)]]、124頁。</ref><ref>[[#デイビス|デイビス (1995)]]、151-152頁。</ref>。

=== テレラ ===
[[ファイル:Birkeland-terrella.jpg|thumb|人工オーロラの実験を行うビルケランド。]]
[[ファイル:Aurora borealis in a lab dsc04517.jpg|thumb|磁石を真空中に置き、プラズマを当てる。]]
[[ノルウェー]]の物理学者[[クリスチャン・ビルケランド]]は19世紀末、人工オーロラの発生実験を行った。まず[[真空]]状態にした箱の中に蛍光塗料を塗った中空の鉄球を置き、そこへ[[コイル]]を入れ磁場を作った。そして同じ箱のなかに[[電極]]を取り付け陰極とし、電子を鉄球に当てると、鉄球が陽極になって光らせることができた。この装置により、ビルケランドは電子が地球のどのあたりに当たるのか推定した<ref>[[#赤祖父 (2002)|赤祖父 (2002)]]、107–108頁。</ref><ref name="kaminuma124" />。

{{Quotation|大きな長方形の真空ガラス箱内の一方にB教授が「テレラ」と命名した球形の電磁石がつり下がっており、他の一方には陰極が插入されていて、そこから強力な陰極線が発射されると、その一道の電子の流れは球形磁石の磁場のためにその経路を彎曲され、球の磁極に近い数点に集注してそこに螢光を発する。その実験装置のそばに僧侶のような黒頭巾をかぶったB教授が立って説明している。この放電のために特別に設計された高圧直流発電機の低いうなり声が隣室から聞こえて来る。<ref>{{cite web|url=http://www.aozora.gr.jp/cards/000042/files/2515_10279.html|title=B教授の死|author=寺田寅彦|publisher=[[青空文庫]]|accessdate=2012-10-02}}</ref>|B教授の死|[[寺田寅彦]]}}

この装置の原理を使った、オーロラなどのプラズマ現象を再現できる中高生向けの教材がある<ref>{{cite web|url=http://www.ee.saga-u.ac.jp/plasma/img/aurora.pdf|format=PDF|title=生徒体験型オーロラ実験に関する教材開発|author=藤田寛治、大津康徳、三沢達也|publisher=佐賀大学|accessdate=2012-05-14}}</ref>。他にも2012年現在、同じ原理のオーロラ発生装置がある科学館は日本に何箇所かある<ref name="kaminuma124" />。また、[[飯田産業]]と[[大阪市立大学]]は大型のオーロラ発生装置を開発して[[江ノ島]]アイランドスパに設置<ref>{{cite news|author=河合基伸|date=2006-07-10|url=http://techon.nikkeibp.co.jp/article/NEWS/20060710/119007/|publisher=日経BP|title=江の島にオーロラ出現,飯田産業が人工オーロラ発生装置を開発|newspaper=Tech-On!|accessdate=2012-05-14}}</ref>し、さらにその後その改良型を[[上海国際博覧会|上海万博]]に出展した<ref>{{cite web|url=http://www.osaka-cu.ac.jp/news/20100521163425/research.html|title=工学研究科・南教授が上海万博大阪館に「人工オーロラ発生装置」を出展中|publisher=大阪市立大学|accessdate=2012-05-14}}</ref>。


== 脚注 ==
== 脚注 ==
[[ファイル:Northern lights on Kvaløya 2012-01-23.jpg|thumb|250px|ノルウェーで出現したオーロラ]]
{{脚注ヘルプ}}
{{脚注ヘルプ}}


270行目: 434行目:


=== 出典 ===
=== 出典 ===
[[ファイル:Northern lights on Kvaløya 2012-01-23.jpg|thumb|250px|ノルウェーで出現したオーロラ]]
{{reflist|2}}
{{reflist|2}}


== 参考文献 ==
== 参考文献 ==
* {{Cite book
* {{Cite book | 和書 | author=[[上出洋介]] | year=2010 | title=人はなぜオーロラにひかれるのか オーロラの科学 | publisher=[[誠文堂新光社]] | isbn=978-4416210253 | ref=上出}}
| 和書
* {{Cite book | 和書 | author=[[赤祖父俊一]] | year=2002 | title=オーロラ その謎と魅力 | publisher=[[岩波書店]] | isbn=4004307996 | ref=赤祖父}}
| author=[[赤祖父俊一]]
* {{Cite book | 和書 | author=[[神沼克伊]] | year=2009 | title=地球環境を映す鏡 南極の科学 氷に覆われた大陸のすべて | publisher=[[講談社]] | isbn=978-4062576598 | ref=神沼}}
| year=2002
* {{Cite book | 和書 | author=[[小野延雄]]、[[柴田鉄治]] | year=2006 | title=ニッポン南極観測隊 人間ドラマ50年 | publisher=[[丸善|丸善株式会社]] | isbn=978-4621077757 | ref=小野、柴田}}
| title=オーロラ その謎と魅力
* {{Cite book | 和書 | author=[[西堀榮三郎]] | title=南極越冬記 | year=1958 | publisher=[[岩波書店]] | series=岩波新書 | isbn=4004151023 | ref=西堀}}
| publisher=[[岩波書店]]
| isbn=4004307996
| ref=赤祖父 (2002)}}
* {{Cite book
| 和書
| author=[[赤祖父俊一]]
| title = 北極圏のサイエンス
| publisher = [[誠文堂新光社]]
| date = 2006年12月
| language = [[日本語]]
| isbn = 4416206356
| ref = 赤祖父 (2006)
}}
* {{Cite book
| 和書
| author=[[小野延雄]]、[[柴田鉄治]]
| year=2006
| title=ニッポン南極観測隊 人間ドラマ50年
| publisher=[[丸善|丸善株式会社]]
| isbn=978-4621077757
| ref=小野、柴田}}
* {{Cite book
| 和書
| author=[[上出洋介]]
| year=2010
| title=人はなぜオーロラにひかれるのか オーロラの科学
| publisher=[[誠文堂新光社]]
| isbn=978-4416210253
| ref=上出}}
* {{Cite book
| 和書
| author=[[神沼克伊]]
| year=2009
| title=地球環境を映す鏡 南極の科学 氷に覆われた大陸のすべて
| publisher=[[講談社]]
| isbn=978-4062576598
| ref=神沼}}
* {{Cite book
| 和書
| author=[[柴田一成 (宇宙物理学者)|柴田一成]]
| year=2010
| title=太陽の科学 磁場から宇宙の謎に迫る
| publisher=日本放送出版協会(現・[[NHK出版]])
| isbn=978-4140911495
| ref=柴田}}
* {{Cite book
| first = Neil
| last = Davis
| authorlink =
| translator = [[山田卓]]
| title = オーロラ
| publisher = 株式会社[[地人書館]]
| date = 1995年8月
| language = [[日本語]]
| edition = 初版
| isbn = 4805204982
| ref = デイビス
}}
* {{Cite journal
| author = [[中沢陽]]
| title = 日本における低緯度オーロラの記録について
| journal = [[天文雑誌#日本語の天文雑誌|天文月報]]
| volume = 92
| issue = 2
| pages = 94-101
| publisher = [[日本天文学会]]
| date = 1999年2月
| language = [[日本語]]
| url = http://www.asj.or.jp/geppou/archive_open/1999/pdf/19990203c.pdf |format=PDF
| accessdate = 2012-10-05
| ref=中沢}}
* {{Cite book
| 和書
| author=[[西堀榮三郎]]
| title=南極越冬記
| year=1958
| publisher=[[岩波書店]]
| series=岩波新書
| isbn=4004151023
| ref=西堀}}
* {{Cite journal
| author = [[福島直]]
| title = オーロラの話一―古文書記録
| journal = 広報
| volume = 7
| issue = 5
| pages = 2-4
| publisher = [[東京大学理学部]]
| date = 1975年6月
| language = [[日本語]]
| url = http://docs.s.u-tokyo.ac.jp/pub/%E5%AD%A6%E5%A4%96/Pro/%E7%90%86%E5%AD%A6%E7%B3%BB%E7%A0%94%E7%A9%B6%E7%A7%91%E3%83%BB%E7%90%86%E5%AD%A6%E9%83%A8%E3%83%8B%E3%83%A5%E3%83%BC%E3%82%B9/19750600_7_5.pdf |format=PDF
| accessdate = 2012-09-19
| ref=福島}}


== 関連項目 ==
== 関連項目 ==
{{col-start}}
{{Commonscat|Polar aurora}}
{{col-2}}
* [[太陽嵐]]
* [[太陽嵐]]
* [[ガンマ線バースト]]
* [[ガンマ線バースト]]
* [[ギリシャ神話]]
* [[北欧神話]]
* [[クリスチャン・ビルケランド]]
* [[クリスチャン・ビルケランド]]
{{col-2}}
* [[蛍光]]
* [[蛍光]]
* [[高周波活性オーロラ調査プログラム]]
* [[高周波活性オーロラ調査プログラム]] - 略称:HAARP
* [[オーロラソース]]
* [[特別:Prefixindex/{{SUBJECTPAGENAME}}|{{SUBJECTPAGENAME}}で始まる記事の一覧]]
* [[特別:Prefixindex/{{SUBJECTPAGENAME}}|{{SUBJECTPAGENAME}}で始まる記事の一覧]]
{{col-end}}


== 外部リンク ==
== 外部リンク ==
{{Commonscat|Polar aurora}}
* [http://polaris.nipr.ac.jp/~aurora/indexJ.html オーロラ世界資料センター]
* [http://polaris.nipr.ac.jp/~spuas/index.php 国立極地研究所 宙空圏研究グループ]
* [http://www.swpc.noaa.gov/pmap/index.html NOAA POES Auroral Activity] - [[:en:Polar Operational Environmental Satellites|POES]]衛星の観測による両極域の現在のオーロラ活動、[[アメリカ海洋大気圏局]](NOAA)提供
* [https://cssdp.ca/ssdp/app/static/related_projects/rt_oval.html Real-Time Auroral Oval] - 北半球の現在のオーロラ活動、Canadian Space Science Data Portal提供
* [http://swc.nict.go.jp/contents/ 宇宙天気情報センター] - オーロラ関連指標を含む[[宇宙天気予報]]、[[情報通信研究機構]](NICT)提供
* [http://swnews.jp/ 宇宙天気ニュース] - オーロラ関連指標を含む宇宙天気予報、[[鹿児島工業高等専門学校|鹿児島高専]] 篠原学氏提供
* [http://www.ausky.jp/aurora/ オーロラ中継 Live!オーロラ オーロラのしくみ]
* [http://www.ausky.jp/aurora/ オーロラ中継 Live!オーロラ オーロラのしくみ]
* [http://polaris.nipr.ac.jp/~acaurora/location/ 国立極地研究所オーロラ全天カメラ観測点一覧] - 南極と北極のオーロラオーバルのライブ中継
* [http://polaris.nipr.ac.jp/~acaurora/location/ 国立極地研究所オーロラ全天カメラ観測点一覧] - 南極と北極のオーロラオーバルのライブ中継
* [http://jokkmokk.jp/ Nature of Jokkmokk “PORJUS”] - 北欧のオーロラライブ中継
* [http://jokkmokk.jp/ Nature of Jokkmokk “PORJUS”] - 北欧のオーロラライブ中継
* [http://spaceweather.com/aurora/gallery_01oct11.htm?PHPSESSID=u84dtub3bda5b1j40i9dbsce50 Northern Lights photo gallery : October2011 Spaceweather.com ] アメリカ南東部で観測されたオーロラ
* [http://spaceweather.com/aurora/gallery_01oct11.htm?PHPSESSID=u84dtub3bda5b1j40i9dbsce50 Northern Lights photo gallery : October2011 Spaceweather.com ] アメリカ南東部で観測されたオーロラ
* [http://www.afpbb.com/article/life-culture/life/2853302/8362225 ネオンのように鮮やかなオーロラ、ノルウェー] AFPBB News 2012年1月26日


{{地球電磁気}}
{{地球電磁気}}
357行目: 621行目:
[[kn:ಆರೋರಾ]]
[[kn:ಆರೋರಾ]]
[[ko:오로라]]
[[ko:오로라]]
[[la:Aurora (astronomia)]]
[[lb:Polarliicht]]
[[lb:Polarliicht]]
[[lt:Poliarinė pašvaistė]]
[[lt:Poliarinė pašvaistė]]
[[lv:Polārblāzma]]
[[lv:Polārblāzma]]
[[mk:Поларна светлина]]
[[ml:ധ്രുവദീപ്തി]]
[[ml:ധ്രുവദീപ്തി]]
[[ms:Aurora (ilmu falak)]]
[[ms:Aurora (ilmu falak)]]

2013年1月21日 (月) 13:37時点における版

アラスカのオーロラ
第28次長期滞在のクルーが国際宇宙ステーションから撮ったオーロラの映像。撮影時刻はグリニッジ標準時で2011年9月7日17時38分03秒から17時49分15秒。場所はインド洋南部のフランス領南方・南極地域から南オーストラリア上空にかけて。

オーロラ (英語: aurora) は天体極域近辺に見られる大気の発光現象である。極光(きょっこう)ともいう[1]

以下本項では特に断らないかぎり、地球のオーロラについて述べる。

名称

アウロラ

オーロラという名称はローマ神話の暁の女神アウロラ(Aurora)に由来する[2][3][4]が、科学術語になった過程については定説がない[5]

この名称は17世紀頃から使用され始めたと考えられており、名付け親はフランスのピエール・ガッサンディという説があり[2][6]エドモンド・ハレーが自らの論文の中でこの説を述べている[7]。その一方でイタリアのガリレオ・ガリレイが名付けたという説もある[2][3][8]。当時彼は宗教裁判による命令で天体に関することを書けなかったため、弟子の名を使ってこのことを著している[4]

オーロラという名称が浸透する以前からも現象そのものは紀元前から様々な地で確認・記録されており、アリストテレスセネカはオーロラを天が裂けたところであると考えていた。特にアリストテレスは『気象論』で「天の割れ目(CHASMATIS)」と表現した[9][10]。また、日本では古くは「赤気」「紅気」などと表現されていた[11]。現代日本語では北極近辺のオーロラを北極光南極近辺のオーロラを南極光と呼ぶこともある[1][12]

北アメリカスカンジナビアではオーロラのことをnorthern lights(北の光)ともauroraとも呼ぶが、徐々にauroraも使うようになって来ている[4][13]。また北極光をnorthern lights、あるいはAurora Borealis、南極光をsouthern lights、 あるいはAurora Australisと呼ぶ[4][1]オーストラリアではオーロラのことをnorthern lightsと呼ぶ[4]。ときにはAurora polarisと呼ばれることもある[4]

観測史

日本の観測史については後述

神話や伝承

そのころ、アンティオコスは再度のエジプト攻撃の準備をしていた。
折から、全市におよそ四十日にわたり、金糸の衣装をまとい、
槍と抜き身の剣で完全武装した騎兵隊が
空中を駆け巡るのが見えるという出来事が起きた。
すなわち、隊を整えた騎兵がおのおの攻撃や突撃をし、
盾が揺れ、槍は林立し、投げ槍が飛び、
金の飾りやさまざまな胸当てがきらめいた。
そこで人は皆、この出現が吉兆であるようにと願った。
マカバイ記二 5章 1,2,3,4節 [14][15]

中国西欧ほどの緯度ではオーロラの活動が活発な時にオーロラの上の部分、赤い部分が見える[16]。このことから中世ヨーロッパではオーロラのから血液を連想し、災害や戦争の前触れ、あるいは神の怒りであると解釈していた[17][18][19]。また中世までのヨーロッパでは、オーロラを「空に剣や長槍が現れ」て動いた・戦ったと表現することが多い。これはオーロラの縦縞が激しく動くさまを表している[15]

ただし、彗星も空に現れる凶兆とされていたこともあって、オーロラなのか彗星なのか判別できない記述もある[20]

古代中国ではオーロラは天に住む赤い龍に見立てられ[18]、やはり西洋と同様に政治の大変革や不吉なことの前触れであると信じられていた[21]。この他にも古代中国には赤い蛇のような体を持ち、体長が千におよぶとされる燭陰という神がいた[22]。中国の神話学者・何新は、大地の最北極に住む燭陰はオーロラが神格化されたものではないかと論証している。その一方で中国の考古学者・徐明龍は、燭陰を、中国神話の神である祝融と同一神であるとし、太陽神火神ではないかと述べている[23]。また中国の古文書の中で天狗、帰邪、赤気、白気、竜などと表現されている天文現象の中にも、オーロラのことを指しているのではないかと推測されるものがある[24]

北欧神話においてオーロラは、夜空を駆けるワルキューレたちの甲冑の輝きだとされる[25][26]。北欧ではオーロラにより死者の世界と生者の世界が結びついている、と信じている人が未だにおり[27]、またエスキモーの伝説では、生前の行いが良かった人は死後、オーロラの国(実質的に天国のこと)へ旅立つということになっている[28]

近代

ロシア1890年から1907年まで出版されていた百科事典に載っているオーロラの挿絵。

近代以降、両極を探検した人々がオーロラを記録に残し始めた。ジェームズ・クックは、1773年2月の航海誌に「天空に光が現れた」と残しており、世界で最初に南半球のオーロラを見たヨーロッパ人であると言われている[29]

オーロラを世に広く知らしめ、社会のオーロラへの関心を大きく高めた出来事としては、ジョン・フランクリン隊の遭難が挙げられる[30]。フランクリンは北西航路を発見するために1845年に出港し、その後行方不明となった。消息の途絶えたカナダ北部へとフランクリン隊を探すために多くの救助隊が向かい、そこで見たオーロラを報告書や回顧録に残したのである[31]

両極を探検した人々もオーロラを手記や記録に残している。フリチョフ・ナンセンの著書や日記には木版画や絵画のオーロラが掲載されている[32][33]。またロバート・スコットも日記にオーロラの様子を残している[34][35]

折り畳まれ、揺れる光のカーテンが空に立ち上がり、そして広がり、ゆっくり消えて行く。かと思うと、また生き返る。このような美しい現象は、大自然への畏敬の念を持たずに見ることはできない。

オーロラが人の心を動かすのは、なにかとらえ難い、霊妙な生命にあふれたもの、静かな自信に満ちて、それでいて絶えず流れ来るものを暗示することによって、人々の想像力を刺激するからである。

[35] — ロバート・スコットの日記より

研究史

オーロラの発生原理については、古くから多くの科学者たちが解明に努めてきた[17]。特に18世紀から19世紀にかけてのオーロラ研究は電磁気学の誕生と発展そのものである、と言う研究者もいる[36]

黎明期

まるで地面から吹出したように見えるオーロラもある[37]

エドモンド・ハレーは1716年3月にオーロラを観測して論文を発表した。ハレーはオーロラの縞模様と球形磁石の磁力線と一致しているのを認識し、「磁気原子」という仮想の原子が地球内部から吹き出してきて、それが磁力線にそって発光するのではないか、という仮説をたてた[38]。フランスのド・メラン(en)はこの説を支持しなかったが、ジョン・ドルトンジャン=バティスト・ビオは支持した。特にビオは、「磁気原子」の噴出は火山の噴火によるものだと主張した[39]

ド・メランは1733年にオーロラに関する世界初の学術書を書いた。その中でド・メランは巻雲を原因とする説を退け、地球外物質を原因とした。黄道光を作る物質が地球の大気圏で発火する、という説を唱えたのである[40]太陽黒点の数とオーロラの発生頻度に相関関係があることを発見したのもド・メランである[40]。また同著の中で、南半球にも北半球とよく似たオーロラが出るのではないかとも述べている[41]

発生頻度の研究も行われた。イライアス・ルーミス(en)は1859年の太陽嵐をまとめ、1860年にオーロラの発生頻度分布図を作った[42]。図は約1世紀後の国際地球観測年により多くの情報を元に作られた分布図と比べても遜色のないほど正確である[43]。スイスのフリッツはルーミスの図を定量化し、一年でオーロラが発生する日数が同じ地点を線で結び、「アイソカズム」と名付けた[44][† 1]

電磁気学の発展

カール・ステルマー(左・en)と助手のビルケラント(右)。1910年撮影。

1741年、アンデルス・セルシウスとその助手 Olof Hiorter はオーロラが発生すると地球磁場も変動するということを発見した[17][46]。またアレクサンダー・フォン・フンボルトは1845年から1862年にかけて刊行された『コスモス』の1章を割いてオーロラについて述べている[47]。彼はベルリンからアルプスの高山から赤道から極地まで地球磁場を準定量的に測り、ロシアとイギリスの王立協会に地磁気観測所を進言して設立させ、地磁気の擾乱が全球的なものであることを突き止めた[47]。そして、世界中の磁場が乱れて高緯度地方に強いオーロラが出たり低緯度地方にオーロラが出たりする現象に対し、フンボルトは「地球磁場のカミナリ」という新しい術語を作った[48][47]。20世紀に開かれた国際会議により、この現象は「磁気嵐(Magnetic storms)」と再命名されている[48]

19世紀末になると、X線の発見やその研究、またジョゼフ・ジョン・トムソンによる電子の発見に象徴される、真空管を用いた実験が盛んになっていった[49]。トムソンは自著の中で放電管の光とオーロラの光は同一であろうと述べている[49]ノルウェーの物理学者、クリスチャン・ビルケランドは1896年の時点で、太陽から高速で飛んでくる電子が地球の大気に突入して光ったものがオーロラではないかと考えた。そして数多くの遠征や小さな地球を模した磁石(テレラ)による実験(後述)、地磁気擾乱の解析などを経て、1913年に研究結果を1冊の本にまとめた。この本の中で彼は既に、オーロラに沿って流れる大電流について述べている[50]

カール・ステルマーはビルケランドのテレラを見て数学者から理論物理地球学者に転向し、磁場内での荷電粒子の動きを計算した。しかし算出されたオーロラの発生範囲が実際のオーロラと違うことからステルマーは実測に力を入れ始め、計4万枚のオーロラの写真を撮った。この研究により、オーロラの下端が100キロメートル上空にあることが確認された[51]シドニー・チャップマンは1918年に「磁気嵐の理論の概要」という論文を発表した[52]。その後この論文に対する反論を受けて助手フェラローとともに1931年、地球の磁気圏は太陽風によって彗星のような形になっているという、チャップマン=フェラーロ理論を発表した[53]。太陽のプラズマの中に「未知のもの」があるはずだというチャップマンに学会は反発したものの、数年後に「未知のもの」とは太陽の磁場であることがわかった[54]。チャップマン=フェラーロ理論は約30年後のアメリカの人工衛星エクスプローラー12号により1961年に実証された[55]

ハンス・アルヴェーンアルヴェーン波を予言し、「磁場の凍結」という概念を確立したノーベル物理学賞受賞者である[56]。アルヴェーンは「磁場の凍結に固執するから太陽面爆発やオーロラを説明できないのだ」と自らの理論を軽んじて、若い研究者から異端として扱われた。実際に磁場の凍結でオーロラは説明できない[57]。その後チャップマンとアルヴェーンの間で磁気嵐を巡る論争が起こり、チャップマンは「数学的な解に十分な基礎をおかない思索を避けねばならない」といい、アルヴェーンは「プラズマは数式を嫌い、そしてまた数式の示すところに従いたがらない」といい、ステルマーは「オーロラがカーテン状である理由を説明できない理論はオーロラの理論と呼べない。結局私の理論が一番正しいはずである」といった[58]

分光

オーロラの光そのものを分析し、何が光っているのかを調べる研究もなされていたが、分光学そのものの発展を待たねばならなかった[59]。オーロラ分光学が始まったのは1850年台、そして最も代表的な緑白色の光の波長が正確に測定されたのは約70年後の1923年である[59]。当時の真空放電の装置では緑白色の光を再現できなかったり、分光が不正確で間違った同定がなされたりもした[60]アルフレート・ヴェーゲナーは、大気の上層には「ゲオコロニウム」という下層に存在しない元素があり、これが発光のもとではないかと考えた[60]ウィリアム・ラムゼーは著書の中で、「太陽中の放射性元素から放出されて飛来する電子が、大気中のクリプトンを励起することによってオーロラは作られる」と述べている[60]

Lars Vegard(en)は電離した窒素分子の出す光と電離してない窒素分子から出る光を同定した[61]。また、窒素の放電管実験で出る光のうちにオーロラの中にも見られる光が一つ有ることを発見した。この光はアメリカのKaplanによって同定されたためVegard-Kaplan帯と呼ばれる[61]アンデルス・オングストロームは19世紀後半、オーロラの分光を行い、オーロラの光は太陽光とは違って、短波長の光と狭い範囲の光の集まりであることを発見したと言われている[59]。そして緑白色の光の波長を556.7ナノメートルと測定した。正確には557.7ナノメートルである[59]。その後1925年にこの光が酸素分子から出ていることが発見された[62]。酸素原子の出す光も1930年に同定されるなど、オーロラの元となる気体の大部分が判明していき、大気の上層の組成もまた判明していった[63]

全球的観測

ドミニク作戦I・スターフィッシュプライム実験で発生したオーロラ。1962年7月。

やがて分光学磁気嵐の研究は深化するとともに専門化していった[64]。事実上、20世紀半ばの時点ではオーロラの分布や動きに関する研究は全くといっていいほど進んでいなかった[65]

水素原子の光を同定したガルトラインが1947年に全天カメラを考案しており、国際地球観測年の委員長シドニー・チャップマンは極地全域で全天カメラを撮影することを計画した[66]。さらにチャップマンは全天カメラ研究が一段落ついた1965年頃に、人工衛星から写真を撮ることを提案し、これも後述するように実現した[67]。国際地球観測年ではロケットを2台、オーロラの光っている空域へ打ち込み、強力な電子ビームがあることもわかった[67]

人工的にオーロラを出現させる実験もこの頃に実施された。最初の実験はNASAによって1969年に行われた[68]。しかし、この実験以前にも大気中核実験により期せずして人工のオーロラが発生したことがある[68]

フェルドシュタインはオーロラの発生する地域を1963年に初めて確定し、環状になっていることを突き止めた。太陽から見るとオーロラの環が固定されていることも発見した[69]赤祖父俊一も全天カメラやジェット機からの撮影によりオーロラの環の存在を示し、フェルドシュタインとともに1971年、発表したものの支持されなかった[70]。しかしカナダのアンガーが人工衛星ISIS IIによって実際に環を撮影すると、受け入れられた[71]

発生原理

地球の夜側にプラズマシートが形成される。

2012年現在では、オーロラの発生原理は以下のように考えられている。

太陽からは「太陽風」と呼ばれるプラズマの流れが常に地球に吹きつけており、これにより地球の磁気圏は太陽とは反対方向、つまり地球の夜側へと吹き流されている。太陽から放出されたプラズマは地球磁場と相互作用し、複雑な過程を経て磁気圏内に入り、地球磁気圏の夜側に広がる「プラズマシート」と呼ばれる領域を中心として溜まる。このプラズマシート中のプラズマが何らかのきっかけで磁力線にそって加速し、地球大気電離層)へ高速で降下することがある。大気中の粒子と衝突すると、大気粒子が一旦励起状態になり、それが元の状態に戻るときに発光する。これがオーロラである[72][73]

発光の原理だけならば、オーロラは蛍光灯ネオンサインと同じである[74]。プラズマシートが地球の夜側に形成されるため、オーロラは基本的に夜間にのみ出現するものである。しかし昼間にもわずかながら出現することがある[75]

どのようにして太陽風が地球の磁力圏に入り込むのか、なぜプラズマは特定の部分にたまるのか、何がきっかけで加速されるのかなど、発生原理の肝要な部分については未だ統一した見解はない[76]。最も有力な説は、入り込む理由や加速される理由を、地球の磁力線が反対向きの磁力線とくっつくこと(リコネクション)に求める説である[77]

オーロラが突如として一気に広がる現象をブレイクアップという[78]。日本語ではオーロラ爆発とも訳される[79]。空から突然光が噴出し全天に広がり、色や形の変化が数分間続く。このブレイクアップに関しても、発生原因や発生過程などはあまり分かっていない[80]

放出されるもの

可視光

フェアバンクスのオーロラ。上部は赤、下のほうは緑になっている。
珍しい紫のオーロラ。
大抵は月よりオーロラのほうが暗い。

オーロラの色は、宇宙からの粒子が大気に衝突する際に何の成分に当たったかだけではなく、どれくらいの高度で、どれくらいの頻度で、どれくらいの時間をかけて衝突し、どれくらいのエネルギーを与えられて励起し、どの基底状態に戻ったのか、など様々な要素が複雑にからみ合って決まる[81]。さらに、太陽光から特定の波長のみ吸収して起きる(共鳴散乱)オーロラがあるという説もあれば[82]、励起する際に原子軌道から跳ね飛ばされた電子(二次電子)が別の原子を励起して別の色を出すこともある[83]

しかし実際には観測される色と出現する高度にはおおまかに相関関係がある[84][85][86]。なお、オーロラの色の見え方は人によってまちまちである。同じ緑白色のオーロラが人によっては黄緑や緑色に見えたり、ピンクのオーロラが赤色に見えたりする[87]

  • 高度およそ数百キロメートルにある窒素分子が、入射してきた電子によりイオン化され、励起・発光すると301.4ナノメートル近辺(青)と427.8ナノメートル近辺(紫)の光をだす。どちらもオーロラの色に幅がある。青紫色のオーロラは、発光するための機構が複雑だったり、人間の目が不得手な波長だったりすることから、肉眼で観測できるのは非常に珍しい[88]
  • 高度がおよそ150から200キロメートルよりも高い領域では大気の密度が低いため、エネルギーの小さい電子でも酸素原子を励起させることができる。酸素原子はすこし励起して波長630ナノメートルの光を出す。人の目には赤く見える。
  • 高度およそ100から150キロメートルの辺りは大気の密度が高く、エネルギーの大きい電子でないと酸素原子を励起させられない。酸素原子は大いに励起してより波長の短い557.7ナノメートルの光を出す。人の目にはこれらの色が混ざり合って緑色や緑白色に見える。高緯度地域ではたいていこの色のオーロラが見られる。
  • 高度およそ90から100キロメートルの辺りまで到達するにはよほどオーロラ活動が強くなくてはならない。この高度では酸素よりも窒素のほうが多いため、窒素原子が励起して585.4ナノメートル以下の赤や青の光を出す。人の目にはこれらの色が混ざり合って、緑色のオーロラのカーテンの縁に、ピンクまたは赤紫のフリルが附属しているように見える。

このように、降り込む粒子のエネルギーが高いほど、平均的なオーロラの発光高度は低くなる。

太陽活動が活発なときは、たまに日本や中国、西欧のような低緯度地方でも赤いオーロラが観測されることがある。これは磁力線が低緯度側にふれることや、中低緯度地域になると地球の丸みのために上部の赤いオーロラしか見えないこと[89]、オーロラの発光部分の上端が1000km以上に伸びること[90]などと関係がある。

明るさはレイリーで表される。おおよそ1700レイリーくらいが肉眼で見えるかどうかの境目である[91]。オーロラの明るさを照度で表すと、普通のオーロラは0.1–0.01ルクス程度である。最も明るいオーロラでは数ルクスほどになり、満月の明るさに匹敵する[92]。ただし、満月が出ていてもオーロラを見たり撮影したりすることはできる[93][12]

またオーロラは肉眼で見えづらいものを含めれば、一晩中観測することが出来る。統計的には夜12時に近いほど見られやすいということが分かっている[94]。例えばアラスカではブレイクアップ(オーロラ爆発)は夜10時から翌3時までの間に起きやすい[95]。ブレイクアップそのものは普通おおよそ2~3分で終わるが、その前もその後もオーロラを見ることは可能である[96]

形と分類

オーロラの形はよくカーテンに例えられる。これは下端がはっきりしていて襞があることに由来する[97]。下端は飛び込んでくる粒子の限界高度が、襞は磁力線の方向が可視化された結果である[97][† 2]。カーテンの、東西の長さは数千キロメートル、厚さは約500メートル、下端は前述のとおり地上約100キロメートル、上端は約300から500キロメートルである[99]。オーロラの活動が活発なときには上端は1000キロメートル以上の高さになる[90]

オーロラの形にはバンド(帯)、コロナ(冠、放射状)、アーク(弧)[100]、トーチ(松明)、バルジ(腫れ)[101]など様々な形がある。しかし、これらは単にカーテンの襞のサイズや数[100]、カーテンの歪み方やねじれ方、曲がり方[101]のみで区別されているだけであり、オーロラそのものの種類が複数あるわけではない[100][101]。例えばコロナ型オーロラはカーテンが反物のように巻かれ、観測者がちょうど真下に立っている時に観測される[102][103]。細い線のように光っている部分をレイという。この部分はオーロラのカーテンが幾重にも重なっているため明るく見えるのである。たいてい水平方向(カーテンだったら引く方向)に移動する[103]

なおこれとは別に点滅するオーロラもあり、脈動オーロラと呼ばれる[104]

その他の波

オーロラ領域から観測される電磁波可視光だけではない。紫外線赤外線[105]、さらにはオーロラキロメートル電波英語版と呼ばれるキロメートル帯の電波など、様々な波長の電磁波が観測されている[† 3]。電磁波以外にもオーロラはヒトの可聴域よりも下の音(可聴下音、20 Hz 以下)を伝えていることが1960年代から知られている[107]

オーロラが可聴音を発しているのではないかという点に関しては後述

電流と磁場

MHD発電の原理。管の中にプラズマを流し、流れる方向と直角に磁場をかけると、プラズマの流れとも磁場とも直角な方向に電流が発生する[108][109]
極域に降り注いだエネルギーの高い陽子によって、電離層の吸収が高くなり、短波通信ができなくなることがある。これをPCAという[110]

オーロラの元である太陽から流れてくるプラズマと地球磁場とが相互作用することにより、起電力が生じる[83]。これはMHD発電と同じ原理であり、太陽風と地球の磁気圏がぶつかるところで発電されている[111]。太陽風が速く、磁場が強く、磁場が南向きの時は発電量が多い[112]


この「発電所」の出力はおよそ10の12乗ワット[113][† 4]、出せる電圧は数百キロボルトであることが推定されている[115][116]。太陽の活動が活発なときはおよそ10の14乗ワット出力できることも分かっている[117]。なおこれらの電力と電圧から、電流はおよそ数百万から数千万アンペアと算出されるが[118]、オーロラ内を流れる電流はその内の数百万アンペアである[117]。電流の強さとオーロラの明るさはおおよそ比例するが、絶対に比例するというわけではない[119]

オーロラが光るぐらいの高さは電離層という領域で、太陽の出す紫外線やX線により大気成分の一部がその名の示すように電離している。つまり電流が流れやすくなっている。オーロラを発生させる粒子が降ってくると、さらに大気が電離し、オーロラが明るい場所を中心に電流が流れる[119]。つまり、上記の「発電所」と回路が繋がることになる[120]ファラデーの電磁誘導の法則から分かるように、電流が流れると磁場が変化する。オーロラ電流による磁場の変化を読み取ることにより、極地にいなくてもどれくらいのオーロラ電流が流れているか算出することができる[121]

オーロラが引き起こした電磁場の変動により被害が出たこともある。例えば磁場の変動により変電所変圧器誘導電流が流れて壊れ、その結果停電が起きたり[122][123]パイプラインに誘導電流が流れて腐食したり[124][125]、伝書鳩が正しい方向へ向かえなくなったりしたことがある[124][126]。またオーロラの電流が通電する電離層は、電波が伝送・反射する領域でもあるため、オーロラとともに電波障害が起こり、航空機と空港の間で無線連絡が難しくなることもある[127][128]

さらにオーロラの電流により電離層の大気が誘導加熱され、熱も出る[129]。上記のオーロラ発電機の出力はこの熱から算出されたものである[129]。オーロラの熱が赤道近辺まで届く大気振動を起こしていることも分かっている[130]。オーロラの熱が水平方向に伝播して気圧配置に関わる可能性も指摘されているが、あまり研究は進んでいない[130]

オーロラに伴って発生した熱によって大気が膨張し、そこへ人工衛星が突入することがある[131]。大気の密度の違いによって、膨らみに突入した人工衛星の軌道が変わり、墜落したことも何度かある[131][† 5]

出現地域

オーロラ帯は地磁気極を中心とする楕円である[134]。青点は北極点、赤点は地磁気極
宇宙から見た南極付近のオーロラオーバル(背景の地球は合成)
アニメーションで見る
南極点で撮影されたオーロラ

オーロラは完全な両極点近傍ではあまり観測されない。地磁気の緯度[† 6]でいえば、昼側では75度を中心としておよそ77度から78度のあたり、夜側では65度を中心としておよそ68度から70度のあたりに、地球の磁極を取り巻くドーナツ状の領域に発生する。オーロラの発生している領域を「オーロラオーバル」と呼ぶ[135][136]。そして、昼夜を平均すると地磁気の緯度でおよそ60度から70度のあたりにオーロラがよく発生するので、この領域を「オーロラ帯」(オーロラベルト)という。[137][138]。オーロラ発光の原因であるプラズマ粒子がほぼ磁力線に沿って動くという性質を持っていることと関係している。オーロラを起こす粒子が主要な供給源であるプラズマシートから地球電離層まで磁力線に沿って進入すると、このドーナツ上の領域にたどり着くため、そこでオーロラが発光しやすいのである[139]。最もオーロラの見られる頻度が高い地域では、一年に250日くらい見える。つまり、白夜ではない夜ならばほぼ毎日見られるのである[140]。オーロラの活動が活発なとき、オーロラオーバルは大きくなり、より低緯度側に現れる[† 7][141]

カナダのイエローナイフ[142]やユーコン準州のドーソンシティ[143]、アラスカのフェアバンクス[144]、スウェーデンのキルナ[145]がオーロラがよく見られる場所として有名で、多くの観光客や写真家が訪れる。

1980年代に開始された人工衛星による観測で、まるでオーロラベルトの直径を示すかのように夜側から昼側へ延びる形のオーロラが発見され、その形からシータオーロラと命名された[146]

共役点

オーロラは北極と南極で同じような形態(色や形)で発生することが知られている。これは同一の磁力線に沿ってオーロラを起こす粒子が同時に降下するからである[147]。このように同じ磁力線で繋がっている地点を共役点という[148]。共役点は地磁気の経緯度が同じである[149]。オーロラ帯の下にあって、地磁気の緯度が同じで、なおかつ南北共に陸上である地点は、地球上ではかなり限られている[149]

1970年代頃、日本の昭和基地の共役点は運良く陸上に、アイスランドレイキャヴィーク付近にあったため[150][149][151]、1980年代にアイスランド大学と協力して昭和基地とアイスランドでの同時観測を開始した[147]。その後2010年には昭和基地の共役点はアイスランド島を出ていってしまったが[151]、共役点観測は2013年まで続けられている[152]

この観測の結果、同じような形態のオーロラを観測することもあったが、形態の異なるオーロラを観測することもあった[153]。共役点でなぜ違うオーロラが発生することもあるのかについては、未だ解明されていない[147]

地上の寒さとの関係

オーロラは地球の高緯度地域でのみ見られ、主に冬に、特に寒い日によく見られる。しかし前述のとおりオーロラは大気圏上層で起きる現象であり、地上の気温は関係ない[154][155]

高緯度地域で現れやすいのは地球のオーロラ帯がたまたま高緯度地域にあるためである[154]。夏にあまり見られず冬に見られやすいのは高緯度地域の極夜および白夜のためである[155]。寒い日に見られやすいのは、晴れた日には放射冷却が起こりやすいので[156]、オーロラが綺麗に見られるような快晴時は寒くなりがちなためである[157]

出現時間

多様な出現形態を持つオーロラという現象全体をみると、出現時間も多様である[158][159][160]

オーロラ帯(後述)における典型的なオーロラの出現パターンの例を挙げると、夜21時や22時頃(太陽時)から極側にかすかなオーロラが見え始め、それが次第に低緯度側へ拡大し西の方へ広がっていき、弱い場合は東の方から消滅していくが、強い場合はブレイクアップに伴う鮮やかなオーロラが一時的に現れたあと弱いオーロラが継続し、翌朝6時頃明るくなるに伴い消滅していく[158]

ただし、例としてオーロラ帯にある南極昭和基地における1957年冬の観測例を見ると、1時間程度で終わってしまう場合もあれば8時間続く場合もあるし、弱いものが続く場合もあれば強弱変化を繰り返す場合もあり、深夜3時になって出現し始める場合もある[159]

また低緯度でオーロラが多発した時期にあたる1957-1958年の日本での観測例を見ると、概ね夜18時-21時(日本標準時)に出現しその日のうちに消滅するものが多く、時間は数分の場合もあれば数時間続いた場合もあった[160]

また極域全体を暈のように覆う形状の弱い光を放つオーロラの例では、強弱を繰り返しながら日を跨いで数日間以上継続する場合がある[158]

出現回数

一日の内でオーロラが光ったことをカメラ・肉眼で観測した時、オーロラが一回出現したこととすることが多い[161][91]

過去のオーロラの変動に関して、複数の報告から1500年から1948年の北半球中緯度におけるオーロラの年間観測日数をまとめた研究がある。これによると、日数変化は太陽活動との相関性が高く、太陽黒点数のグラフに似た変動をする。16世紀17世紀の間は年間数日から10日程度であったものが1710年頃から増え始め、1730年頃に約50日のピークに達した後、1760年頃に数日程度と底を打った後再び増加、1790年頃には100日近くになる。1810年頃には1日程度に急減して底を打つが、その後再び数十日程度に増加、19世紀後半は50 - 100日程度を推移し、1900 - 1910年頃10 - 20日程度に減少した後、20世紀前半は40 - 80日程度で推移した[162][163]。過去100年の中では、2005年から2010年のオーロラの観測件数が最も少なくなっていることがわかっている[164]

日本とオーロラ

日本国内での観測

稀ではあるが日本でもオーロラを観測できることがある。太陽の活動が活発な時期(後述)には北海道本州北部で、肉眼では観測しづらいほどの弱光ながらも、赤いオーロラが出現する[165][91]。北海道で北の空を染める赤いオーロラを見た住民が山火事と勘違いして消防車が出動した記録もある[166][167]。また新潟県で、日本海上空が赤く輝く様子を見て、第九管区海上保安本部が火事ではないかと巡視船を出す騒ぎになったこともある[168]

さらに、肉眼で見えないものも含めれば、比較的低緯度にある日本においても、磁気嵐の時にはオーロラが比較的頻繁に起きていることもわかっている[169]

北海道の陸別町1989年10月にオーロラが出現したことを契機として[166]、オーロラを観光資源の一つとしている町である[170]。町域にSuperDARN(スーパーデュアルオーロラレーダーネットワーク)の短波レーダーがある(北海道-陸別HFレーダー)[171]ほか、道の駅オーロラタウン93りくべつがある[172]

昭和基地

南極の昭和基地はオーロラ帯の真下にありオーロラがよく見られ、ロケット、衛星、地上光学機器、レーダーなどを使った観測が行われている[173]。第一次越冬隊(1957年)では徹夜でオーロラを普通のカメラで撮影し変遷や角度をメモするだけであった[174]。その後研究設備が充実するにつれ、レーダーや磁気計や全天カメラによる自動観測を行ったり[175]、オーロラが発光している空域へロケットを打ち込んだり[176]している。

日本の観測史

見られる機会が非常に少ない現象ではあるが、日本語では古来「赤気(せっき)」という名前がついていた[177][24]。「紅気(せっけ)」という記述もある[11][178]。最古の記述は日本書紀まで遡り、推古天皇の統治時代である620年12月30日には[11]、「天に赤気があり、その形は雉の尾に似ていた。長さは一丈(約3.8メートル)あまりであった[† 8]。」という記録が残されている[180]藤原定家明月記でも、1204年2月21日に「北の空から赤気が迫ってきた。その中に白い箇所が5個ほどあり、筋も見られる。恐ろしいことだ。」と、オーロラのことだと推定される記録が残されている[181][180]。さらに1770年9月17日に出現したオーロラは、およそ40種の文献に登場しており、肥前国長崎県佐賀県)でも観測されたという記録が残っている[181][177]

日本では明治期から「赤気」という言葉ではなく、「極光」や「オーロラ」が使われるようになった[168]白瀬矗1912年3月に南極から帰る際に現れたオーロラをスケッチし、報告書『南極』に残している[182]。日本社会へは1934年に開始された南極海での捕鯨により、オーロラが少しずつ紹介され始めた[1]1958年2月11日には天候に恵まれたこともあって、北陸から関東ににかけて赤い、一部では脈動や黄色も見られるオーロラが出現した[160][168][177][181]。ちょうど国際地球観測年に当たる1957年から気象庁は各地の測候所へオーロラ観測を命令していたため、この日は長野県東北地方・北海道などでも観測された[160][168]。オーロラが出現した日は世界中で電波障害が起き、ヨーロッパでもオーロラが見られた[168]。1989年にも北海道や東北地方などで肉眼で見えるオーロラが出現した[169]

オーストラリアで撮影された写真。 日本ほどの低緯度でオーロラが観測される時もこのように山際が赤黒く染まる。

太陽の活動との関係

太陽活動とオーロラの活動には深い関係がある。太陽風の磁力線と地球の磁力線の再結合、そして夜側の磁力線の再結合により、オーロラが起きる。

オーロラの原因となる太陽の活動としては、太陽フレアの発生[183]、突発的なコロナ質量放出により放出されたコロナの地球磁気圏への衝突[184]、高速の太陽風が噴出するコロナホールの生成[185]の3つが挙げられる[183]

この中でも特にコロナホールは数か月の間ほとんど同じ場所で継続するため、太陽の自転周期を計算するだけでオーロラの活動の予測ができる[186]。またコロナホールは黒点のピークの年から数年経った後、つまり黒点周期の後半に多く生成する[187][188]

旅行会社は黒点周期の11年ごとに「オーロラの当たり年」「オーロラ最盛期」などとしてオーロラツアーを組むことがある[189][26][190]。確かにオーロラの活動と太陽の活動は連動しているものの、実際には11年ごとのピークを逃しても活発なオーロラが出現することがあり、たとえ黒点の数がゼロになっても太陽にコロナがある限り太陽風は吹き、ある程度のオーロラは出現する[183]

磁力線の再結合

地球の地磁気は、北極がS極、南極がN極になっているため、磁力線は南から北へと向かっている[191]。そのため太陽風の磁場が南向きの時は、太陽風の磁力線と地球の磁力線が再結合(磁気リコネクション)し、プラズマは磁気圏の中へ磁力線をたどって侵入できるようになる[191][192]。つまり、太陽からやってくる磁場が南向きの時は爆発的なオーロラが発達しやすく、逆に北向きの時は静かなオーロラが出やすいのである[112]。ただし1980年代には、より多くのプラズマで地球の磁気圏の中が満たされるのは、太陽風の向きが北向きの時である、ということが判明した[193]。その原因は、地球磁気圏と太陽風の間ではケルビン・ヘルムホルツ不安定性によって渦が発生していることから、この渦によりプラズマが地球磁気圏へ混ぜ込まれるのではないかという説がある[194][195]

太陽風が速いと、地球の磁気圏がより引き伸ばされ、夜側(太陽の反対側)でも磁気リコネクションがおきることがある[191]。磁力線はリコネクションによりV字型になると、丁度パチンコのゴムひものように急激に縮み、周りにくっついていたプラズマをパチンコ弾のようにとばす性質がある[196][197]。磁気リコネクションによってプラズマ粒子が磁力線をなぞるように両極へなだれ込み、オーロラが出るのである[191][198]。リコネクションとオーロラの因果関係は未だ認められていないものの[199]、相関関係は認められており[200]、プラズマの加速理由を磁気リコネクションに求める説は、数十年来続くオーロラ発生機構の議論の中では最も有力な説である[77]

地球以外の惑星におけるオーロラ

ハッブル宇宙望遠鏡が捉えた土星のオーロラ。地球以外の惑星でも、南北に同じようなオーロラが現れる。オーロラは紫外線、土星本体は可視光で撮影。
アニメーションで見る

オーロラは地球に限らず、これまで火星[201]金星木星土星天王星海王星でも観測されており[202][203]、大気と固有の磁場をもつ惑星ならばオーロラが出現する可能性があるとされる[203]。逆に言えば、水星にオーロラがほぼ出ないのは、月の大気水星の大気も殆どないに等しいためである[203]

地球型惑星

2004年8月14日にマーズ・エクスプレスが搭載するSPICAM(紫外・赤外大気スペクトロメータ)により火星でもオーロラが観測された。場所は火星の東経177度南緯52度周辺。広がった時の大きさは30キロメートルで、上空およそ8キロメートルに出現した。マーズ・グローバル・サーベイヤーが収集したデータにある、地殻の磁力が異常な地帯と比べて分析したところ、出現した場所は磁場が一番強い所だと判明した。この関係が示唆するのは、やはり、オーロラの光は電子などが磁力線に沿って動き火星上空の大気を励起させた結果だ、ということである[202][204]

ただし、金星には固有の(惑星が持っている)磁場はないにも拘らず、夜側にぼんやりとした、形の定まっていないオーロラが出る[205][206]。近年の観測により、金星には引き伸ばされた磁気圏があってそれに伴い磁気リコネクションが発生していることが分かり、オーロラの原因を説明できるのではないかとされている[206]

木星型惑星

木星と土星の磁場は地球と比べてかなり強く、どちらも強磁場により生じる放射線帯(地球におけるヴァン・アレン帯に相当)を持っている。ハッブル宇宙望遠鏡により明瞭なオーロラが観測できる[202]

木星のオーロラオーバルは地球3個分の大きさであり[207]、エネルギーは地球のオーロラの1000倍ほどである[208]。これほど強力なオーロラが出る理由は、木星の磁場が強いことも挙げられるが、それ以外にも木星の衛星、とりわけ活発な火山を持っているイオも強力な発生源の一つとしてあげられる。イオの火山活動によって吹き出した硫黄酸素イオンが木星の磁場圏を満たしているのである[209][208]。なおオーロラの色は木星の大気の水素を反映したピンク色になる[207]

天王星のオーロラは赤道付近に出る。これは軌道面から98度傾いている地軸周辺に天王星の地磁気軸がなく、地軸から更に60度ひっくり返っているところにあるためである[210][207]

地上約100キロメートルよりも上空でオーロラは光っている

磁気嵐のときに現れるような強いオーロラが、まれに音を発したという話が古くより数多く存在しており[211][212]、その実在をめぐって議論が行われている。 このオーロラの音 (auroral sound) は聞こえるとしても非常にまれであり、強いオーロラが出ても何も聞こえないことも多い。日本の南極観測隊・第一次越冬隊の隊長である西堀栄三郎は自身の私記の中で、

三月二日。(中略)夜はすばらしいオーロラを見た。東北の空から西南にかけて、ほとんど全天に乱舞している。木星とともに、実に美しい。頭上をうねりたくるドンチョウが風でゆれるがごとく。気味がわるくなる。恐ろしいようだ。何の音もしない静かな夜だが、ものすごい音を立てて動いているような錯覚におちいる[213]

と記している。

同時に多くの人が聞いた例もあれば、隣同士にいて一方にしか聞こえなかった例もある。 多くの体験者はこの音がその眼に見えるオーロラの動きと同調して変化すると主張しており、音波の伝播による時間的遅れはほとんどみられない。 音は「バチッバチッ」[214]や、葉音・衣ずれにしばしば喩えられる[215]「シュー」「ヒューッ」[215][214]といったノイズ音が代表的である。

既にローマ時代のタキトゥスの『ゲルマニア』にも、それを表しているともされる記述があるが[216][217]、科学的な議論は19世紀末から活発になった[218]。この音に対しては、主観的現象であるとするものや外界の物理的実在であるとするもの、またオーロラが何らかの関わりをもつとするものや関係のない音とするものなど、様々な説が提出されてきた。 しかし現在でも原因ははっきりしておらず、装置で記録された明確な証拠も得られていない[219]

例えば、ヒトの耳ではいつでも小さな耳鳴りがしているが、静寂の中でこうした音に気づくだけだとする説が古くからある[220][221]。また、外界の物理的な音ではあるがオーロラとは関係なく、−40℃ のような低温で呼気中の水分が凍って、氷の粒子が衝突することによる音であるとする主張もある[222]。逆に、音はオーロラに関係するものの主観的なもので、オーロラが網膜の広い範囲を同期して刺激することで視覚情報が聴覚へと漏れだす一種の共感覚的現象ではないかともされる[223]。ただし例えば、19世紀の探検家オギルヴィー (William Ogilvie) はオーロラの音が聞こえていた探検隊のメンバーを目隠ししても、オーロラが活発になったほぼ全ての瞬間に対応して反応したとしており[224]、これらの説は必ずしも証言をうまく説明するものとはなっていない。

オーロラが、ヒトの耳に聞こえないような20 Hz 以下の可聴下音を伝えていることは1960年代から知られており、これはオーロラから直接伝わってくる音波である[107]。耳に聞こえる音もこうしたオーロラからの直接の音波ではないかともされる。しかし、こうした音はオーロラから届くまでに数分の時間がかかり同調して変化するという証言に合わない上、1 Hz かそれ以下で顕著なものであり、いくらか高い周波数、例えば 40 Hz では地上に届くまでにエネルギーが 1/1000 にまで減衰してしまう[220]

キルナのオーロラ。

カナダの天文学者クラレンス・チャントは、20世紀の初めより学術雑誌上でオーロラの音に関する多くの情報を集め、1923年には音がブラシ放電によるコロナ音の可能性が最も高いと結論した[218][225]。この考えは1970年代にこのオーロラの音を最も精力的に調査したシルヴァーマン (S. M. Silverman) らによっても支持されている[211]。晴れた日の開けた地面には 1 m あたり 100 V の静電場があるが、オーロラがあるとこれはときに 10 000 V/m にまで上昇する[226]。この説ではこのとき観察者のそばの木の梢など、とがって電場が強くなるところからの放電が音を発生させているとする。こうしたブラシ放電の音は雷雲が接近した山中や、湿気が多い日の高圧送電線でも聞かれることがあるものである。ただし、オーロラの音においてはセントエルモの火のような放電に伴う光は観察されておらず、またこの説は同じ場所にいた一部の人にだけ聞こえたという事例を説明できないという問題点が指摘されている[226]

対して、オーストラリアの天文学者コリン・ケイ (Colin Keay) は、オーロラの音は電磁波音ではないかとしている[227]。ケイは、巨大な流星が流れるのと同時にまれに音を立てるといわれる現象に対し、1980年に可聴域周波数 (20 Hz – 20 kHz) の電波が何らかのトランスデューサーとなるものを介して音波になるのではないかとの説を唱えていた[228]。こうした電磁波から音波への変換による音が電磁波音と呼ばれる。ケイの実験ではピーク間 160 V/m の 4 kHz の電場の振動があれば、髪の毛やメガネなどを介して一部の人はこうした音を聞くことができるとする。こうした極超長波超長波の電波は実際衛星や地上の測定で確認され、録音されている[220][229]。一方でシルヴァーマンらはケイの議論で必要とされる電波は大き過ぎ、不合理であるとしている[230]ドーンコーラスも参照。

一方、オーロラの音波を直接録音しようとした試みははっきりとした成果をあげていない。アラスカでは1960年代に録音が試みられたが、太陽の活動が不活発な時期に当たっていたこともあり成功していない[211]2000年からはフィンランドで、音声記録と低周波の電波の測定実験が行われている[231]。最初の録音は2000年に行われたが[232][233]、不完全なものだった。2001年の1晩のデータだけからの解析では、オーロラの活動が活発なときに音波の変動が大きくなることが示され、また音響記録と地磁気の変動との間で時間遅れのない相関が見出されたとしている。しかし、電場との相関はなく、記録された音がオーロラの音と同じものなら、局所的な電場あるいはその変動がオーロラの音の原因とは考えにくく[234][235]、これはブラシ放電や電磁波音という説明が成立しないことを示唆している。

2011年、フィンランドのライネ(Unto K. Laine)らはオーロラに伴う複数の音を3つのマイクで同時観測し、2012年、音源は約70メートル上空だとする分析を発表した[236]。それによると、これらの微小な可聴音はオーロラと連動しており、恐らくオーロラを生じさせているのと同じ粒子の流れ(いわば目に見えないオーロラの裾)によるものだという。音が鳴る仕組みは依然解明されていない。「オーロラの音」とされるものの中には、実際には複数種類の別の現象が含まれていると予想される。ライネは、録音例について「幻聴・錯覚・ノイズなどではない」と強調している[237]

人工オーロラ

オーロラの発生原理に基づいて、状況を人工的に再現すれば、人工的にオーロラを発生させることができる。実験室の中でもオーロラを発生させることができる。

1969年から1970年代にかけて、ロケットに電子銃をのせてオーロラが出る高度で発射する実験が行われた[238]。この実験により、電子ビームは南北半球を磁力線にそって往復してもエネルギーを殆ど失わないこと、磁力線の長さと形は算出・予想の通りだったことがわかった[239]

電離しやすく色がある程度はっきり出る物質をロケットにつみこんで、上空約100キロメートル以上の空域でトレーサーとして撒けば、人工オーロラが出る[240][241]。使われる物質は、最初期の実験ではナトリウム[242]、その後はより残留する明るい物質としてセシウムリチウムストロンチウムバリウムなどが、また蛍光物質も使われることもある[243]。最も良いトレーサーはバリウムの蒸気が太陽光によって共鳴散乱してできる雲である[244]。このバリウムの雲は、赤色と黄色の2色で輝いてから緑色に変わるものと、紫色から青色に変わるものの2種類できる[244]。普通この実験はオーロラの仕組みを調べることよりも、上空の風や電磁場を調べるために行われる[245][244]。電離するためには太陽光が必要であり、なおかつ人工オーロラの光は太陽光にかき消されるほど弱いので、実験はたいてい明け方に行われる[245][246]。赤道付近で人工オーロラを発生させると、赤道付近は磁力線が地面とおおよそ並行になっているため、横長なオーロラが出現する[247][248]

テレラ

人工オーロラの実験を行うビルケランド。
磁石を真空中に置き、プラズマを当てる。

ノルウェーの物理学者クリスチャン・ビルケランドは19世紀末、人工オーロラの発生実験を行った。まず真空状態にした箱の中に蛍光塗料を塗った中空の鉄球を置き、そこへコイルを入れ磁場を作った。そして同じ箱のなかに電極を取り付け陰極とし、電子を鉄球に当てると、鉄球が陽極になって光らせることができた。この装置により、ビルケランドは電子が地球のどのあたりに当たるのか推定した[249][247]

大きな長方形の真空ガラス箱内の一方にB教授が「テレラ」と命名した球形の電磁石がつり下がっており、他の一方には陰極が插入されていて、そこから強力な陰極線が発射されると、その一道の電子の流れは球形磁石の磁場のためにその経路を彎曲され、球の磁極に近い数点に集注してそこに螢光を発する。その実験装置のそばに僧侶のような黒頭巾をかぶったB教授が立って説明している。この放電のために特別に設計された高圧直流発電機の低いうなり声が隣室から聞こえて来る。[250] — B教授の死、寺田寅彦

この装置の原理を使った、オーロラなどのプラズマ現象を再現できる中高生向けの教材がある[251]。他にも2012年現在、同じ原理のオーロラ発生装置がある科学館は日本に何箇所かある[247]。また、飯田産業大阪市立大学は大型のオーロラ発生装置を開発して江ノ島アイランドスパに設置[252]し、さらにその後その改良型を上海万博に出展した[253]

脚注

注釈

  1. ^ 例えば0.1の曲線が通っている地域ではオーロラが10年に1度見られるところである。0.1の曲線はスペインの南端、キューバ宗谷海峡を通っている。「カズム」という言葉は「天の割れ目(CHASMATIS)」と同じものである。[45]
  2. ^ カーテンは磁力線に沿ってできる。そのため、真東か真西を向いて撮ったオーロラの写真の、カーテンの角度を測ることにより撮影場所の地磁気緯度を特定することができる[98]
  3. ^ AKRに関しては、太陽の活動が強くなるほどAKRが弱くなるという相関関係があり、未だ原因が解明されていない[106]
  4. ^ 柏崎刈羽原子力発電所の出力は1号機から7号機まですべてあわせておよそ8.212×10の9乗ワットである[114]
  5. ^ 例えば、1993年に打ち上げられた人工衛星あすかは2000年7月に膨張した大気へ突入し姿勢が崩れた。その後2001年3月、大気圏に突入し、消滅した。[132][133]
  6. ^ 地磁気の経緯度とは、地磁気極を元に定めた経緯度である。地磁気極とは、地球の磁場を磁気双極子(小さな棒磁石)で近似した時に、双極子の延長線と地表面が交差する地点2箇所のことである。なお、地磁気北極・地磁気南極はそれぞれ北磁極南磁極とは違う場所にある。
  7. ^ 北半球なら南下し、南半球なら北上する。
  8. ^ 原文
    十二月庚寅朔、天有赤氣。長一丈餘。形似雉尾[179]

出典

ノルウェーで出現したオーロラ
  1. ^ a b c d 神沼 (2009)、141頁。
  2. ^ a b c オーロラとは”. カナダ イエローナイフ オーロラ情報局. 2012年9月27日閲覧。
  3. ^ a b 上出 (2010)、27–28頁。
  4. ^ a b c d e f デイビス (1995)、170頁。
  5. ^ 赤祖父 (2006)、117頁。
  6. ^ Fisher, Saul (2009年12月15日). “Pierre Gassendi”. Stanford Encyclopedia of Philosophy. 2012年9月27日閲覧。
  7. ^ 赤祖父 (2002)、3頁。
  8. ^ オーロラ特集”. ナショナルジオグラフィック. 2012年4月17日閲覧。
  9. ^ 杉山久仁彦『極光物語』p.44、p.59
  10. ^ 赤祖父 (2002)、29頁。
  11. ^ a b c 中沢、94頁。
  12. ^ a b 満月のオーロラ、スバールバル諸島”. ナショナルジオグラフィック. 2012年8月1日閲覧。
  13. ^ 神沼克伊『北極と南極の100不思議』p.52
  14. ^ 聖書本文検索(新共同訳・口語訳)”. 日本聖書協会. 2012年9月9日閲覧。
  15. ^ a b 赤祖父 (2002)、28頁。
  16. ^ 赤祖父 (2002)、208頁。
  17. ^ a b c 福島 (1975)、2頁。
  18. ^ a b 上出 (2010)、25頁。
  19. ^ 赤祖父 (2002)、29頁。
  20. ^ 赤祖父 (2002)、30頁。
  21. ^ 上出 (2010)、26頁。
  22. ^ 高馬三良訳『山海経 中国古代の神話世界』平凡社〈平凡社ライブラリー〉、1994年、126頁。ISBN 978-4-582-76034-7 
  23. ^ 多田克己『百鬼解読』講談社講談社文庫〉、2006年、237–243頁。ISBN 978-4-06-275484-2 
  24. ^ a b 福島 (1975)、3頁。
  25. ^ ヴァルキューレ(ヴァルキリー)”. 神話用語辞典. 2012年4月17日閲覧。
  26. ^ a b オーロラの誘い”. 郵船トラベル. 2012年4月17日閲覧。
  27. ^ 上出 (2010)、24頁。
  28. ^ 上出 (2010)、27頁。
  29. ^ 赤祖父 (2002)、51頁。
  30. ^ 赤祖父 (2002)、41頁。
  31. ^ 赤祖父 (2002)、40–41頁。
  32. ^ 赤祖父 (2002)、50頁。
  33. ^ 上出 (2010)、22頁。
  34. ^ 赤祖父 (2002)、52頁。
  35. ^ a b 上出 (2010)、23頁。
  36. ^ 上出 (2010)、165頁。
  37. ^ 赤祖父 (2002)、84頁。
  38. ^ 赤祖父 (2002)、86–88頁。
  39. ^ 赤祖父 (2002)、88頁。
  40. ^ a b 赤祖父 (2002)、86頁。
  41. ^ デイビス (1995)、127頁。
  42. ^ 赤祖父 (2002)、80頁。
  43. ^ 赤祖父 (2002)、82頁。
  44. ^ 赤祖父 (2002)、82-83頁。
  45. ^ 赤祖父 (2002)、83頁。
  46. ^ 赤祖父 (2002)、92–93頁。
  47. ^ a b c 赤祖父 (2002)、94–95頁。
  48. ^ a b 上出 (2010)、92頁。
  49. ^ a b 赤祖父 (2002)、107頁。
  50. ^ 赤祖父 (2002)、109頁。
  51. ^ 赤祖父 (2002)、112-114頁。
  52. ^ 赤祖父 (2002)、119頁。
  53. ^ 赤祖父 (2002)、121頁。
  54. ^ 赤祖父 (2002)、123-124頁。
  55. ^ 赤祖父 (2002)、161頁。
  56. ^ 赤祖父 (2002)、125-126頁。
  57. ^ 赤祖父 (2002)、128頁。
  58. ^ 赤祖父 (2002)、128-129頁。
  59. ^ a b c d 赤祖父 (2002)、17頁。
  60. ^ a b c 赤祖父 (2002)、132頁。
  61. ^ a b 赤祖父 (2002)、134頁。
  62. ^ 赤祖父 (2002)、135頁。
  63. ^ 赤祖父 (2002)、136頁。
  64. ^ 赤祖父 (2002)、140頁。
  65. ^ 赤祖父 (2002)、136頁。
  66. ^ 赤祖父 (2002)、142頁。
  67. ^ a b 赤祖父 (2002)、143頁。
  68. ^ a b デイビス (1995)、145頁。
  69. ^ 赤祖父 (2002)、152頁。
  70. ^ 赤祖父 (2002)、156頁。
  71. ^ 赤祖父 (2002)、156-157頁。
  72. ^ 神沼 (2009)、144–145頁。
  73. ^ 上出 (2010)、42–45頁。
  74. ^ 上出 (2010)、45頁。
  75. ^ 上出 (2010)、44頁。
  76. ^ 上出 (2010)、45–46頁。
  77. ^ a b 衛星データに基づいた地球磁気圏における サブストームに関する実証的研究”. 名古屋大学太陽地球環境研究所. 2012年8月29日閲覧。
  78. ^ 上出 (2010)、47頁。
  79. ^ “アラスカ北極圏でオーロラ爆発”. ナショナルジオグラフィック ニュース (ナショナルジオグラフィック). (2012年3月8日). http://www.nationalgeographic.co.jp/news/news_article.php?file_id=2012032806&expand 2012年4月16日閲覧。 
  80. ^ 上出 (2010)、48–49頁。
  81. ^ 上出 (2010)、113頁。
  82. ^ 上出 (2010)、116頁。
  83. ^ a b 上出 (2010)、117頁。
  84. ^ 上出 (2010)、114–117頁。
  85. ^ 神沼 (2009)、146–147頁。
  86. ^ オーロラの色は大気中の原子・分子によって決まる”. オーロラの旅 - アサヒ・オーロラ教室. アラスカ大学地球物理学研究所 (2003年). 2012年4月28日閲覧。
  87. ^ デイビス (1995)、26頁。
  88. ^ 上出 (2010)、116頁。
  89. ^ 上出 (2010)、80頁。
  90. ^ a b 赤祖父 (2002)、207-208頁。
  91. ^ a b c “北海道で8年ぶりの本格的な低緯度オーロラが観測された”. AstroArts. (2000年4月10日). http://www.astroarts.co.jp/news/2000/04/10aurora/index-j.shtml 2013年1月13日閲覧。 
  92. ^ 上出 (2010)、75頁。
  93. ^ 満月にオーロラは見える?見えない?”. カナダ イエローナイフ オーロラ情報局. 2012年9月27日閲覧。
  94. ^ デイビス (1995)、26頁。
  95. ^ デイビス (1995)、49頁。
  96. ^ デイビス (1995)、50頁。
  97. ^ a b 上出 (2010)、73頁。
  98. ^ 上出 (2010)、74頁。
  99. ^ 赤祖父 (2002)、7頁。
  100. ^ a b c 赤祖父 (2002)、9頁。
  101. ^ a b c 上出 (2010)、71頁。
  102. ^ 赤祖父 (2002)、14頁。
  103. ^ a b デイビス (1995)、57頁。
  104. ^ 上出 (2010)、72頁。
  105. ^ 上出 (2010)、110頁。
  106. ^ 熊本篤志、小野高幸、大家寛 (2001年). “オーロラキロメートル電波の太陽活動依存性” (PDF). SGEPSS 波動分科会 WAVE01-02. 2012年4月15日閲覧。
  107. ^ a b Auroral Infrasound”. Infrasound Research Group. Geophysical Institute, University of Alaska Fairbanks. 2010年2月4日閲覧。
  108. ^ 東京工業大学 大学院総合理工学研究科 奥野喜裕. “高効率エネルギー変換 -MHD発電-” (PDF). 2012年9月7日閲覧。
  109. ^ MHD発電のしくみ”. 中部電力. 2012年9月7日閲覧。
  110. ^ 情報通信研究機構 亘慎一. “2.宇宙環境擾乱による障害と宇宙天気予報” (PDF). 2012年9月7日閲覧。
  111. ^ 上出 (2010)、120頁。
  112. ^ a b 赤祖父 (2002)、207頁。
  113. ^ 上出 洋介. “オーロラの美は方程式で描けるか” (PDF). 2012年11月11日閲覧。
  114. ^ 発電所の概要”. 柏崎刈羽原子力発電所. 東京電力. 2012年11月11日閲覧。
  115. ^ 赤祖父 (2002)、191頁。
  116. ^ 上出 (2010)、81頁。
  117. ^ a b 赤祖父 (2002)、191頁。
  118. ^ 上出 (2010)、82頁。
  119. ^ a b 上出 (2010)、125頁。
  120. ^ 上出 (2010)、127頁。
  121. ^ 上出 (2010)、125–126頁。
  122. ^ 柴田 (2010)、108-110頁。
  123. ^ 赤祖父 (2002)、204頁。
  124. ^ a b 柴田 (2010)、112頁。
  125. ^ オーロラと石油パイプライン”. オーロラの旅 - アサヒ・オーロラ教室. アラスカ大学地球物理学研究所 (2003年). 2012年8月31日閲覧。
  126. ^ 上出 (2010)、94-95頁。
  127. ^ Chris Preimesberger (2008年). “NASA Puts IT to Work Tracking Solar Storms”. eWEEK. 2012年8月31日閲覧。
  128. ^ 柴田 (2010)、110頁。
  129. ^ a b 赤祖父 (2002)、190頁。
  130. ^ a b 上出 (2010)、83頁。
  131. ^ a b 上出 (2010)、82頁。
  132. ^ X線天文衛星「あすか」ASTRO-D / 科学衛星”. ISAS. 2012年8月6日閲覧。
  133. ^ 柴田 (2010)、111頁。
  134. ^ 赤祖父 (2002)、149頁。
  135. ^ 神沼 (2009)、147–148頁。
  136. ^ 上出 (2010)、54頁。
  137. ^ 上出 (2010)、52頁。
  138. ^ 門倉昭. “南極におけるオーロラ研究”. 国立極地研究所. 2012年5月1日閲覧。
  139. ^ 上出 (2010)、119頁。
  140. ^ 上出 (2010)、53頁。
  141. ^ 赤祖父 (2002)、207頁。
  142. ^ カナダ イエローナイフ オーロラ情報局”. 2012年5月25日閲覧。
  143. ^ 浴びるオーロラ ドーソンツアー”. ヤムナスカ. 2012-05-25日閲覧。
  144. ^ Northern Lights”. Explore Our Area. Fairbanks Convention & Visitors Bureau. 2012年5月25日閲覧。
  145. ^ KIRUNA スウェーデン・ラップランド地方、キールナ市上空に広がるオーロラ” (PDF). 2012年5月25日閲覧。
  146. ^ 上出 (2010)、134頁。
  147. ^ a b c 神沼 (2009)、150頁。
  148. ^ 上出 (2010)、61頁。
  149. ^ a b c 佐藤夏雄. “世界唯一の観測点”. 共役点オーロラ. 国立極地研究所. 2012年6月7日閲覧。
  150. ^ 小野、柴田 (2006)、178頁。
  151. ^ a b 佐藤夏雄. “共役点は動く”. 共役点オーロラ. 国立極地研究所. 2012年6月16日閲覧。
  152. ^ アイスランド - 昭和基地オーロラ共役点観測” (PDF). 国立極地研究所 北極観測センター. 2012年5月7日閲覧。
  153. ^ 小野、柴田 (2006)、178頁。
  154. ^ a b 上出 (2010)、56頁。
  155. ^ a b オーロラに関するQ&A 寒さとオーロラの関係はありますか?”. オーロラ情報館. ヤムナスカ. 2012年4月28日閲覧。
  156. ^ 近藤純正「放射冷却―最低気温,結氷,夜露―」(PDF)『天気』第58巻第6号、2011年、555–558頁(75–78頁)。 
  157. ^ 上出 (2010)、57–58頁。
  158. ^ a b c 前田嘉一、石川業六「極地高層大気と極光」(PDF)『天気』第14巻第11号、日本気象学会、1967年11月、1-22頁。 
  159. ^ a b 北村泰一「昭和基地におけるオーロラ観測(1957-58)」『南極資料』第5巻、国立極地研究所、1958年9月、234-255頁、NAID 110001181112 
  160. ^ a b c d 山口協「オーロラ覚え書」(PDF)『天気』第5巻第4号、日本気象学会、1958年4月、10-16頁。 
  161. ^ 鮎川優 (1999). 極域昼間側に見られるオーロラの動形態と粒子源に関する研究. p. 20-21. http://jairo.nii.ac.jp/0201/00000806/en 2013年1月13日閲覧。. 
  162. ^ S. M. Silverman (1992-01). “Secular variation of the aurora for the past 500 years”. Reviews of Geophysics 30 (4): 333-351. doi:10.1029/92RG01571. http://onlinelibrary.wiley.com/doi/10.1029/92RG01571/abstract 2013年1月8日閲覧。. 
  163. ^ George L. Siscoe (1980-01). “Evidence in the auroral record for secular solar variability”. Reviews of Geophysics 18 (3): 647-658. doi:10.1029/RG018i003p00647. http://onlinelibrary.wiley.com/doi/10.1029/RG018i003p00647/abstract 2013年1月8日閲覧。. 
  164. ^ オーロラが100年ぶりの減少、フィンランド気象庁”. AFPBB News. 2012年4月17日閲覧。
  165. ^ 低緯度オーロラの研究”. 研究紹介. 名古屋大学太陽地球環境研究所電磁気圏環境部門 (2005年3月3日). 2012年4月15日閲覧。
  166. ^ a b オーロラが降り、星が空を埋め尽くすまち 陸別町”. 北海道探検マガジン. 2012年5月10日閲覧。
  167. ^ 上出 (2010)、79頁。
  168. ^ a b c d e 中沢、98頁。
  169. ^ a b 中沢、99頁。
  170. ^ 陸別町”. 十勝観光連盟公式サイト. 2012年5月10日閲覧。
  171. ^ SuperDARN 北海道-陸別レーダー”. 名古屋大学太陽地球環境研究所. 2012年5月10日閲覧。
  172. ^ オーロラタウン93りくべつ”. 国土交通省北海道開発局. 2012年8月26日閲覧。
  173. ^ 南極地域観測事業外部評価委員会. “第1章 学術研究活動に関する評価 4 超高層物理の研究領域”. 南極地域観測事業外部評価書. 国立極地研究所. 2012年5月25日閲覧。
  174. ^ 西堀 (1958)、116頁。
  175. ^ 南極地域観測事業の概要 資料1 モニタリング研究観測: (1) 宙空圏変動のモニタリング” (PDF). 総合科学技術会議 第92回評価専門調査会 議事次第配布資料. 内閣府 科学技術政策・イノベーション担当. 2012年5月12日閲覧。
  176. ^ 小野、柴田 (2006)、170頁、176–177頁。
  177. ^ a b c “日本でも赤いオーロラが見られた!国立天文台・天文ニュース (680)”. AstroArts. (2003年10月3日). http://www.astroarts.co.jp/news/2003/10/30nao680/index-j.shtml 2012年4月15日閲覧。 
  178. ^ 赤祖父 (2006)、116頁。
  179. ^ 日本書紀、全文検索 底本は岩波古典文学大系本(卜部兼方・兼右本)/1990年発行版”. 日本書紀巻第廿二 豐御食炊屋姬天皇 推古天皇. フジタ企画. 2012年8月26日閲覧。
  180. ^ a b 上出 (2010)、78頁。
  181. ^ a b c 中沢、96頁。
  182. ^ 赤祖父 (2002)、54頁。
  183. ^ a b c 上出 (2010)、87頁。
  184. ^ 赤祖父 (2002)、206-207頁。
  185. ^ 赤祖父 (2002)、208-209頁。
  186. ^ 赤祖父 (2002)、209-210頁。
  187. ^ 赤祖父 (2002)、210頁。
  188. ^ 上出 (2010)、87–89頁。
  189. ^ 鈴木博美 (2012年2月29日). “今年は11年に1度の当たり年 最高のオーロラと出会うイエローナイフの旅”. スカイゲートスタッフ旅行記. エアーリンク. 2012年4月17日閲覧。
  190. ^ 上出 (2010)、85頁。
  191. ^ a b c d 柴田 (2010)、102頁。
  192. ^ 上出 (2010)、119頁。
  193. ^ オーロラの起源粒子を運ぶ宇宙空間ガスの渦”. ISAS. 2012年8月29日閲覧。
  194. ^ 太陽風プラズマの磁気圏流入メカニズムの研究”. ISAS. 2012年8月29日閲覧。
  195. ^ 地球磁気圏”. 東京大学理学部地球惑星物理学科. 2012年8月29日閲覧。
  196. ^ 最新太陽像と宇宙天気予報 その2” (PDF). 柴田一成. 2012年8月28日閲覧。
  197. ^ 柴田 (2010)、59頁。
  198. ^ 磁気圏尾部観測衛星 GEOTAIL / 科学的成果”. ISAS. 2012年8月29日閲覧。
  199. ^ PLAINニュース サブストーム開始に伴う磁気圏尾部の時間発展の最新描像”. 名古屋大学太陽地球環境研究所. 2012年8月29日閲覧。
  200. ^ 太陽・地球磁気圏の磁気リコネクションのモデリングとシミュレーション” (PDF). 名古屋大学太陽地球環境研究所. 2012年8月29日閲覧。
  201. ^ Mars Express Finds Auroras on Mars”. 2012年6月14日閲覧。
  202. ^ a b c ESA Portal – Mars Express discovers aurorae on Mars”. Esa.int (2004年8月11日). 2010年8月5日閲覧。
  203. ^ a b c 上出 (2010)、90頁。
  204. ^ Mars Express Finds Auroras on Mars”. Universe Today (2006年2月18日). 2010年8月5日閲覧。
  205. ^ 赤祖父 (2002)、195頁。
  206. ^ a b Charles Q. Choi. “Surprise! Venus May Have Auroras Without a Magnetic Field”. SPACE.com. 2011年9月7日閲覧。
  207. ^ a b c 赤祖父 (2002)、196頁。
  208. ^ a b 土佐誠. “天体の磁場‐磁場の起源:ダイナモ理論”. 月惑星研究会. 2011年9月7日閲覧。
  209. ^ 上出 (2010)、92頁。
  210. ^ “天王星のオーロラ、ハッブルが初撮影”. ナショナルジオグラフィック ニュース. http://www.nationalgeographic.co.jp/news/news_article.php?file_id=20120416002&expand 2012年9月8日閲覧。 
  211. ^ a b c Silverman, S.M.; T.F. Tuan (1973). “Auroral Audibility”. Advance in Geophysics 16: 155–259. 
  212. ^ Vaivads, Andris. “The List of Auroral Sound Observations”. Auroral Sounds. 2011年2月27日閲覧。
  213. ^ 西堀 (1958)、15頁。
  214. ^ a b 赤祖父 (2002)、203頁。
  215. ^ a b 上出 (2010)、84頁。
  216. ^ Rouse, M.L. (1881). “Letters to Editor — Tacitus on the Aurora”. Nature 23: 459. doi:10.1038/023459b0. 
  217. ^ タキトゥス『ゲルマニア』、45章頁。 「また音が聞こえるとも、神々の姿と頭から放たれる光線が見えるともいう」とある。
  218. ^ a b Keay, Colin S.L. (1990). “Chant, C.A. and the Mystery of Auroral Sounds”. Journal of the Royal Astronomical Society of Canada 84: 373 382. http://adsabs.harvard.edu/abs/1990JRASC..84..373K. 
  219. ^ 上出 (2010)、83頁。
  220. ^ a b c Vaivads, Andris (2002年). “Most Popular Theories”. Auroral Sounds. 2011年2月27日閲覧。
  221. ^ Sexton, Samuel (1885). “The Value of the Testimony to the Aurora-Sound”. Nature 32: 625–626. doi:10.1038/032625e0. 
  222. ^ Sverdrup, H.U. (1931). “Audibility of the Aurora Polaris”. Nature 128: 457. doi:10.1038/128457b0. 
  223. ^ Roederer, Juan G. (1981). “The perception of sound in association with auroras”. Journal of Acoustical Society of America 69: S113 (abstract).  The 101st Meeting of the Acoustical Society of America.
  224. ^ King, W.F. (1907). “Audibility of the Aurora”. Journal of the Royal Astronomical Society of Canada 1: 193–194. http://adsabs.harvard.edu/abs/1907JRASC...1..193K. 
  225. ^ Chant, C.A. (1923). “The Audibility of the Aurora”. Journal of the Royal Astronomical Society of Canada 17: 273 284. http://adsabs.harvard.edu/abs/1923JRASC..17..273C. 
  226. ^ a b Keay, Colin. “History of Auroral Sounds”. Geophysical Electrophonics. 2010年2月7日閲覧。
  227. ^ Keay, Colin. “Explanation of Auroral Sounds”. The Aurora, Space Weather. IPS Radio and Space Services, Geoscience Australia. 2010年1月29日閲覧。
  228. ^ Keay, Colin (1997年). “Geophysical Electrophonics”. 2010年2月7日閲覧。
  229. ^ McGreevy, Stephen P.. “Stephen P. McGreevy's Ground-based ELF-VLF Recordings”. Radio and Plasma Wave Group, the University of Iowa. 2010年2月7日閲覧。
  230. ^ Wang, D.Y.; T.F. Tuan, S.M. Silverman (1984). “A Note on Anomaloug Sounds From Meteor Fireballs and Aurorae”. Journal of the Royal Astronomical Society of Canada 78: 145–150. http://adsabs.harvard.edu//abs/1984JRASC..78..145W. 
  231. ^ Auroral Acoustics”. Laboratory of Acoustics and Audio Signal Processing, Helsinki University of Technology. 2010年1月30日閲覧。
  232. ^ Revontulien äänistä uusia todisteita, MTV3, (2000), http://www.mtv3.fi/uutiset/kotimaa.shtml/revontulien-aanista-uusia-todisteita/2000/04/18797 2012年10月26日閲覧。 
  233. ^ Taivaanloimujen äänet taltioitiin nauhalle, (2000), オリジナルの2003-02-23時点におけるアーカイブ。, http://web.archive.org/web/20030223190005/http://www.verkkouutiset.fi/arkisto/Arkisto_2000/29.syyskuu/revo3900.htm 
  234. ^ Laine, Unto K. (2002). Measurements and Analysis of Auroral Sounds in Finland 2000–2001 (PDF). XXVIIth General Assembly of the International Union of Radio Science. Maastricht, the Netherlands. {{cite conference}}: 不明な引数|coauthors=は無視されます。(もしかして:|author=) (説明)
  235. ^ Hautsalo, Janne (2005) (PDF). Study of Aurora Related Sound and Electric Field Effects. (Master Thesis). Helsinki University of Technology. http://lib.tkk.fi/Dipl/2005/urn007898.pdf 
  236. ^ Sounds of Northern Lights are born close to ground, アールト大学, (2012), http://www.aalto.fi/en/current/news/view/2012-07-09/ 2012年10月26日閲覧。 
  237. ^ AURORAL ACOUSTICS - AURORA RELATED SOUNDS – NEWS, http://www.acoustics.hut.fi/projects/aurora/ASoundsNews.html 2012年10月26日閲覧。 
  238. ^ デイビス (1995)、146-147頁。
  239. ^ デイビス (1995)、147頁。
  240. ^ 上出 (2010)、122頁。
  241. ^ 遠藤 研, 小野 高幸, 熊本 篤志, 佐藤 由佳, 寺田 直樹, 加藤 雄人. “WIND-IIキャンペーンにおいて観測された電離圏電子密度及びプラズマ波動” (PDF). 東北大学大学院理学研究科. 2012年10月2日閲覧。
  242. ^ デイビス (1995)、147頁。
  243. ^ デイビス (1995)、148-151頁。
  244. ^ a b c デイビス (1995)、151頁。
  245. ^ a b 上出 (2010)、123頁。
  246. ^ デイビス (1995)、148頁。
  247. ^ a b c 上出 (2010)、124頁。
  248. ^ デイビス (1995)、151-152頁。
  249. ^ 赤祖父 (2002)、107–108頁。
  250. ^ 寺田寅彦. “B教授の死”. 青空文庫. 2012年10月2日閲覧。
  251. ^ 藤田寛治、大津康徳、三沢達也. “生徒体験型オーロラ実験に関する教材開発” (PDF). 佐賀大学. 2012年5月14日閲覧。
  252. ^ 河合基伸 (2006年7月10日). “江の島にオーロラ出現,飯田産業が人工オーロラ発生装置を開発”. Tech-On! (日経BP). http://techon.nikkeibp.co.jp/article/NEWS/20060710/119007/ 2012年5月14日閲覧。 
  253. ^ 工学研究科・南教授が上海万博大阪館に「人工オーロラ発生装置」を出展中”. 大阪市立大学. 2012年5月14日閲覧。

参考文献

関連項目

外部リンク

Template:Link FA Template:Link FA