コンテンツにスキップ

「化学」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
YukkeBot (会話 | 投稿記録)
m [r2.6.5] ロボットによる 追加: ha:Kimiya
(加筆)
1行目: 1行目:
'''化学'''(かがく、{{lang-en-short|Chemistry}})は、存在するあるいは存在可能と推測できる<ref name=Itoyama>{{cite web|url=http://www.lib.kagawa-u.ac.jp/metadb/up/AN00038157/AN00038157_19_49.pdf |format=PDF |title=一般化学の授業内容についての一試論|author=糸山東一|year=1980年|publisher=[[香川大学]]学術情報リポジトリ|language=日本語|accessdate=2010-11-27}}</ref>すべての[[物質]]が何からどのようにして出来ているかという[[構造]]や、どんな特徴や[[性質]]を持っているか、そして[[相互作用]]や[[反応]]によって別なものに[[変化]]する仕組みや過程を[[研究]]する[[自然科学]]の一分野である<ref name=Iwa94-207>[[#岩波理化学1994|岩波理化学辞典 (1994) 、p207、【化学】]]</ref><ref>{{cite web|url=http://www.sci.waseda.ac.jp/global/faculty/advanced/index05.html|title=Outline |publisher=[[早稲田大学]]理工学術院先進理工学部・研究科 応用科学科|language=日本語|accessdate=2010-11-27}}</ref>。そして化学の最終目標は、有意義な機能を持つ物質や反応を発見し[[自然界]]から[[抽出]]したり<ref name=Fukutec>{{cite web|url=http://www.tec.fukuoka-u.ac.jp/tk/silla/S369.htm |title=化学実験 概要|author= |publisher=[[福岡大学]]工学部化学システム工学科|language=日本語|accessdate=2010-11-27}}</ref>、設計や追及を通じて創成したりするところにある<ref>{{cite web|url=http://www.gse.u-toyama.ac.jp/mce/MSES.html |title=応用化学大講座|author= |publisher=[[富山大学]]大学院理工学教育部|language=日本語|accessdate=2010-11-27}}</ref><ref>{{cite web|url=http://www.sci.waseda.ac.jp/global/faculty/advanced/index05.html|title=クリックケミストリーの概念と応用|author=M. G. Finn, Hartmuth C. Kolb, Valery V. Fokin, K. Barry Sharpless, 訳:北山隆|publisher=[[近畿大学]]農学部|language=日本語|accessdate=2010-11-27}}</ref>。
[[ファイル:Helium atom QM.svg|right|250px|thumb|'''化学''' - [[原子核]]と[[電子]]からなる原子と、原子を組み合わせた分子について、その構造などを研究する学問である。]]
'''化学'''(かがく、Chemistry)とは、[[原子]]・[[分子]]を[[物質]]の構成要素と考え、物質の構造・性質・反応を研究する[[自然科学]]の一分野である。日本では幕末から明治初期にかけては[[舎密|セイミ]](舎密)と呼ばれた。また、[[日本語]]では[[同音異義]]の「[[科学]]」(science)との混同を避けるため、化学を[[湯桶読み]]して「'''ばけがく'''」とも呼ぶ。


[[Image:Chemicals in flasks.jpg|thumb|right|180px|多様に存在する物質を理解することが化学の目的である<ref name=Saito>{{cite web|url=http://www.chem.tsukuba.ac.jp/kazuya/kazuya/Chap1.pdf|format=PDF |title=1.化学という学問|author=[[齋藤一弥]]|year=2010年|publisher=[[筑波大学]]大学院数理物質科学研究科物質創成先端科学専攻|language=日本語|accessdate=2010-11-27}}</ref>。]]
化学分野の具体的な項目については[[Portal:化学]]ならびに[[:Category:化学|化学カテゴリ]]を参照されたい。
[[Image:VysokePece1.jpg|thumb|right|180px|化学は、物質を製造・加工そして利用するための根本的な情報をもたらす。]]
{{ウィキポータルリンク|化学|[[ファイル:Nuvola apps edu science.png|32px|ウィキポータル 化学]]}}
{{ウィキプロジェクトリンク|化学|[[ファイル:Nuvola apps edu science.png|32px|ウィキプロジェクト 化学]]}}
取り扱う物質は特に[[化学物質]]が中心となるが<ref name=Iwa94-207 />、それらは[[原子]]・[[分子]]・[[イオン]]などが複雑に絡み合いながら作られるため膨大な種類にわたり、その全てを含む壮大な物質世界・生命世界が対象となる<ref name=Takev>[[#竹内1996|竹内 (1996)、pp.v-viii、化学入門コースの読者へ]]</ref>。それゆえ化学は、基盤科学 (base science) と定義づけられる<ref name=Fukutec />。物質を分子やその集合体の大きさ単位で扱う化学は基礎的であるがゆえに、関連する学問は、[[理学]]や[[工学]]から[[医学]]・[[薬学]]、[[農業]]・[[環境]]分野など多岐にわたる上、特に近年に[[バイオテクノロジー]]や[[エレクトロニクス]]、新素材や高機能材料など現代科学の最先端技術に新物質や設計・製造の新手段を発明する上で欠かせないものとなっている<ref name=Takev />。

[[日本]]では[[幕末]]から[[明治]]初期にかけては[[舎密]](セイミ)と呼ばれた。また、[[日本語]]では[[同音異義]]の「[[科学]]」({{lang-en-short|science}})との混同を避けるため、化学を[[湯桶読み]]して「ばけがく」とも呼ぶこともある<ref>{{cite web|url=http://nihongo.do-bunkyodai.ac.jp/qandaList.php?os=140 |title=日本語なんでも相談室|publisher=[[北海道文教大学]]日本語コミュニケーション学科|language=日本語|accessdate=2010-11-27}}</ref>。


== 概要 ==
== 概要 ==
化学という学問を定義づけする事は難しく、それを無理に規定する意義も重要ではない。[[数学]]や[[物理学]]、[[生物学]]など自然科学の中で基礎科学または純粋科学に当る[[理学]]のひとつに含まれるが、化学は有限な元素が組み合わさった無限の物質が持つ[[多様性]]を取扱い、さらに化学そのものが新たに物質を創造する役割を持つ点が、他の理学とは異なる特徴である<ref name=Saito />。
近年の化学では原則的には、全ての[[物質]]が[[原子]]からできているとの[[仮説]]<ref>注. 厳密には必ずしもそうとは言い切れない。[[物質]]の定義にもよる。[[中間子]]、[[ニュートリノ]]も参照可。</ref>(あるいはフレームワーク)を採用し、また、物質の性質は原子自体の状態や、原子同士の結びつきかた([[化学結合]])で決定される、と考える。現代の化学は基本的には原子・[[分子]]レベルでの物質の構造や性質を解明し、また新しい物質や反応を構築する学問である。


近年の化学では原則的には、全ての[[物質]]が[[原子]]からできているとの[[仮説]]<ref name=Iwasaki>{{cite web|url=http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/33347/1/19(1)_PL71-93.pdf|format=PDF |title=化学反応と物質構造の問題|author=岩崎允胤|year=1971年 |publisher=[[北海道大学]]学術成果コレクション|language=日本語|accessdate=2010-11-27}}</ref><ref group="注">厳密には必ずしもそうとは言い切れず、[[物質]]の定義によっては[[レプトン]]や[[クォーク]]まで細分化されたり、[[ニュートリノ]]を加えたりする考え方もある。[http://www.phys.s.u-tokyo.ac.jp/field/field_4.html 高エネルギー物理学・素粒子物理学/東京大学理学部物理学科・大学院理学系研究科物理学専攻]。</ref>(あるいはフレームワーク)を採用し、また、物質の性質は原子自体の状態や、原子同士の結びつきかた([[化学結合]])で決定されると考える。現代の化学は基本的には原子・[[分子]]レベルでの物質の構造や性質を解明し、また新しい物質や反応を構築する<ref name=Takev />ことを通じ、物質とはなにかの知見を積み上げる学問である<ref name=Saito />。
化学には、研究手法や対象とする物質の違いによって多くの分野が存在する。しかし、各分野間には関連領域が存在するため明確に区別することは難しい。以下に例として代表的なものを挙げる。化学の他の分野については[[化学の分野一覧]]を参照のこと。


化学は典型的な蓄積型の学問である。取り扱う物質の種類は増える一方で、1980年代には600万種を越え、しかも年平均1000種が追加されていた<ref name=Sugi1>[[#杉浦ら1987|杉浦ら (1987)、p.1]]</ref>。これらは基本的に減ることは無いため、それに関する情報は増加の一途を辿る。数世紀前の実験で得られた基礎的なデータが重要性を失うことも間違いでない限りありえず、古典的な方法論も最新の量子論的手法と同じく高い価値を持つ。<ref name=Takev />

しかしながら、学問としての化学の成立は遅く、数学、物理学、[[天文学]]などが2000年前の[[古代ギリシア]]で構築され始めるのに対し、科学の一分野として扱うことができる近代的化学は18世紀末に[[フランス]]の[[アントワーヌ・ラヴォアジエ]](1743年 - 1794年)の[[質量保存の法則]] (law of conservation of mass) <ref name=Take2>[[#竹内1996|竹内 (1996)、1.原子論の成立、pp.2-6、1.1.化学の始まり]]</ref>や[[ジョン・ドルトン]](1766年 - 1844年)の[[原子説]]<ref name=Iwasaki /><ref group="2-">[[フリードリヒ・エンゲルス]]、『自然弁証法』第2冊、訳:菅原仰、寺沢恒信、p.158</ref>が正しい方向付けをした<ref name=Itoyama />事に始まってから、未だ200年程度しか経過していない<ref name=Take2 />。

その短い歴史の中で、化学は大きな末広がりの構造を持つに至った。化学の基礎的な部分はほとんど固められ、根底から転換がなされる余地はほとんど無い。ところが、物質に対する理解が進み、応用が広がる中で化学が担う役割はほとんど全ての生産・製造に深く関わるようになった<ref name=Takev />。さらに、[[弱い相互作用]]を重視した新しい物質像の構築や、自然との調和を実現するための[[環境化学]]など、近年になって化学はさらに広がりを見せつつある<ref name=Take247>[[#竹内1996|竹内 (1996)、14.21世紀の化学、p.247]]</ref>。

== 化学で扱う基本的なこと ==
[[ファイル:Helium atom QM.svg|right|180px|thumb|化学では、[[原子核]]と[[電子]]からなる原子と、原子を組み合わせた分子について、その構造などを研究する。]]
=== 原子の種類と構造 ===
{{Main|原子}}
化学では、物質の基本単位を[[原子]]に置き、その原子が持つさまざまな性質を抽象的概念である「[[元素]]」<ref>[[#ニュートン別2010|ニュートン別冊 (2010)、pp.12-13、原子と元素はどうちがうのか]]</ref>として把握する。[[原子論]]が確立した現代では、その特徴を理論的に掴む上で、[[原子核]]([[陽子]]・[[中性子]])および[[電子]]まで原子の構造を細分し、それらから決定される[[原子番号]]や[[質量数]]、[[電気素量]]、また[[イオン]]や[[同位体]]なども取扱い、各元素が持つ性質を理解する。<ref name=Take6>[[#竹内1996|竹内 (1996)、pp.6-10、1.2 物質の構成要素]]</ref>

原子が持つ周期的性質([[周期律]])は初期の化学が発見した一大成果である<ref name=Take75>[[#竹内1996|竹内 (1996)、5.元素の周期的性質、p.75]]</ref>。この物理的性質の近似を生む要因である[[電子配置]]から、各元素の[[イオン化エネルギー]]、[[電気陰性度]]、[[酸化数]]、[[原子半径]]や[[イオン半径]]などの特徴が理論づけられる<ref name=Take83>[[#竹内1996|竹内 (1996)、pp.83-91、5.2 単体の性質の周期性]]</ref>。この周期律を簡略な表にまとめた[[周期表]]は化学のバイブルとまで呼ばれる<ref name=Take75 />。

この元素の性質を記述する上で、化学の中でも[[量子力学]]と[[統計力学]]が取り扱われる。周期律は、量子力学の成立をもって初めてその本質が明瞭になった<ref name=Saito />。原子内の[[電子配置]]は[[ボーアの原子模型]]では限界があり<ref>[[#竹内1996|竹内 (1996)、pp.23-29、2.3 古典量子論の成立]]</ref>、[[波動力学]]の[[パウリの排他原理]]や[[波動関数]]<ref>[[#竹内1996|竹内 (1996)、pp.30-39、2.4 量子力学の成立]]</ref>、そして電子の[[エネルギー準位]]で説明される<ref name=Take83 />。統計力学は、物質の状態(三態)や性質などを巨視的に理解する上で必須の方法論を提供し、実験の結果をもたらす上で大きな役割を持つ<ref name=Saito />。

=== 化学結合 ===
{{Main|化学結合}}
物質は原子から構成されるが、その原子が結びついて分子をつくる。この結び付きを[[化学結合]]と呼び、これを理解することで化学は発展してきた<ref name=Take41>[[#竹内1996|竹内 (1996)、3.化学結合、p.41]]</ref>。

19世紀以前、原子間の結びつきは[[化学反応]]を説明付ける形で考えられた。基礎的な概念に当たる[[化学親和力]]や、続く[[電気化学的二元論]]や[[原子価説]]が提唱されたが、それでも一部の結合しない原子の組み合わせを説明できなかった<ref>[[#竹内1996|竹内 (1996)、pp.42-44、3.1 20世紀以前の化学結合論]]</ref>。20世紀に入りドイツのヴァルター・コッセル[[:en:Walther Kossel|(en)]]が[[イオン結合]]を理論化し、それでも解釈不能な[[水素]]分子など無極性分子の説明にアメリカの[[ギルバート・ルイス]]と[[アーヴィング・ラングミュア]]がそれぞれ独立に[[共有結合]]の概念を提案した<ref>[[#竹内1996|竹内 (1996)、pp.45-48、3.2 ボーア模型に基づく化学結合論]]</ref>。量子力学は分子構造論も深化させ、二原子分子の安定を説明した[[交換相互作用]]、[[分子軌道]]や[[原子軌道]]を明らかにした[[波動関数]]<ref>[[#竹内1996|竹内 (1996)、pp.49-53、3.3 量子力学的結合理論]]</ref>、[[金属結合]]の実際を[[自由電子]]モデルから進めた[[バンド理論]]<ref>[[#竹内1996|竹内 (1996)、pp.53-55、3.4 その他の結合]]</ref>などをもたらした。

=== 分子の構造 ===
{{Main|分子}}
分子は、その物質が持つ特性を維持したまま分割できる最小の単位と言える<ref>[[#ニュートン別2010|ニュートン別冊 (2010)、pp.16-17、分子はその物質の特性を持つ最小の粒子]]</ref>。[[静電気力]]で結合するイオン結合には方向性が無いが、共有結合は[[異方性]]がある。簡単な共有結合分子は[[原子価殻電子対反発則]]で説明され、これに[[電子軌道]]の考え方を加えることで、分子やイオンの構造について理論的根拠が与えられた<ref>[[#竹内1996|竹内 (1996)、pp.58-63、4.1 簡単な化合物の構造]]</ref>。

その一方で、同じ種類と数の元素が組み合わさった分子でも、その構造で物性に差があることが判明している。[[不斉炭素原子]]と共有結合する4つの原子団が結合する位置の違いから生じる[[光学異性体]]や[[立体異性体]]など、また[[炭素]]などの[[二重結合]]部分が回転しないために生じる[[幾何異性体]]などは、同一の[[構造式]]でありながら異なる性質を持つ分子となる。[[ベンゼン環]]に結合する塩基の位置([[オルト]]など)による[[位置異性体]]も一例に当たる<ref name=Take63>[[#竹内1996|竹内 (1996)、pp.63-70、4.2 炭素化合物の構造]]</ref>。[[エタン]]類など回転が可能な分子においても、[[立体障害]]などによる特性の差異は生じる<ref name=Take63 />。さらに近年では知恵の輪のような[[カテナン]]やサッカーボールもどきの[[フラーレン]]など、風変わりな構造を持つ分子も発見されている<ref>[[#竹内1996|竹内 (1996)、4.分子の形 p.74]]</ref>。

=== 物質の状態 ===
{{Main|物質の状態}}
原子や分子がある程度の量あつまると、特徴的な性質をもった集団を形成する。これを[[相]]といい、大きく分けて[[固体]]、[[液体]]、[[気体]]([[物質の状態#三態|物質の三態]])などがある<ref name=Take120>[[#竹内1996|竹内 (1996)、pp.120-121、7.3 相平衡と相律]]</ref>。閉鎖系において物質がこれらの相を取るには[[温度]]と[[圧力]]が影響し、[[相律]]という法則に則った状態を取る。これは物質ごとに[[相図]]という[[グラフ]]で示される<ref name=Take120 />。

気体は反応に乏しく、体積や圧力など物理的性質や変化などを中心に扱う。しかしそれらのマクロ的なふるまいは気体が分子単独で存在するためにミクロな分子の構造や性質に由来する<ref>[[#竹内1996|竹内 (1996)、p.99、6 気体]]</ref>。なお、気体が電離した状態である[[プラズマ]]についても、[[プラズマ化学]]という分野で取り扱う<ref>{{cite web|url=http://www-shinsei.jsps.go.jp/code/keyword.html |title=キーワード一覧|publisher=独立行政法人 日本学術振興会|language=日本語|accessdate=2010-11-27}}</ref>。

液体は[[分子間力]]の点から気体と固体の中間にある。加熱や冷却によって[[気化]]・[[蒸発]]や[[凝固]]など相の変換を起こすが、これは化学における重要な物質生成手段である[[蒸留]]にかかわる<ref>[[#竹内1996|竹内 (1996)、p.113、7 液体]]</ref>。また、2つ以上の成分の液体である[[溶液]]では、[[溶媒]]と[[溶質]]による[[分散系]]の性質、[[浸透圧]]や[[粘性]]また[[表面張力]]・[[界面張力]]なども化学が扱う対象となる<ref>[[#竹内1996|竹内 (1996)、pp.121-130、7.4 溶液]]</ref>。

固体は基本的に原子が規則的に配列する[[結晶|結晶質]]と、規則性に乏しく固体と液体の中間とも言える[[アモルファス]](非晶質)に分けられる<ref>[[#竹内1996|竹内 (1996)、pp.134-135、8.1 結晶質とアモルファス]]</ref>。結晶質は複数の[[結晶構造]]いずれかを取り、その性質を特徴づける<ref>[[#竹内1996|竹内 (1996)、pp.135-142、8.2 結晶の構造]]</ref>。また、粒子の種類や力から分類される結晶には、[[金属結晶]]・[[イオン結晶]]・[[分子結晶]]・[[共有結晶]]などがある<ref name=Take142>[[#竹内1996|竹内 (1996)、pp.142-151、8.3 さまざまな結晶]]</ref>。結晶構造を持ちながら液相的性質を持つ物質は[[液晶]]と呼ばれ、一部にベンゼン環のような平面の構造を持つ共通点がある<ref name=Take142 />。

=== 化学反応 ===
{{Main|化学反応}}
複数の物質を混合や、必要があれば加熱・冷却などの操作を加える事により、異なる[[化合物]]ができる。これを[[化学反応]]と呼ぶ。化学反応は物質を構成する原子間の化学結合の変化によって起きる。化学反応の前後では全体の質量は変わらず、これを[[質量保存の法則]](あるいは物質不変の法則)という。化学反応は、自然界において基本的にははエネルギーが低い位置へ向かう[[発熱反応]]と、より乱雑になろうとする[[エントロピー]]の増大という相反する反応を起こしながら[[平衡]]する。化学では、これら反応の法則性や利用法の解明が課題となる<ref name=Okawa117>[[#大川2002|大川 (2002)、pp117-138、自然界のバランス感覚]]</ref>。

{{Main|酸と塩基}}
水溶液の性質を知る手段として体系づけが始まった、[[塩 (化学)|塩]]が[[加水分解]]した[[酸と塩基]]の関係が、化学では重要な項目となる<ref name=Okawa139>[[#大川2002|大川 (2002)、pp138-162、非なりて似たるもの‐酸と塩基]]</ref>。これにより、主に水に溶ける物質の性質分類が行われ、水溶液以外の状態も考慮し<ref name=Okawa139 />、[[酸]]とは水素イオンを生じ/与える/電子対を受け取る物質と定義され、対して[[塩基]]とは水酸化物イオンを生じる/水素イオンを受け取る/電子対を与える物質と定義される。この2つは重要な化合物の組であり、その相反し互いに[[中和反応]]を起こさせながら[[化学平衡]]し、[[水素イオン指数]]など溶液の性質を決める。

{{Main|酸化|還元}}
燃焼や金属製錬および腐食などの本質は[[酸化]]と[[還元]]で説明される。酸と塩基が反応の窓口となる電子対が原子と一体になっているのに対し、酸化と還元は電子が単独で動き反応を起こす<ref name=Okawa163>[[#大川2002|大川 (2002)、pp163-194、電子は陰の立役者‐酸化と還元]]</ref>。そのため、酸化還元は[[電圧]]と密接に関係し、[[電流]]を生じさせる機構の基本的な原理に当たる<ref name=Okawa163 />。還元の代表的な用途は卑金属の精製であり、酸化は生化学において重要な[[クエン酸回路]]に見られる。

{{Main|化学合成}}
[[化学合成]]は、単純な物質から化学反応を用いて複雑な、または特定の機能を持つ物質を生成することを指す。分子量の小さな物質をつなぎ合わせて[[高分子]]を作る化学合成の代表例に[[重合反応]]があり、化学工業の主要なプロセスに当たる。機能を持たせる化学合成の例が医薬品製造やナノテクノロジーなどである。このような製造に関わる化学合成では、適切な製品を効率良く作り出すことが求められ、[[触媒]]や[[不斉合成]]など<ref name=Okawa117 />が化学の分野として研究される。

== 主な化学の分野 ==
[[ファイル:Lab bench.jpg|right|200px|thumb|化学実験室には安全のために多数の専用設備が備えられている]]
=== 諸分野の役割 ===
{{Main|Portal:化学|:Category:化学|化学の分野一覧}}
化学には、研究手法や対象とする物質の違いによって多くの分野が存在する<ref name=Iwa94-207 />。しかし、各分野間には関連領域が存在するため明確に区別することは難しい。以下に例として代表的なものを挙げる。
;[[物理化学]]
;[[物理化学]]
:物理化学は[[物理学]]的な理論や測定方法、例えば[[熱力学]]や[[量子力学]]的な手法や視点から化学が対象をする物質を研究し、物質やその性質および反応を分類する上で基準を作り、そして分類する<ref name=Saito />分野である<ref name=Iwa94-1108>[[#岩波理化学1994|岩波理化学辞典 (1994) 、p.1108、【物理化学】]]</ref>。[[ヴァルター・ネルンスト]]が著述『理論化学』(Theoretische Chemie、1893年)で唱えた[[理論化学]]もほぼ同じ概念である<ref>[[#岩波理化学1994|岩波理化学辞典 (1994) 、p.1378、【理論化学】]]</ref>。また、[[コンピュータ]]の進歩に伴い、理論式から計算によって物質の状態を予測する[[量子化学]]や[[計算化学]]も急速に発展している<ref>{{cite web|url=http://www.sist.ac.jp/~sekiyama/quchem.html |title=量子化学, 計算化学とは|author=関山秀雄|publisher=[[静岡理工科大学]]物質生命科学科|language=日本語|accessdate=2010-11-27}}</ref>。物理化学の方法論で[[生物]]を対象に行われる研究は[[生物物理化学]]であり<ref>{{cite web|url=http://www.hokuriku-u.ac.jp/jimu/H16Syllabus/yakugaku/2nen/2-21.html |title=授業の目的|author=今井弘康|publisher=[[北陸大学]]薬学部SYLLABUS|language=日本語|accessdate=2010-11-27}}</ref>、これをコンピュータによる仮想的な体系でシミュレートする[[人工化学]]も提唱されている<ref>{{cite web|url=http://ci.nii.ac.jp/naid/110006595405 |title=人工化学のための自動推論器の構築|author=小泉和真、冨永和人/ |publisher=CiNii/[[東京工科大学]]大学院 バイオ・情報メディア研究科|language=日本語|accessdate=2010-11-27}}</ref>。
:物理化学は[[物理学]]的、例えば[[量子力学]]や[[熱力学]]な手法や視点から化学研究を行う分野である。また、[[コンピュータ]]の進歩に伴い、理論式から計算によって物質の状態を予測する[[計算化学]]も急速に発展している。[[生物]]に関する研究は[[生物物理化学]]と呼ぶ。
;[[無機化学]]
;[[無機化学]]
:無機化学は[[有機化合物]]を除くすべての物質、すなわち[[単体]]と[[無機化合物]]を対象とする広い分野である。[[錯体]]を扱う分野は[[錯体化学]]、生体内の無機物を扱う分野は[[生物無機化学]](または無機生化学)と呼ばれる。
:無機化学は[[有機化合物]]を除くすべての物質、すなわち[[単体]]と[[無機化合物]]を対象とする広い分野である<ref name=Iwa94-1271>[[#岩波理化学1994|岩波理化学辞典 (1994) 、p1271、【無機化学】]]</ref>広義には、[[錯体]]を扱う[[錯体化学]]、生体内の無機物を扱う[[生物無機化学]](または無機生化学)、鉱物化学や地球化学、放射化学、有機金属化学など境界領域を共有する場合があ<ref name=Iwa94-1271 />
;[[有機化学]]
;[[有機化学]]
:有機化学は、[[有機化合物]]を扱う分野である<ref name=Iwa94-1301>[[#岩波理化学1994|岩波理化学辞典 (1994) 、p1301、【有機化学】]]</ref>。元々は動物や植物など生物体の組織(有機体)を構成する物質を対象として始まり、後に有機体以外から生成される有機化合物も対象に含まれて体系化された<ref name=Iwa94-1301 />。無機化学の分野とは相互補充する関係にある<ref name=Iwa94-1271 />。多様な反応をするため、専門的な分野として特化している。[[有機合成化学]]目的の有機化合物を得るために合成系列や反応方法などを創案する分野である<ref>{{cite web|url=http://www.chem.tsukuba.ac.jp/junji/ |title=有機合成化学‐分子変換をいかにして行うか‐|author=市川淳士 |publisher=[[筑波大学]]大学院数理物質科学研究科化学専攻|language=日本語|accessdate=2010-11-27}}</ref>。[[薬学]]とも密接なかかわりがある。[[生物学]]との境界分野は[[生物有機化学]]と呼ばれる。有機化合物の構造と性質の関係を研究する分野は[[有機構造論]]、特に立体構造に着目する領域は[[立体化学]]に分けられる<ref name=Iwa94-1301 />。天然には存在しない物質を合成して繊維や高分子材料を製造するための研究は[[有機工業化学]]と呼ばれる<ref name=Iwa94-1301 />。
:有機化学は[[有機化合物]]を扱う分野である。有機物は生物の主な構成要素である他、多様な反応をするため、専門的な分野として特化している。[[薬学]]とも密接なかかわりがある。[[生物学]]との境界分野は[[生物有機化学]]と呼ばれる。
;[[高分子化学]]
;[[高分子化学]]
:高分子化学は、非常に大きな分子である[[高分子]]を取り扱う分野である。合成方法だけでなく、[[機械特性]]や[[熱物性]]なども研究対象としている。高分子の材料としての重要性から、工業とのつながりが非常に強い。
:高分子化学は、[[分子量]]が1万から数百万にまで及ぶような非常に大きな分子である[[高分子]]を取り扱う分野であり、その化合物は有機・無機の両方を対象とす<ref name=Iwa94-436>[[#岩波理化学1994|岩波理化学辞典 (1994) 、p436、【高分子化学】]]</ref>。しかし実際には有機化合物を取扱う割合が高い<ref name=Iwa94-436 />。合成方法だけでなく、[[機械特性]]や[[熱物性]]なども研究対象としている。高分子の材料としての重要性から、工業とのつながりが非常に強い。
;[[生化学]]
;[[生化学]]
:生化学または[[生物化学]]<ref>[[#岩波理化学1994|岩波理化学辞典 (1994) 、p681、【生物化学】]]</ref>は、生物や生命現象を化学的な理論や実験手法を導入して研究する分野であり<ref name=Iwa94-672>[[#岩波理化学1994|岩波理化学辞典 (1994) 、p672、【生化学】]]</ref>[[生物学]]と化学の両方にまたがる領域である。[[酵素]]の研究を軸に<ref name=Iwa94-672 />[[ホルモン]]などの[[タンパク質]]や[[糖]]、[[核酸]]、[[脂質]]などの生体内の物質群や、生体の[[エネルギー]]獲得や輸送および[[代謝]]機能などを扱うことが多い<ref name=Iwa94-672 />。[[生体高分子]]を扱うことが多いため[[高分子化学]]とも関連する。生命現象を分子単位で研究する[[分子生物学]]や[[分子遺伝学]]を含み、[[遺伝子工学]]などに応用される<ref name=Iwa94-672 />。また、[[組織化学]]とは細胞など[[組織 (生物学)|組織]]中の特定物質が分布する状況を、化学反応を用いて[[染色]]させ判断する技術を言い、[[免疫組織化学]]もそのひとつに含まれる<ref>{{cite web|url=http://www.med.kindai.ac.jp/immuno/qanda.htm |title=免疫学Q&A |chapter=Q15. A15.|author=宮澤正顕|publisher=[[近畿大学]]医学部免疫学教室|language=日本語|accessdate=2010-11-27}}</ref>。[[衛生化学]]とは、物質が[[生体]]に及ぼす影響を研究する、予防[[薬学]]分野の応用に当たる分野である<ref>{{cite web|url=http://www.hoshi.ac.jp/home/kyoiku/kyoushitsuhgaid/9kyoushitsu.eisei.html |title=「衛生」とは「生を守る」こと。病気にならないために、食品や環境因子のはたらきに注目! |author=福井哲也|publisher=[[星薬科大学]]衛生化学教室|language=日本語|accessdate=2010-11-27}}</ref><ref>{{cite web|url=http://www.dsecchi.mext.go.jp/d_0905t/pdf/toho_yakukagaku_0905t_kihon.pdf|format=PDF |title=学校法人東邦大学 研究科の専攻の設置「衛生化学特論」 |author=|pages=12|publisher=[[文部科学省]]高等教育局高等教育企画課大学設置室|language=日本語|accessdate=2010-11-27}}</ref>。
:生化学は[[生物学]]と化学の両方にまたがる領域で、生命現象を化学的に研究する分野である。[[酵素]]や[[ホルモン]]などの[[タンパク質]]や[[糖]]、[[脂質]]などの生体内での機能を扱うことが多い。[[生体高分子]]を扱うことが多いため[[高分子化学]]とも関連する。
;[[分析化学]]
;[[分析化学]]・[[合成化学]]
:分析化学は様々な物質を測定したり分離したりすることを目的とし、応用性が強い食品や薬品、農業、工業などさまざまな分野で重要な役割を担っている。
:分析化学は様々な物質を測定したり分離したりすることを目的とした実験や理論を研究する分野である<ref name=Iwa94-1155>[[#岩波理化学1994|岩波理化学辞典 (1994) p1155、【分析化学】]]</ref>。応用性が強く、実験室レベルの基礎化学から工業生産物・臨床検査など幅広範囲を対象とし<ref name=Iwa94-1155 />、[[食品]][[薬品]][[農業]][[工業]]などさまざまな分野で重要な役割を担っている。合成化学は、存在できる物質を知る分野であり<ref name=Saito />、化学反応を用いて実際に物質を作り出すことを研究・開発する<ref>{{cite web|url=http://www.phs.osaka-u.ac.jp/research/pdf_index/kagaku_03.pdf |format=PDF |title=分子合成化学分野|author=藤岡弘道|publisher=[[大阪大学]]大学院薬学研究科・薬学部|language=日本語|accessdate=2010-11-27}}</ref>分野であり、[[触媒化学]]や[[材料化学]]を含む<ref name=Saito />
;[[工業化学]]
;[[応用化学]]
:工業化学、原料を化学製品へ転換る上で生じる各種問題を対象とする分野である。新しい[[反応]]や[[触媒]]の探求から[[プラント]]の設計まで、実用上必要とされる幅広い事柄を取り扱う。
:応用化学は、生産に関わるさまざまな技術や工程で用いられる物質や反応などを研究する分野であり、生産する種類によって[[工業化学]][[農芸化学]]、[[薬化学]]などに細分化される<ref name=Iwa94-171>[[#岩波理化学1994|岩波理化学辞典 (1994) 、p.171、【応用化学】]]</ref>。狭義では原料を化学製品へ転換し、目的の物質を得る上で必要な一連の方法を対象とする分野である工業化学を指し、日本では[[工学]]の一分野として応用化学と工業化学は同義にて用いられることが多い<ref name=Iwa94-171 /><ref name=Iwa94-417>[[#岩波理化学1994|岩波理化学辞典 (1994) 、p417、【工業化学】]]</ref>工業化学では、新しい[[反応]]や[[触媒]]の探求から[[プラント]]の設計まで、実用上必要とされる幅広い事柄を取り扱う。
;[[環境化学]]
:環境化学は、環境(地球ならば[[水圏]]、[[岩石圏]]、[[大気圏]]など)における化学物質の生成、反応、移動、影響や成り行きなどを研究する分野であり<ref>{{cite web|url=http://www.eoearth.org/article/Environmental_chemistry |title=Environmental chemistry |author=Randolph Larsen |publisher=The Encyclopedia of Earth |language=英語|accessdate=2010-11-27}}</ref><ref group="2-"> 1991, Manahan, Stanley E., Environmental Chemistry, 5th Ed., Lewis Publishing, Chelsea, MI</ref>、これらが[[生物圏]]に与える影響([[環境問題]])を化学的に説明する<ref>{{cite web|url=http://www.kochi-wu.ac.jp/~isshiki/education/2002/envchem.html |title=環境化学|author=一色健司|publisher=[[高知女子大学]] |language=日本語|accessdate=2010-11-27}}</ref>。[[地球環境化学]]はこのような研究を地球規模の環境に対して行う分野である<ref>{{cite web|url=http://www.tsc.u-tokai.ac.jp/risyuu_syllabus/2007401983.html |title=授業内容・計画(概要)の情報|author= |publisher=[[東海大学]]理学部化学科 |language=日本語|accessdate=2010-11-27}}</ref>。


== 化学で扱うこと ==
=== 諸分野が対象するもの ===
上にあげた化学の各分野を、取り扱う対象で分類する。本項は、特に脚注がある部分を除き、[[筑波大学]]数理物質科学研究科教授・齋藤一弥の分類を出典とする<ref name=Saito /><!-- この一文は、他の出典が積みあがれば外し、脚注化して戴ければと存じます -->。
[[ファイル:Lab bench.jpg|right|250px|thumb|化学実験室には安全のために多数の専用設備が備えられている]]


原子核を中心に、原子核反応やそれによって合成される新元素およびその性質を取り扱う分野が[[核化学]]や[[放射化学]]であり、特に後者では[[放射能]]の測定において分析化学的な方法も利用される。
=== 物質の状態 ===
物質は全て[[原子]]でできている、と想定し、これが[[化学結合]]によって幾つか結合すると[[分子]]を形成する、とする。[[原子]]や[[分子]]はまた[[イオン]]や[[ラジカル (化学)|ラジカル]]という状態をとりうる。また、同じ物質でも、[[原子価]]によって性質は異なる。これらの性質には[[電子]]が大きく関与している。


単体の分子を取り扱う分野では、量子力学や計算科学の理論および測定を用いる[[量子化学]]、[[光]]を調査の手段に用いる物理化学の領域に含まれる[[分子分光学]]があり、無機・有機の両方を含み化合物を扱う合成化学もこの範疇に入る部分が多い。
原子や分子がある程度の量あつまると、特徴的な性質をもった集団を形成する。これを[[相]]といい、大きく分けて[[固体]]、[[液体]]、[[気体]]などがある。


化学反応を研究する分野には、反応機構を取り扱う[[化学反応論]]、反応速度をコントロールする手法を研究することを目的とした[[触媒化学]]などがある。合成化学では、反応機構を研究したり、新しい化学反応を創造する分野はここに含まれる。[[化学熱力学]]も反応における平衡や熱を扱う。
=== 物質の構造 ===
物質は原子から構成されるが、その原子間の結び付きを[[化学結合]]と呼ぶ。化学結合には形式によって幾つかの分類があり、その種別により物性は大きく異なる。また、結合している原子同士については、結合距離の変化([[振動準位|振動]])や、結合を軸とする[[回転準位|回転]]といった揺らぎ運動をしているので、結合関係([[立体配置]])は変わらないものの、相対的位置関係([[立体配座]])は容易に変化する。


分子の集まりを扱う分野は、その全体構造や分子の運動について研究する[[構造化学]]や、目に見える物質としての分子集合体について分子の持つ性質から[[物性]]を説明する分野である[[物性化学]]などがある。[[高分子化学]]は特に分子量の大きな分子の集まりに見られる特殊な性質を研究の対象とする。同じ高分子に相当するが特殊なものと言える[[生物]]・[[生命]]を化学的に扱う分野が生化学、生物化学である。
=== 化学反応 ===

複数の物質を混合したり、必要があれば加熱・冷却したりする事により異なる[[化合物]]ができる。これを[[化学反応]]と呼ぶ。化学反応は物質を構成する原子の間の化学結合の変化により起きる。化学反応の前後では全体の質量は変わらない。これを[[質量保存の法則]](あるいは物質不変の法則)という。
物質の[[表面]]に着目し、その構造や現象などを研究する分野には[[表面化学]]や[[界面化学]]がある。これらは、固体の触媒を使用する際の触媒化学とも関連する。[[コロイド]]が持つ特徴的な性質を理解する分野は[[コロイド化学]]と呼ばれる。

環境をマクロな視点で把握し、それが地球規模の大きな化学システムとして研究する分野が[[環境化学]]である。そして、自然現象や人間活動がこのシステムにどのような影響を与えるか、人工の物質が環境に拡散しどのような事態が起こるかなどを取り扱う<ref>{{cite book|和書|title=地球環境化学入門|author=J.E.アンドリューズ、P.ブリンブルコム、T.D.ジッケルズ、P.S.リス、B.J.リード|translator=渡辺正|publisher=シュプリンガー・フェアラーク東京|isbn=4-431-71111-2|url=http://books.google.co.jp/books?id=FNuWSfi8grcC&printsec=frontcover&dq=%E5%8C%96%E5%AD%A6&hl=ja#v=onepage&q&f=false |pages=11-13|chapter=1-4、人間は生物地球化学サイクルを変える? }}</ref>。


== 歴史 ==
== 歴史 ==
[[ファイル:William Fettes Douglas - The Alchemist.jpg|right|180px|thumb|錬金術は現代化学を生み出す元となった]]
{{Main|化学の歴史}}
{{Main|化学の歴史}}
炎は有機物の酸化反応によって放出される熱エネルギーの現れであるから、化学の歴史は人類が火を扱いはじめたときから始まっているとも考えられる<ref name=Asi9>[[#アシモフ1967|アシモフ (1967)、pp.009-026、第1章 古代]]</ref>。[[金]]あるいは[[銀]]以外の金属は、自然界において[[酸化物]]ないしは[[硫化物]]として産出されるため、[[古代]]における[[青銅器]]・[[鉄器]]などの金属精錬も化学反応である[[還元]]反応を知らないまま利用していた<ref name=Asi9 />。
[[ファイル:William Fettes Douglas - The Alchemist.jpg|right|250px|thumb|錬金術は現代化学を生み出す元となった]]
炎は有機物の酸化反応によって放出される熱エネルギーの現れであるから、化学の歴史は人類が火を扱いはじめたときから始まっているとも考えられる。[[金]]あるいは[[銀]]以外の金属は、自然界には酸化物ないしは硫化物として産出するので、[[古代]]における青銅器・鉄器などの金属精錬も化学反応である[[還元]]反応を知らずと利用しているのである。


化学は[[古代エジプト]]に[[起源]]があると言われ、[[エジプト語]]で[[黒]]を意味する「chémi」がヨーロッパに伝わった化学を表す用語となり、そのため逆に化学は「黒の[[技術]]」とも呼ばれた<ref name=Iwa94-207 />。[[古代ギリシア]]における学問の発展は、[[タレス]]の元素論に始まり[[アリストテレス]]らにより大成された<ref name=Asi9 />。
[[古代ギリシア]]における学問の発展は[[アリストテレス]]により大成されたが、その理論に基づいて[[アレキサンドリア]]で[[錬金術]]が学問化された。これは、アラビア世界に伝達されて[[アラビア科学]]の一部となり、[[中世]]ヨーロッパにおいて、[[天文学]]、[[数学]]、[[医学]]と同様に[[ラテン語]]に翻訳された。[[金]]を他の物質から作ろうとする錬金術が盛んになり、様々なものを混ぜたり加熱したりすることが試みられ、結局、[[金]]は得られなかったが、その副生物として各種薬品が生み出された。この錬金術が化学のルーツとされる。ただ当時は、化学変化を引き起こす真理を探求する学問と言うよりは、実験的事実を集積する[[博物学]]的学問であった。


これらの系統とは別に、[[中国]]、[[アラビア]]、[[ペルシャ]]等でも独自に化学技術が勃興した<ref name=Iwa94-207 />。このうち、[[アラビア科学|アラビアの科学分野]]では[[錬金術]]へと発展し、[[中世]]ヨーロッパにおいて[[天文学]]、[[数学]]、[[医学]]と同様に[[ラテン語]]に翻訳された<ref name=Asi27>[[#アシモフ1967|アシモフ (1967)、pp.027-049、第2章 錬金術]]</ref>。[[金]]を他の物質から作ろうとする錬金術が盛んになり、様々なものを混ぜたり加熱したりすることが試みられた。結局、錬金術は不可能な前提の上で行われた徒労<ref name=Take2 />に終わったが、その副生物として各種薬品が生み出された。これらが化学のいしずえとされる<ref name=Iwa94-207 /><ref name=Newton80>[[#ニュートン別2010|ニュートン別冊 (2010)、pp.80-81、化学のいしずえを築いた錬金術]]</ref>。ただし、錬金術は秘密主義や拝金主義、そして定量的な技術を持たなかった点から、逆に化学発展の阻害になったという主張もある<ref>{{cite book|和書|title=化学はなぜ環境を汚染するのか|author=村田徳治|publisher=環境コミュニケーションズ|year=2001年|isbn=9784874891377|url=http://books.google.co.jp/books?id=pC9uTL047QwC&printsec=frontcover&dq=%E5%8C%96%E5%AD%A6&hl=ja#v=onepage&q&f=false|pages=11-14|chapter=1-3、化学の進歩を遅らせた錬金術の秘密主義}}</ref>。
近代に入ると、化学反応を[[定量的]]なアプローチで解釈するようになり、原子・分子の組み換えが化学反応の本質であることが理解されるようになった。しかし、化学反応の中心原理が何であるかは、[[物理学]]が原子の成立ちを解明する19世紀まで待つ必要があった。すなわち19世紀後半に展開した原子核と電子に関する物理学は、化学反応が原子と電子の相互作用に基づくことを解明した。


17世紀以降、化学は近代的な方法論に則った発展を始め<ref name=Iwa94-207 />、18世紀末頃から[[実験]]を通じて化学反応を[[定量的]]アプローチで解釈するようになり<ref name=Iwa94-207 />、19世紀に入ると原子・分子の組み換えが化学反応の本質であることが理解されるようになった<ref name=Iwa94-207 />。しかし、化学反応の中心原理が何であるかは、[[物理学]]が原子の成立ちを解明するまで待つ必要があった。すなわち19世紀後半に展開した原子核と電子に関する物理学がもたらした[[アーネスト・ラザフォード]]の原子核モデルが<ref name=Okawa139>[[#大川2002|大川 (2002)、pp27-55、それは古代ギリシアに始まった]]</ref>、化学反応が原子と電子の相互作用に基づくことを解明した。
また20世紀に入ると、化学結合の性質が[[量子力学]]で支配される電子の挙動([[分子軌道]])に起因することが理解され、これが今日の化学の中心原理となっている。とはいうものの、今日において物理学の根本が量子論・相対論の時代であってもニュートン力学の価値がいささかも失われていないように、近代に確立した[[化学当量]]、[[オクテット則]]や[[酸化数]]あるいは[[有機電子論]]などの古典化学理論は、今日的な意味を失うものではない。


また20世紀に入ると、化学結合の性質が[[量子力学]]で支配される電子の挙動([[分子軌道]]や[[エネルギー準位]])に起因することが理解され<ref name=Okawa139 />、これが今日の化学の中心原理となる理論体系が構築された<ref name=Iwa94-207 />。とはいうものの、今日において物理学の根本が量子論・相対論の時代であってもニュートン力学の価値がいささかも失われていないように、近代に確立した[[化学当量]]、[[オクテット則]]や[[酸化数]]あるいは[[有機電子論]]などの古典化学理論は、今日的な意味を失うものではない。
他また、有機化学と高分子化学も20世紀に発展を遂げ、一方では生物学との境界において多大な進歩をもたらし、生物学を全く新しいものとした。もう一方ではそれまで存在しなかった様々な物質が合成され、工業社会の大きな発展の元になり、同時に公害問題などにも深く関わるようになった。


他また、有機化学と高分子化学も20世紀に発展を遂げ、一方では生物学との境界において多大な進歩をもたらし<ref name=Iwa94-207 />、生物学を全く新しいものとした。もう一方ではそれまで存在しなかった様々な物質が合成され、工業社会の大きな発展の元になり、同時に公害問題などにも深く関わるようになった<ref name=Sugi1 />。

[[Image:SeimiKaisouChemistry.jpg|thumb|180px|right|『舎密開宗』に記された化学実験図]]
=== 日本における歴史 ===
=== 日本における歴史 ===
日本ではじめての近代化学を紹介する書となったのは、[[江戸時代]]の[[宇田川榕菴]]の『[[舎密開宗]]』(せいみかいそう)をもって嚆矢とする。[[舎密]]は化学を意味する[[オランダ語]] {{lang|nl|Chemie}} の訳である。舎密開宗の原著は[[イギリス]]の化学者[[ウィリアム・ヘンリー (化学者)|ウィリアム・ヘンリー]]が[[1801年]]に出版した ''{{lang|en|An Epitome of Chemistry}}'' である。宇田川榕菴はこれらの出版に際し、日本語のまだ存在しなかった学術用語に新しい造語を作って翻訳した。[[酸素]]、[[水素]]、[[窒素]]、[[炭素]]といった[[元素]]名や[[酸化]]、[[還元]]、[[溶解]]、[[分析]]といった化学用語は、宇田川榕菴によって考案された造語である。
日本でめての近代化学を紹介する書となったのは、[[江戸時代]]の[[宇田川榕菴]]の『[[舎密開宗]]』(せいみかいそう)をもって嚆矢とする。[[舎密]]は化学を意味する[[ラテン語]]系[[オランダ語]] {{lang|nl|Chemie}} (こ単語自体の意味は「科学」)の音訳である<ref>{{cite web|url=http://www.ryukoku.ac.jp/tenjishitsu/t2/9.html |title=稀書と大学歴史資料展1 |publisher=[[龍谷大学]]展示室|language=日本語|accessdate=2010-11-27}}</ref>。舎密開宗の原著は[[イギリス]]の化学者[[ウィリアム・ヘンリー (化学者)|ウィリアム・ヘンリー]]が[[1801年]]に出版した ''{{lang|en|An Epitome of Chemistry}}'' である。宇田川榕菴はこれらの出版に際し、日本語のまだ存在しなかった学術用語に新しい造語を作って翻訳した。[[酸素]]、[[水素]]、[[窒素]]、[[炭素]]といった[[元素]]名や[[酸化]]、[[還元]]、[[溶解]]、[[分析]]といった化学用語は、宇田川榕菴によって考案された造語である。


「化学」という単語は[[川本幸民]]が著書『化学新書』で初めて用い、後に明治政府が正式に採用した。これは、他の学問用語と同様に日本から[[中国]]などへ伝わった<ref>{{cite web|url=http://dspace.lib.kanazawa-u.ac.jp/dspace/bitstream/2297/3804/1/060617sekizaki.pdf|format=PDF |author=関崎正夫|title=マッチと清水誠:日本で初めてマッチの国産化をした人|publisher=[[金沢大学]]学術情報リポジトリ|language=日本語|accessdate=2010-11-27}}</ref><ref group="注">ただし近年では中国発祥という説もある。[http://dspace.lib.kanazawa-u.ac.jp/dspace/bitstream/2297/3804/1/060617sekizaki.pdf]</ref>。
== 主な化学の分野 ==
* [[純粋化学]] — [[理論化学]]
** [[無機化学]]
** [[有機化学]]
** [[物理化学]]
** [[生物化学]]
* [[応用化学]] 〈記事 [[応用化学]]も参照のこと〉
** [[工業化学]] — 化学物質の生産・利用に関する化学技術
** [[農芸化学]] — 肥料、農薬、飼料、食料品に関する化学技術
** [[薬化学]] — 医薬品に関する化学技術
** [[環境化学]] — 環境中に存在・排出された化学物質に関する化学
:その他多数


== 図表と一覧 ==
== 学会組織 ==
世界のほとんどの国では、化学の専門教育は[[大学]]を中心とした機関が担っている。その中でも[[理学部]]系の化学科や専攻は基礎的な領域を、[[工学部]]系では応用的な部分を扱うことが多い。薬学部や工学部の材料工学科などは専門性が高くなる<ref name=Saito />。
{{ウィキポータルリンク|化学|[[ファイル:Nuvola apps edu science.png|32px|ウィキポータル 化学]]}}

{{ウィキプロジェクトリンク|化学|[[ファイル:Nuvola apps edu science.png|32px|ウィキプロジェクト 化学]]}}
研究者を横断的に繋げる[[学会]]も組織され、日本では[[日本化学会]]が全体を網羅する。研究分野ごとには[[化学工学会]]や[[高分子学会]]などの[[Category:化学系学会|化学系学会]]があり、大学や企業の研究者らが加わっている<ref name=Saito />。[[アメリカ合衆国]]の化学会[[:en:Chemical Abstracts Service |Chemical Abstracts Service (CAS) ]]は、多様な化学物質のデータベース整備を1907年から行っており、近年では[[インターネット]]上でアクセス可能な「[[Chemical Abstracts]]」を公開している<ref name=Saito />。

国際的な学会連合は[[国際純正・応用化学連合]] (International Union of Pure and Applied Chemistry, IUPAC) が組織され、[[単位]]や[[記号]]の世界統一に関する勧告や取り決めなどを行ったり、他の科学組織との協議を行う母体となっている<ref name=Saito />。

== 関連項目 ==
{{Sisterlinks
{{Sisterlinks
|wikibooks=化学
|wikibooks=化学
76行目: 137行目:
|wikinews=Category:化学
|wikinews=Category:化学
}}
}}
;一覧
* [[化学に関する記事の一覧]]
* [[化学に関する記事の一覧]]、[[化学の分野一覧]]、[[化学者の一覧]]、[[化合物一覧]]、[[物質分類の一覧]]、[[化学反応の一覧]]、[[化学接頭辞・接尾辞一覧]]、[[化学略語一覧]]、[[化学物質関連法規の一覧]]
* [[化学の分野一覧]]
;賞
* [[化学者の一覧]]
* [[ノーベル化学賞]]
* [[:Category:化学賞]]
* [[周期表]]
* [[化合物一覧]]
* [[物質分類の一覧]]
* [[化学反応の一覧]]
* [[化学接頭辞・接尾辞一覧]]
* [[化学略語一覧]]
* [[化学物質関連法規の一覧]]


== 出典 脚注 ==
== 参考文献 ==
*{{cite book|和書|title=岩波理化学辞典|author=編:久保亮五、長倉三郎、井口洋夫、江沢洋|publisher=[[岩波書店]]|edition=第4版第9刷|year=1994年|isbn=4-00-080015-9|ref=岩波理化学1994}}
{{reflist}}
*{{cite book|和書|title=化学入門コース 化学の基礎|author=竹内敬人|publisher=岩波書店|edition=第1刷|year=1996年|isbn=4-00-007981-6|ref=竹内1996}}
*{{cite book|和書|title=化学概論‐物質科学の基礎‐|author=杉浦俊男、中谷純一、山下茂、吉田壽勝|publisher=化学同人|edition=第1版|year=1987年|isbn=4-7598-0159-6|ref=杉浦ら1987}}
*{{cite book|和書|title=化学の歴史|author=[[アイザック・アシモフ]]|translator=玉虫文一、竹内敬人 |publisher=[[ちくま学芸文庫]]|edition=第1刷|oridate=1967年|year=2010年|isbn=978-4-480-09282-3|ref=アシモフ1967}}
*{{Cite book| 和書|author=編集長:水谷仁|year=2010年|title=[[ニュートン (雑誌)|ニュートン]]別冊周期表第2冊|publisher=[[ニュートンプレス]]|location= 東京都渋谷区代々木2-1-1新宿マインズタワー|isbn=978-4-315-51876-4|ref=ニュートン別2010}}
*{{cite book|和書|title=高校化学とっておき勉強法|author=大川貴史|publisher=[[講談社]]|edition=第1刷|year=2002年|isbn=4-06-257356-3|ref=大川2002}}

== 脚注 ==
=== 注釈 ===
{{脚注ヘルプ}}
<div class= "references-small">
<references group="注"/>
</div>
=== 脚注 ===
{{reflist|2}}
=== 脚注2 ===
本脚注は、出典・脚注内で提示されている「出典」を示しています。
{{Reflist|group="2-"}}

== 外部リンク ==
*{{en icon}}[http://www.cas.org/products/sfacad/index.html SciFinder] Chemical Abstracts Service (CAS) が公開する化学物質データベース
*{{en icon}}[http://scholar.google.com/schhp?hl=ja Google scholar] グーグルが無償提供する。化学物質のデータが整備されつつある。


{{化学}}
{{化学}}
{{Link FA|tl}}
{{Link FA|tl}}

{{Link FA|zh-yue}}
{{Link FA|zh-yue}}

{{Link FA|fo}}
{{Link FA|fo}}
{{Link FA|lmo}}
{{Link FA|lmo}}
103行目: 176行目:
[[Category:科学史]]
[[Category:科学史]]
[[Category:理学]]
[[Category:理学]]

{{Link FA|sl}}


[[af:Chemie]]
[[af:Chemie]]
129行目: 200行目:
[[ca:Química]]
[[ca:Química]]
[[cdo:Huá-hŏk]]
[[cdo:Huá-hŏk]]
[[ce:Хьимийа]]
[[ceb:Kimika]]
[[ceb:Kimika]]
[[ckb:کیمیا]]
[[ckb:کیمیا]]
153行目: 223行目:
[[fo:Evnafrøði]]
[[fo:Evnafrøði]]
[[fr:Chimie]]
[[fr:Chimie]]
[[frp:Ch·imie]]
[[frp:Ch•imie]]
[[frr:Kemii]]
[[frr:Kemii]]
[[fur:Chimiche]]
[[fur:Chimiche]]
163行目: 233行目:
[[gu:રસાયણ શાસ્ત્ર]]
[[gu:રસાયણ શાસ્ત્ર]]
[[gv:Kemmig]]
[[gv:Kemmig]]
[[ha:Kimiya]]
[[hak:Fa-ho̍k]]
[[hak:Fa-ho̍k]]
[[haw:Kemika]]
[[haw:Kemika]]

2010年12月17日 (金) 11:31時点における版

化学(かがく、: Chemistry)は、存在するあるいは存在可能と推測できる[1]すべての物質が何からどのようにして出来ているかという構造や、どんな特徴や性質を持っているか、そして相互作用反応によって別なものに変化する仕組みや過程を研究する自然科学の一分野である[2][3]。そして化学の最終目標は、有意義な機能を持つ物質や反応を発見し自然界から抽出したり[4]、設計や追及を通じて創成したりするところにある[5][6]

多様に存在する物質を理解することが化学の目的である[7]
化学は、物質を製造・加工そして利用するための根本的な情報をもたらす。

取り扱う物質は特に化学物質が中心となるが[2]、それらは原子分子イオンなどが複雑に絡み合いながら作られるため膨大な種類にわたり、その全てを含む壮大な物質世界・生命世界が対象となる[8]。それゆえ化学は、基盤科学 (base science) と定義づけられる[4]。物質を分子やその集合体の大きさ単位で扱う化学は基礎的であるがゆえに、関連する学問は、理学工学から医学薬学農業環境分野など多岐にわたる上、特に近年にバイオテクノロジーエレクトロニクス、新素材や高機能材料など現代科学の最先端技術に新物質や設計・製造の新手段を発明する上で欠かせないものとなっている[8]

日本では幕末から明治初期にかけては舎密(セイミ)と呼ばれた。また、日本語では同音異義の「科学」(: science)との混同を避けるため、化学を湯桶読みして「ばけがく」とも呼ぶこともある[9]

概要

化学という学問を定義づけする事は難しく、それを無理に規定する意義も重要ではない。数学物理学生物学など自然科学の中で基礎科学または純粋科学に当る理学のひとつに含まれるが、化学は有限な元素が組み合わさった無限の物質が持つ多様性を取扱い、さらに化学そのものが新たに物質を創造する役割を持つ点が、他の理学とは異なる特徴である[7]

近年の化学では原則的には、全ての物質原子からできているとの仮説[10][注 1](あるいはフレームワーク)を採用し、また、物質の性質は原子自体の状態や、原子同士の結びつきかた(化学結合)で決定されると考える。現代の化学は基本的には原子・分子レベルでの物質の構造や性質を解明し、また新しい物質や反応を構築する[8]ことを通じ、物質とはなにかの知見を積み上げる学問である[7]

化学は典型的な蓄積型の学問である。取り扱う物質の種類は増える一方で、1980年代には600万種を越え、しかも年平均1000種が追加されていた[11]。これらは基本的に減ることは無いため、それに関する情報は増加の一途を辿る。数世紀前の実験で得られた基礎的なデータが重要性を失うことも間違いでない限りありえず、古典的な方法論も最新の量子論的手法と同じく高い価値を持つ。[8]

しかしながら、学問としての化学の成立は遅く、数学、物理学、天文学などが2000年前の古代ギリシアで構築され始めるのに対し、科学の一分野として扱うことができる近代的化学は18世紀末にフランスアントワーヌ・ラヴォアジエ(1743年 - 1794年)の質量保存の法則 (law of conservation of mass) [12]ジョン・ドルトン(1766年 - 1844年)の原子説[10][2- 1]が正しい方向付けをした[1]事に始まってから、未だ200年程度しか経過していない[12]

その短い歴史の中で、化学は大きな末広がりの構造を持つに至った。化学の基礎的な部分はほとんど固められ、根底から転換がなされる余地はほとんど無い。ところが、物質に対する理解が進み、応用が広がる中で化学が担う役割はほとんど全ての生産・製造に深く関わるようになった[8]。さらに、弱い相互作用を重視した新しい物質像の構築や、自然との調和を実現するための環境化学など、近年になって化学はさらに広がりを見せつつある[13]

化学で扱う基本的なこと

化学では、原子核電子からなる原子と、原子を組み合わせた分子について、その構造などを研究する。

原子の種類と構造

化学では、物質の基本単位を原子に置き、その原子が持つさまざまな性質を抽象的概念である「元素[14]として把握する。原子論が確立した現代では、その特徴を理論的に掴む上で、原子核陽子中性子)および電子まで原子の構造を細分し、それらから決定される原子番号質量数電気素量、またイオン同位体なども取扱い、各元素が持つ性質を理解する。[15]

原子が持つ周期的性質(周期律)は初期の化学が発見した一大成果である[16]。この物理的性質の近似を生む要因である電子配置から、各元素のイオン化エネルギー電気陰性度酸化数原子半径イオン半径などの特徴が理論づけられる[17]。この周期律を簡略な表にまとめた周期表は化学のバイブルとまで呼ばれる[16]

この元素の性質を記述する上で、化学の中でも量子力学統計力学が取り扱われる。周期律は、量子力学の成立をもって初めてその本質が明瞭になった[7]。原子内の電子配置ボーアの原子模型では限界があり[18]波動力学パウリの排他原理波動関数[19]、そして電子のエネルギー準位で説明される[17]。統計力学は、物質の状態(三態)や性質などを巨視的に理解する上で必須の方法論を提供し、実験の結果をもたらす上で大きな役割を持つ[7]

化学結合

物質は原子から構成されるが、その原子が結びついて分子をつくる。この結び付きを化学結合と呼び、これを理解することで化学は発展してきた[20]

19世紀以前、原子間の結びつきは化学反応を説明付ける形で考えられた。基礎的な概念に当たる化学親和力や、続く電気化学的二元論原子価説が提唱されたが、それでも一部の結合しない原子の組み合わせを説明できなかった[21]。20世紀に入りドイツのヴァルター・コッセル(en)イオン結合を理論化し、それでも解釈不能な水素分子など無極性分子の説明にアメリカのギルバート・ルイスアーヴィング・ラングミュアがそれぞれ独立に共有結合の概念を提案した[22]。量子力学は分子構造論も深化させ、二原子分子の安定を説明した交換相互作用分子軌道原子軌道を明らかにした波動関数[23]金属結合の実際を自由電子モデルから進めたバンド理論[24]などをもたらした。

分子の構造

分子は、その物質が持つ特性を維持したまま分割できる最小の単位と言える[25]静電気力で結合するイオン結合には方向性が無いが、共有結合は異方性がある。簡単な共有結合分子は原子価殻電子対反発則で説明され、これに電子軌道の考え方を加えることで、分子やイオンの構造について理論的根拠が与えられた[26]

その一方で、同じ種類と数の元素が組み合わさった分子でも、その構造で物性に差があることが判明している。不斉炭素原子と共有結合する4つの原子団が結合する位置の違いから生じる光学異性体立体異性体など、また炭素などの二重結合部分が回転しないために生じる幾何異性体などは、同一の構造式でありながら異なる性質を持つ分子となる。ベンゼン環に結合する塩基の位置(オルトなど)による位置異性体も一例に当たる[27]エタン類など回転が可能な分子においても、立体障害などによる特性の差異は生じる[27]。さらに近年では知恵の輪のようなカテナンやサッカーボールもどきのフラーレンなど、風変わりな構造を持つ分子も発見されている[28]

物質の状態

原子や分子がある程度の量あつまると、特徴的な性質をもった集団を形成する。これをといい、大きく分けて固体液体気体物質の三態)などがある[29]。閉鎖系において物質がこれらの相を取るには温度圧力が影響し、相律という法則に則った状態を取る。これは物質ごとに相図というグラフで示される[29]

気体は反応に乏しく、体積や圧力など物理的性質や変化などを中心に扱う。しかしそれらのマクロ的なふるまいは気体が分子単独で存在するためにミクロな分子の構造や性質に由来する[30]。なお、気体が電離した状態であるプラズマについても、プラズマ化学という分野で取り扱う[31]

液体は分子間力の点から気体と固体の中間にある。加熱や冷却によって気化蒸発凝固など相の変換を起こすが、これは化学における重要な物質生成手段である蒸留にかかわる[32]。また、2つ以上の成分の液体である溶液では、溶媒溶質による分散系の性質、浸透圧粘性また表面張力界面張力なども化学が扱う対象となる[33]

固体は基本的に原子が規則的に配列する結晶質と、規則性に乏しく固体と液体の中間とも言えるアモルファス(非晶質)に分けられる[34]。結晶質は複数の結晶構造いずれかを取り、その性質を特徴づける[35]。また、粒子の種類や力から分類される結晶には、金属結晶イオン結晶分子結晶共有結晶などがある[36]。結晶構造を持ちながら液相的性質を持つ物質は液晶と呼ばれ、一部にベンゼン環のような平面の構造を持つ共通点がある[36]

化学反応

複数の物質を混合や、必要があれば加熱・冷却などの操作を加える事により、異なる化合物ができる。これを化学反応と呼ぶ。化学反応は物質を構成する原子間の化学結合の変化によって起きる。化学反応の前後では全体の質量は変わらず、これを質量保存の法則(あるいは物質不変の法則)という。化学反応は、自然界において基本的にははエネルギーが低い位置へ向かう発熱反応と、より乱雑になろうとするエントロピーの増大という相反する反応を起こしながら平衡する。化学では、これら反応の法則性や利用法の解明が課題となる[37]

水溶液の性質を知る手段として体系づけが始まった、加水分解した酸と塩基の関係が、化学では重要な項目となる[38]。これにより、主に水に溶ける物質の性質分類が行われ、水溶液以外の状態も考慮し[38]とは水素イオンを生じ/与える/電子対を受け取る物質と定義され、対して塩基とは水酸化物イオンを生じる/水素イオンを受け取る/電子対を与える物質と定義される。この2つは重要な化合物の組であり、その相反し互いに中和反応を起こさせながら化学平衡し、水素イオン指数など溶液の性質を決める。

燃焼や金属製錬および腐食などの本質は酸化還元で説明される。酸と塩基が反応の窓口となる電子対が原子と一体になっているのに対し、酸化と還元は電子が単独で動き反応を起こす[39]。そのため、酸化還元は電圧と密接に関係し、電流を生じさせる機構の基本的な原理に当たる[39]。還元の代表的な用途は卑金属の精製であり、酸化は生化学において重要なクエン酸回路に見られる。

化学合成は、単純な物質から化学反応を用いて複雑な、または特定の機能を持つ物質を生成することを指す。分子量の小さな物質をつなぎ合わせて高分子を作る化学合成の代表例に重合反応があり、化学工業の主要なプロセスに当たる。機能を持たせる化学合成の例が医薬品製造やナノテクノロジーなどである。このような製造に関わる化学合成では、適切な製品を効率良く作り出すことが求められ、触媒不斉合成など[37]が化学の分野として研究される。

主な化学の分野

化学実験室には安全のために多数の専用設備が備えられている

諸分野の役割

化学には、研究手法や対象とする物質の違いによって多くの分野が存在する[2]。しかし、各分野間には関連領域が存在するため明確に区別することは難しい。以下に例として代表的なものを挙げる。

物理化学
物理化学は物理学的な理論や測定方法、例えば熱力学量子力学的な手法や視点から化学が対象をする物質を研究し、物質やその性質および反応を分類する上で基準を作り、そして分類する[7]分野である[40]ヴァルター・ネルンストが著述『理論化学』(Theoretische Chemie、1893年)で唱えた理論化学もほぼ同じ概念である[41]。また、コンピュータの進歩に伴い、理論式から計算によって物質の状態を予測する量子化学計算化学も急速に発展している[42]。物理化学の方法論で生物を対象に行われる研究は生物物理化学であり[43]、これをコンピュータによる仮想的な体系でシミュレートする人工化学も提唱されている[44]
無機化学
無機化学は、有機化合物を除くすべての物質、すなわち単体無機化合物を対象とする広い分野である[45]。広義には、錯体を扱う錯体化学、生体内の無機物を扱う生物無機化学(または無機生化学)、鉱物化学や地球化学、放射化学、有機金属化学などと境界領域を共有する場合がある[45]
有機化学
有機化学は、有機化合物を扱う分野である[46]。元々は動物や植物など生物体の組織(有機体)を構成する物質を対象として始まり、後に有機体以外から生成される有機化合物も対象に含まれて体系化された[46]。無機化学の分野とは相互補充する関係にある[45]。多様な反応をするため、専門的な分野として特化している。有機合成化学目的の有機化合物を得るために合成系列や反応方法などを創案する分野である[47]薬学とも密接なかかわりがある。生物学との境界分野は生物有機化学と呼ばれる。有機化合物の構造と性質の関係を研究する分野は有機構造論、特に立体構造に着目する領域は立体化学に分けられる[46]。天然には存在しない物質を合成して繊維や高分子材料を製造するための研究は有機工業化学と呼ばれる[46]
高分子化学
高分子化学は、分子量が1万から数百万にまで及ぶような非常に大きな分子である高分子を取り扱う分野であり、その化合物は有機・無機の両方を対象とする[48]。しかし実際には有機化合物を取扱う割合が高い[48]。合成方法だけではなく、機械特性熱物性なども研究対象としている。高分子の材料としての重要性から、工業とのつながりが非常に強い。
生化学
生化学または生物化学[49]は、生物や生命現象を化学的な理論や実験手法を導入して研究する分野であり[50]生物学と化学の両方にまたがる領域である。酵素の研究を軸に[50]ホルモンなどのタンパク質核酸脂質などの生体内の物質群や、生体のエネルギー獲得や輸送および代謝機能などを扱うことが多い[50]生体高分子を扱うことが多いため高分子化学とも関連する。生命現象を分子単位で研究する分子生物学分子遺伝学を含み、遺伝子工学などに応用される[50]。また、組織化学とは細胞など組織中の特定物質が分布する状況を、化学反応を用いて染色させ判断する技術を言い、免疫組織化学もそのひとつに含まれる[51]衛生化学とは、物質が生体に及ぼす影響を研究する、予防薬学分野の応用に当たる分野である[52][53]
分析化学合成化学
分析化学は、様々な物質を測定したり分離したりすることを目的とした実験や理論を研究する分野である[54]。応用性が強く、実験室レベルの基礎化学から工業生産物・臨床検査など幅広い範囲を対象とし[54]食品薬品農業工業などさまざまな分野で重要な役割を担っている。合成化学は、存在できる物質を知る分野であり[7]、化学反応を用いて実際に物質を作り出すことを研究・開発する[55]分野であり、触媒化学材料化学を含む[7]
応用化学
応用化学は、生産に関わるさまざまな技術や工程で用いられる物質や反応などを研究する分野であり、生産する種類によって工業化学農芸化学薬化学などに細分化される[56]。狭義では原料を化学製品へ転換し、目的の物質を得る上で必要な一連の方法を対象とする分野である工業化学を指し、日本では工学の一分野として応用化学と工業化学は同義にて用いられることが多い[56][57]。工業化学では、新しい反応触媒の探求からプラントの設計まで、実用上必要とされる幅広い事柄を取り扱う。
環境化学
環境化学は、環境(地球ならば水圏岩石圏大気圏など)における化学物質の生成、反応、移動、影響や成り行きなどを研究する分野であり[58][2- 2]、これらが生物圏に与える影響(環境問題)を化学的に説明する[59]地球環境化学はこのような研究を地球規模の環境に対して行う分野である[60]

諸分野が対象とするもの

上にあげた化学の各分野を、取り扱う対象で分類する。本項は、特に脚注がある部分を除き、筑波大学数理物質科学研究科教授・齋藤一弥の分類を出典とする[7]

原子核を中心に、原子核反応やそれによって合成される新元素およびその性質を取り扱う分野が核化学放射化学であり、特に後者では放射能の測定において分析化学的な方法も利用される。

単体の分子を取り扱う分野では、量子力学や計算科学の理論および測定を用いる量子化学を調査の手段に用いる物理化学の領域に含まれる分子分光学があり、無機・有機の両方を含み化合物を扱う合成化学もこの範疇に入る部分が多い。

化学反応を研究する分野には、反応機構を取り扱う化学反応論、反応速度をコントロールする手法を研究することを目的とした触媒化学などがある。合成化学では、反応機構を研究したり、新しい化学反応を創造する分野はここに含まれる。化学熱力学も反応における平衡や熱を扱う。

分子の集まりを扱う分野は、その全体構造や分子の運動について研究する構造化学や、目に見える物質としての分子集合体について分子の持つ性質から物性を説明する分野である物性化学などがある。高分子化学は特に分子量の大きな分子の集まりに見られる特殊な性質を研究の対象とする。同じ高分子に相当するが特殊なものと言える生物生命を化学的に扱う分野が生化学、生物化学である。

物質の表面に着目し、その構造や現象などを研究する分野には表面化学界面化学がある。これらは、固体の触媒を使用する際の触媒化学とも関連する。コロイドが持つ特徴的な性質を理解する分野はコロイド化学と呼ばれる。

環境をマクロな視点で把握し、それが地球規模の大きな化学システムとして研究する分野が環境化学である。そして、自然現象や人間活動がこのシステムにどのような影響を与えるか、人工の物質が環境に拡散しどのような事態が起こるかなどを取り扱う[61]

歴史

錬金術は現代化学を生み出す元となった

炎は有機物の酸化反応によって放出される熱エネルギーの現れであるから、化学の歴史は人類が火を扱いはじめたときから始まっているとも考えられる[62]あるいは以外の金属は、自然界において酸化物ないしは硫化物として産出されるため、古代における青銅器鉄器などの金属精錬も化学反応である還元反応を知らないまま利用していた[62]

化学は古代エジプト起源があると言われ、エジプト語を意味する「chémi」がヨーロッパに伝わった化学を表す用語となり、そのため逆に化学は「黒の技術」とも呼ばれた[2]古代ギリシアにおける学問の発展は、タレスの元素論に始まりアリストテレスらにより大成された[62]

これらの系統とは別に、中国アラビアペルシャ等でも独自に化学技術が勃興した[2]。このうち、アラビアの科学分野では錬金術へと発展し、中世ヨーロッパにおいて天文学数学医学と同様にラテン語に翻訳された[63]を他の物質から作ろうとする錬金術が盛んになり、様々なものを混ぜたり加熱したりすることが試みられた。結局、錬金術は不可能な前提の上で行われた徒労[12]に終わったが、その副生物として各種薬品が生み出された。これらが化学のいしずえとされる[2][64]。ただし、錬金術は秘密主義や拝金主義、そして定量的な技術を持たなかった点から、逆に化学発展の阻害になったという主張もある[65]

17世紀以降、化学は近代的な方法論に則った発展を始め[2]、18世紀末頃から実験を通じて化学反応を定量的アプローチで解釈するようになり[2]、19世紀に入ると原子・分子の組み換えが化学反応の本質であることが理解されるようになった[2]。しかし、化学反応の中心原理が何であるかは、物理学が原子の成立ちを解明するまで待つ必要があった。すなわち19世紀後半に展開した原子核と電子に関する物理学がもたらしたアーネスト・ラザフォードの原子核モデルが[38]、化学反応が原子と電子の相互作用に基づくことを解明した。

また20世紀に入ると、化学結合の性質が量子力学で支配される電子の挙動(分子軌道エネルギー準位)に起因することが理解され[38]、これが今日の化学の中心原理となる理論体系が構築された[2]。とはいうものの、今日において物理学の根本が量子論・相対論の時代であってもニュートン力学の価値がいささかも失われていないように、近代に確立した化学当量オクテット則酸化数あるいは有機電子論などの古典化学理論は、今日的な意味を失うものではない。

他また、有機化学と高分子化学も20世紀に発展を遂げ、一方では生物学との境界において多大な進歩をもたらし[2]、生物学を全く新しいものとした。もう一方ではそれまで存在しなかった様々な物質が合成され、工業社会の大きな発展の元になり、同時に公害問題などにも深く関わるようになった[11]

『舎密開宗』に記された化学実験図

日本における歴史

日本で初めての近代化学を紹介する書となったのは、江戸時代宇田川榕菴の『舎密開宗』(せいみかいそう)をもって嚆矢とする。舎密は化学を意味するラテン語オランダ語 Chemie (この単語自体の意味は「科学」)の音訳である[66]。舎密開宗の原著はイギリスの化学者ウィリアム・ヘンリー1801年に出版した An Epitome of Chemistry である。宇田川榕菴はこれらの出版に際し、日本語のまだ存在しなかった学術用語に新しい造語を作って翻訳した。酸素水素窒素炭素といった元素名や酸化還元溶解分析といった化学用語は、宇田川榕菴によって考案された造語である。

「化学」という単語は川本幸民が著書『化学新書』で初めて用い、後に明治政府が正式に採用した。これは、他の学問用語と同様に日本から中国などへ伝わった[67][注 2]

学会組織

世界のほとんどの国では、化学の専門教育は大学を中心とした機関が担っている。その中でも理学部系の化学科や専攻は基礎的な領域を、工学部系では応用的な部分を扱うことが多い。薬学部や工学部の材料工学科などは専門性が高くなる[7]

研究者を横断的に繋げる学会も組織され、日本では日本化学会が全体を網羅する。研究分野ごとには化学工学会高分子学会などのがあり、大学や企業の研究者らが加わっている[7]アメリカ合衆国の化学会Chemical Abstracts Service (CAS) は、多様な化学物質のデータベース整備を1907年から行っており、近年ではインターネット上でアクセス可能な「Chemical Abstracts」を公開している[7]

国際的な学会連合は国際純正・応用化学連合 (International Union of Pure and Applied Chemistry, IUPAC) が組織され、単位記号の世界統一に関する勧告や取り決めなどを行ったり、他の科学組織との協議を行う母体となっている[7]

関連項目

一覧

参考文献

  • 編:久保亮五、長倉三郎、井口洋夫、江沢洋『岩波理化学辞典』(第4版第9刷)岩波書店、1994。ISBN 4-00-080015-9 
  • 竹内敬人『化学入門コース 化学の基礎』(第1刷)岩波書店、1996。ISBN 4-00-007981-6 
  • 杉浦俊男、中谷純一、山下茂、吉田壽勝『化学概論‐物質科学の基礎‐』(第1版)化学同人、1987。ISBN 4-7598-0159-6 
  • アイザック・アシモフ 著、玉虫文一、竹内敬人 訳『化学の歴史』(第1刷)ちくま学芸文庫、2010。ISBN 978-4-480-09282-3 
  • 編集長:水谷仁『ニュートン別冊周期表第2冊』ニュートンプレス、東京都渋谷区代々木2-1-1新宿マインズタワー、2010。ISBN 978-4-315-51876-4 
  • 大川貴史『高校化学とっておき勉強法』(第1刷)講談社、2002。ISBN 4-06-257356-3 

脚注

注釈

  1. ^ 厳密には必ずしもそうとは言い切れず、物質の定義によってはレプトンクォークまで細分化されたり、ニュートリノを加えたりする考え方もある。高エネルギー物理学・素粒子物理学/東京大学理学部物理学科・大学院理学系研究科物理学専攻
  2. ^ ただし近年では中国発祥という説もある。[1]

脚注

  1. ^ a b 糸山東一 ( エラー: year に「年」の漢字は付けないでください。月や日まで含める場合や「年」の漢字を付ける必要のある場合は year を使用せず date に記入してください。). “一般化学の授業内容についての一試論” (PDF). 香川大学学術情報リポジトリ. 2010年11月27日閲覧。
  2. ^ a b c d e f g h i j k 岩波理化学辞典 (1994) 、p207、【化学】
  3. ^ Outline”. 早稲田大学理工学術院先進理工学部・研究科 応用科学科. 2010年11月27日閲覧。
  4. ^ a b 化学実験 概要”. 福岡大学工学部化学システム工学科. 2010年11月27日閲覧。
  5. ^ 応用化学大講座”. 富山大学大学院理工学教育部. 2010年11月27日閲覧。
  6. ^ M. G. Finn, Hartmuth C. Kolb, Valery V. Fokin, K. Barry Sharpless, 訳:北山隆. “クリックケミストリーの概念と応用”. 近畿大学農学部. 2010年11月27日閲覧。
  7. ^ a b c d e f g h i j k l m 齋藤一弥 ( エラー: year に「年」の漢字は付けないでください。月や日まで含める場合や「年」の漢字を付ける必要のある場合は year を使用せず date に記入してください。). “1.化学という学問” (PDF). 筑波大学大学院数理物質科学研究科物質創成先端科学専攻. 2010年11月27日閲覧。
  8. ^ a b c d e 竹内 (1996)、pp.v-viii、化学入門コースの読者へ
  9. ^ 日本語なんでも相談室”. 北海道文教大学日本語コミュニケーション学科. 2010年11月27日閲覧。
  10. ^ a b 岩崎允胤 ( エラー: year に「年」の漢字は付けないでください。月や日まで含める場合や「年」の漢字を付ける必要のある場合は year を使用せず date に記入してください。). “化学反応と物質構造の問題” (PDF). 北海道大学学術成果コレクション. 2010年11月27日閲覧。
  11. ^ a b 杉浦ら (1987)、p.1
  12. ^ a b c 竹内 (1996)、1.原子論の成立、pp.2-6、1.1.化学の始まり
  13. ^ 竹内 (1996)、14.21世紀の化学、p.247
  14. ^ ニュートン別冊 (2010)、pp.12-13、原子と元素はどうちがうのか
  15. ^ 竹内 (1996)、pp.6-10、1.2 物質の構成要素
  16. ^ a b 竹内 (1996)、5.元素の周期的性質、p.75
  17. ^ a b 竹内 (1996)、pp.83-91、5.2 単体の性質の周期性
  18. ^ 竹内 (1996)、pp.23-29、2.3 古典量子論の成立
  19. ^ 竹内 (1996)、pp.30-39、2.4 量子力学の成立
  20. ^ 竹内 (1996)、3.化学結合、p.41
  21. ^ 竹内 (1996)、pp.42-44、3.1 20世紀以前の化学結合論
  22. ^ 竹内 (1996)、pp.45-48、3.2 ボーア模型に基づく化学結合論
  23. ^ 竹内 (1996)、pp.49-53、3.3 量子力学的結合理論
  24. ^ 竹内 (1996)、pp.53-55、3.4 その他の結合
  25. ^ ニュートン別冊 (2010)、pp.16-17、分子はその物質の特性を持つ最小の粒子
  26. ^ 竹内 (1996)、pp.58-63、4.1 簡単な化合物の構造
  27. ^ a b 竹内 (1996)、pp.63-70、4.2 炭素化合物の構造
  28. ^ 竹内 (1996)、4.分子の形 p.74
  29. ^ a b 竹内 (1996)、pp.120-121、7.3 相平衡と相律
  30. ^ 竹内 (1996)、p.99、6 気体
  31. ^ キーワード一覧”. 独立行政法人 日本学術振興会. 2010年11月27日閲覧。
  32. ^ 竹内 (1996)、p.113、7 液体
  33. ^ 竹内 (1996)、pp.121-130、7.4 溶液
  34. ^ 竹内 (1996)、pp.134-135、8.1 結晶質とアモルファス
  35. ^ 竹内 (1996)、pp.135-142、8.2 結晶の構造
  36. ^ a b 竹内 (1996)、pp.142-151、8.3 さまざまな結晶
  37. ^ a b 大川 (2002)、pp117-138、自然界のバランス感覚
  38. ^ a b c d 大川 (2002)、pp138-162、非なりて似たるもの‐酸と塩基 引用エラー: 無効な <ref> タグ; name "Okawa139"が異なる内容で複数回定義されています
  39. ^ a b 大川 (2002)、pp163-194、電子は陰の立役者‐酸化と還元
  40. ^ 岩波理化学辞典 (1994) 、p.1108、【物理化学】
  41. ^ 岩波理化学辞典 (1994) 、p.1378、【理論化学】
  42. ^ 関山秀雄. “量子化学, 計算化学とは”. 静岡理工科大学物質生命科学科. 2010年11月27日閲覧。
  43. ^ 今井弘康. “授業の目的”. 北陸大学薬学部SYLLABUS. 2010年11月27日閲覧。
  44. ^ 小泉和真、冨永和人/. “人工化学のための自動推論器の構築”. CiNii/東京工科大学大学院 バイオ・情報メディア研究科. 2010年11月27日閲覧。
  45. ^ a b c 岩波理化学辞典 (1994) 、p1271、【無機化学】
  46. ^ a b c d 岩波理化学辞典 (1994) 、p1301、【有機化学】
  47. ^ 市川淳士. “有機合成化学‐分子変換をいかにして行うか‐”. 筑波大学大学院数理物質科学研究科化学専攻. 2010年11月27日閲覧。
  48. ^ a b 岩波理化学辞典 (1994) 、p436、【高分子化学】
  49. ^ 岩波理化学辞典 (1994) 、p681、【生物化学】
  50. ^ a b c d 岩波理化学辞典 (1994) 、p672、【生化学】
  51. ^ 宮澤正顕. “免疫学Q&A”. 近畿大学医学部免疫学教室. 2010年11月27日閲覧。
  52. ^ 福井哲也. “「衛生」とは「生を守る」こと。病気にならないために、食品や環境因子のはたらきに注目!”. 星薬科大学衛生化学教室. 2010年11月27日閲覧。
  53. ^ 学校法人東邦大学 研究科の専攻の設置「衛生化学特論」” (PDF). 文部科学省高等教育局高等教育企画課大学設置室. pp. 12. 2010年11月27日閲覧。
  54. ^ a b 岩波理化学辞典 (1994) 、p1155、【分析化学】
  55. ^ 藤岡弘道. “分子合成化学分野” (PDF). 大阪大学大学院薬学研究科・薬学部. 2010年11月27日閲覧。
  56. ^ a b 岩波理化学辞典 (1994) 、p.171、【応用化学】
  57. ^ 岩波理化学辞典 (1994) 、p417、【工業化学】
  58. ^ Randolph Larsen. “Environmental chemistry” (英語). The Encyclopedia of Earth. 2010年11月27日閲覧。
  59. ^ 一色健司. “環境化学”. 高知女子大学. 2010年11月27日閲覧。
  60. ^ 授業内容・計画(概要)の情報”. 東海大学理学部化学科. 2010年11月27日閲覧。
  61. ^ J.E.アンドリューズ、P.ブリンブルコム、T.D.ジッケルズ、P.S.リス、B.J.リード 著、渡辺正 訳「1-4、人間は生物地球化学サイクルを変える?」『地球環境化学入門』シュプリンガー・フェアラーク東京、11-13頁。ISBN 4-431-71111-2http://books.google.co.jp/books?id=FNuWSfi8grcC&printsec=frontcover&dq=%E5%8C%96%E5%AD%A6&hl=ja#v=onepage&q&f=false 
  62. ^ a b c アシモフ (1967)、pp.009-026、第1章 古代
  63. ^ アシモフ (1967)、pp.027-049、第2章 錬金術
  64. ^ ニュートン別冊 (2010)、pp.80-81、化学のいしずえを築いた錬金術
  65. ^ 村田徳治「1-3、化学の進歩を遅らせた錬金術の秘密主義」『化学はなぜ環境を汚染するのか』環境コミュニケーションズ、2001、11-14頁。ISBN 9784874891377http://books.google.co.jp/books?id=pC9uTL047QwC&printsec=frontcover&dq=%E5%8C%96%E5%AD%A6&hl=ja#v=onepage&q&f=false 
  66. ^ 稀書と大学歴史資料展1”. 龍谷大学展示室. 2010年11月27日閲覧。
  67. ^ 関崎正夫. “マッチと清水誠:日本で初めてマッチの国産化をした人” (PDF). 金沢大学学術情報リポジトリ. 2010年11月27日閲覧。

脚注2

本脚注は、出典・脚注内で提示されている「出典」を示しています。

  1. ^ フリードリヒ・エンゲルス、『自然弁証法』第2冊、訳:菅原仰、寺沢恒信、p.158
  2. ^ 1991, Manahan, Stanley E., Environmental Chemistry, 5th Ed., Lewis Publishing, Chelsea, MI

外部リンク

  • (英語)SciFinder Chemical Abstracts Service (CAS) が公開する化学物質データベース
  • (英語)Google scholar グーグルが無償提供する。化学物質のデータが整備されつつある。

Template:Link FA Template:Link FA Template:Link FA Template:Link FA