述語論理

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索

述語論理(じゅつごろんり、predicate logic)とは、数理論理学における記号的形式体系群を指す用語で、一階述語論理二階述語論理多ソート論理英語版無限論理などが含まれる。これらの形式体系の特徴は、論理式に含まれる変数量化できる点である。一般的な量化子として、存在量化子 ∃ と全称量化子 ∀ がある。変数は議論領域の要素、関係、関数などである。例えば、関数記号に対する存在量化は「ある関数が存在する」という修飾として解釈される。述語論理の基礎は、ゴットロープ・フレーゲチャールズ・サンダース・パースがそれぞれ独自に生み出し発展させた[1]

述語論理と言った場合、一階述語論理を指すこともある。述語論理の公理化された形態を述語計算 (predicate calculus) と呼び、述語論理は非形式的でより直観的なものとする見方もある[2]

様相作用素と量化子を併用する論理も述語論理の一種とされる。これについては様相論理を参照。

脚注[編集]

  1. ^ Eric M. Hammer: Semantics for Existential Graphs, Journal of Philosophical Logic, Volume 27, Issue 5 (October 1998), page 489: "Development of first-order logic independently of Frege, anticipating prenex and Skolem normal forms"
  2. ^ 例えば、(Stolyar 1970, p. 166)。 (Hamilton 1978)では、どちらも calculus だとしているが、形式的なものと非形式的なものに分類している。

参考文献[編集]

関連項目[編集]