きぼう

出典: フリー百科事典『ウィキペディア(Wikipedia)』
ナビゲーションに移動 検索に移動
ISSに接続されたきぼう(2008年6月)
きぼう (NASDA)
きぼう Kibō.png

きぼう宇宙航空研究開発機構 (JAXA) が開発した日本の宇宙実験棟で、国際宇宙ステーション (ISS) の一部。ISSでは最大の実験棟である。計画時の呼称はJEM(Japanese Experiment Module:日本実験棟)。エアロックやロボットアームを備え、ISSでは唯一、重量50キログラム程度までの超小型人工衛星を軌道投入できる機能を有し、JAXAが各国から衛星射出を受託している[1]

目次

概要[編集]

国際宇宙ステーションの完成予想CG。「きぼう」は中央手前右側に設置される。

日本はアメリカ合衆国冷戦末期の1980年代に、西側諸国の結束の象徴として、宇宙ステーション建設を主張した当初から参加を訴えており、計画自体は幾度の変遷を経たが、日本の立場・方針は変わらず一貫して参加を表明してきた。そのなかで日本は費用面だけでなく、構成するモジュールの建設にも意欲を示し、宇宙開発事業団(NASDA・当時)が製造・保有・運用を担当することとなった。

「きぼう」には日本国の主権が及ぶことから管制は全て日本で行うが、電力・廃熱・姿勢制御などの宇宙基地としての基本的なインフラをアメリカ側モジュールから提供されるため、対価として施設使用権の46.7パーセントをアメリカが保有している[2]。また、カナダカナダアーム2の提供により施設使用権の2.3パーセントを保有しており、日本が保有する施設使用権は残りの51パーセントである[2]。きぼうの部品総点数は約200万点に及ぶ[3]

開発計画[編集]

※宇宙ステーション全体の計画経緯は、フリーダム宇宙ステーションも参照。

2005年(平成17年)10月23日に宇宙航空研究開発機構で一般公開された「きぼう」モジュール。右の黄色が船内実験室(模型)、その奥が船内保管室、中央やや左のビニールの中に船外実験プラットフォーム、左奥の青いビニールに包まれているのがロボットアーム。

宇宙ステーション計画は、NASAの宇宙ステーションタスクフォースが1982年5月に設けられ、そこで宇宙ステーション計画の概念設計が始まり、同年6月にジェームズ・ベッグスアメリカ航空宇宙局 (NASA) 長官から日本の中川一郎科学技術庁長官へ、初めて宇宙ステーション計画への参加要請が行われた[4]。これを受けて同年8月、日本政府は宇宙開発委員会に宇宙基地特別部会を設置して検討を開始した[4]

その後、1984年1月25日にアメリカのレーガン大統領が年頭一般教書演説において、10年以内に恒久的な有人宇宙基地の建設を指示すると明言し、そして同年6月に行われたロンドンサミットにおいて、日本、カナダ、欧州に対して宇宙ステーション計画への参加を要請し、これにより現在に続く宇宙ステーション計画が本格的に動き出した[4][5]

計画への参加を表明した日本は、宇宙開発事業団(NASDA)を中心に開発を担うことになったが、当時のNASDAには有人宇宙開発に関する部署がなかったため、小さな会議室を割り当てた上で、ロケットや人工衛星の開発に従事していた人員、白木邦明元JEMプロジェクトマネージャーをはじめ3人のみで開発が始まった[6]

また、検討を重ねてきた宇宙基地特別部会は、1985年4月に「宇宙基地計画参加に関する基本構想」を公表し、これを受けて同年5月には、NASAと科学技術庁の間で宇宙ステーション計画予備設計の了解覚書(Memorandum of Understanding:MOU)が署名され、日本は実験モジュール(JEM)を設置することで計画に参加することを決定した[7]。1984年の段階で独自開発ではなくNASAから共通モジュールを買う意見も出たが退けられ[8]、55億円の開発研究予算が認可され[9]、日本実験モジュールの予備設計に着手した[4][10]

日本実験モジュールの予備設計は1987年3月に完了し[10]1988年9月に宇宙基地に関する多国間協力協定(旧IGA、1998年1月に新IGAとなる改正宇宙基地協力協定に署名[11])が署名され、1989年6月22日に「常時有人の民生用宇宙基地の詳細設計、開発、運用および利用における協力に関するアメリカ合衆国政府、欧州宇宙機関の加盟国政府、日本国政府およびカナダ政府の間の協定(Intergovernmental Agreement:IGA)」が国会で承認された。これにより、当時フリーダムと呼ばれた国際宇宙ステーション計画は予備設計段階から開発段階へと移り、日本の実験モジュールの開発も本格的に始まった。[4][5]

日本は実験モジュールの予備設計に入った1985年4月の段階で、既に与圧部(現在の船内実験室)と曝露部(現在の船外実験プラットフォーム)、それぞれの補給部(船内保管室と船外パレット)とロボットアームからなる構成が示されており[12][13][14]、1987年4月から1991年にかけて何度も行われたアメリカによる宇宙ステーション基準概念の変更(Restructuring:リストラクチャリング)[15] への対応で1991年5月に示された日本実験モジュールの最終コンフィギュレーションが元である、現在の「きぼう」と概略的には違いはない[6]。宇宙ステーションの全体計画が大きく変化する中で、これほど変更が加えられていないのは特異とも言え、各時代の完成予想図の中で日本の区画は容易に見出すことができる。[13]

宇宙ステーションの全体設計は繰り返し見直され、時期も何度も延期されてきたが、これはアメリカ側が一方的に行ったことで、日本側は従うしかなかった。日本が担当した部位は実験室であり、電力や生命維持などの宇宙ステーションの基幹部分に関しては参加を許されず、輸送はスペースシャトルに依存していた日本には、アメリカに強く意見できるだけの影響力はなかった。

デブリの衝突リスクを示す図。右側にあるきぼうは、リスクが高いことがわかる。

特に、1993年2月クリントン大統領による計画縮小の指示による変更で日本の実験モジュールは大きな影響を受けた。急遽編成された国際宇宙ステーション計画の再設計チーム(Station Redesign team:SRT)は、リデザイン(Redesign)と称して見直し案を90日間で3つ立案し、大統領諮問委員会(Blue Ribon Panel)の答申を受けたクリントン大統領はこの3つの案の中からフリーダムを簡素化した案を選び、最終的に「デザインα(アルファ、軌道傾斜角は28.5度、搭乗員は4人のまま[16])」として再設計された案を軸に建設が進められることになった。[4][5]

それまでは宇宙ステーションの進行方向前側に居住モジュールとスペースシャトルのドッキング装置が、後側に日欧の実験モジュール(現在のきぼうとコロンバス)を設置する計画だったが、この変更で日欧のモジュール設置位置は進行方向前側に設定された。また、進行方向と平行に設置される予定だったものが、横向きに変更された。この場所はデブリの衝突を受ける可能性が高く、しかもモジュール側面を大きく晒すことになったため、きぼうはデブリシールドと呼ばれる外部装甲板の厚さを増すなどして強化された。

また、1993年12月6日に行われたワシントンでのIGA政府間協議において、ロシアの国際宇宙ステーション計画への招請が決まり、同月にこの招請を受諾したロシアがISS計画に参加することになったが、それに伴う新しい計画であるロシアンα(アルファ、搭乗員が6人へ)への変更により、ロシアの射場からISSへロケットを打ち上げられるようにするため、ISSの軌道傾斜角が当初の28.5度から51.6度に変更されることになった[17]。この結果、きぼうをスペースシャトルで打ち上げるにあたり、軌道傾斜角が増したことによりスペースシャトルでの打ち上げ可能質量が減ったため、1995年6月に組立てシーケンスが改訂され、当初は2回を予定していた日本実験モジュールの運搬回数が3回に分けて運ばれることになり、また、日本実験モジュール与圧部(現船内実験室)を内装した状態では打ち上げられないため、日本実験モジュール補給部(現船内保管室)に一部の機器を入れて与圧部より先に打ち上げられることになった[17][14][4]

名称[編集]

「きぼう」という愛称は1999年4月に宇宙開発事業団(当時)が公募したもの[10]であり、この愛称を応募した総数は132人であった。宇宙開発事業団から組織改編された宇宙航空研究開発機構が、応募者名簿を2005年4月施行の個人情報保護法の下、誤った認識により破棄し、「きぼう」の命名者も一時不明になっていたが、後に再発見された。また、2000年5月にきぼう各部の通称が決まり、与圧部が「船内実験室」に、曝露部が「船外実験プラットフォーム」に、マニピュレーターが「ロボットアーム」に、補給部与圧区が「船内保管室」に、補給部曝露区が「船外パレット」に、そしてJEMは「「きぼう」日本実験棟」にそれぞれ決まっている[10]

開発担当企業[編集]

主要な開発担当企業は以下の通り[18]

  • 三菱重工業 - 与圧部(船内実験室・船内保管室)・全体の取りまとめを担当[19][20]
  • 石川島播磨重工業(現IHI) - 曝露部(船外実験プラットフォーム)・国際標準実験ラック(ISPR)・熱制御系の一部・実験支援系(共通ガス供給装置(Common Gas Supply. Equipment:CGSE))・実験データ処理装置(Payload Data Handling unit:PDH)を担当[21][22]
  • 日産自動車(現アイ・エイチ・アイ・エアロスペース) - 曝露部(船外パレット)を担当。
  • 川崎重工業 - エアロック・EF/PM結合機構・環境制御装置(船内実験室用空気調和装置、船内保管室用空気循環ファンなど)を担当[23]
  • NEC東芝スペースシステム(現NECスペーステクノロジー) - ロボットアーム親アーム・衛星間通信システム(Inter-orbit Communication System:ICS)与圧系サブシステム及び曝露系サブシステム・きぼうのメインコンピューターの管制制御装置 (JEM Control Processor:JCP)・ネットワークシステム・実験装置[24][25]
  • 日立製作所 - ロボットアーム子アームを担当。
  • 三菱電機 - 電力系(Electrical Power System:EPS)・テレビモニターを担当。

地上運用には、有人宇宙システム株式会社、ソラン(現TIS)、株式会社エイ・イー・エス、三菱スペース・ソフトウエア宇宙技術開発株式会社などが関わっている。きぼうの開発・運用に参加している企業は約650社となっている。[18][14]

打ち上げと組み立て[編集]

「きぼう」はスペースシャトルによって3回に分けてISSに運ばれ、組み立てられた。当初の「きぼう」の打ち上げ時期は、1986年3月下旬に行われた宇宙ステーション全体のシステム要求審査(System Requirement Review:SRR)の段階で、合計14回と設定されたスペースシャトルの打ち上げを3段階に分けた内の3段階目となる1994年であった[26]

しかし、アメリカの杜撰な開発管理に端を発する宇宙ステーション計画の度重なる変更や[15]、アメリカの財政悪化に伴う宇宙ステーション計画の変更やロシアの参加[16]、ロシアのサービスモジュールの開発遅延[4][27]など、さまざまな理由で幾度となく「きぼう」の打ち上げ時期や見通しが変更されてきた[4][15][28]

その後、2003年(平成15年)2月にスペースシャトル「コロンビア」が空中分解、乗組員全員が死亡する事故が発生したため、ISSの建設が遅れると同時に「きぼう」の打ち上げ時期もさらに遅れることとなった。またアメリカ航空宇宙局 (NASA) はシャトル使用を2010年までとしたため[4](その後2011年に延期)、この年でISS建設も実質建設は終了した。「きぼう」の打ち上げも相当な遅れが予想されたが、2006年3月の日米協議によって2007年(平成19年)から2009年(平成21年)に打ち上げることで最終合意した。

この合意に基づき、「きぼう」初の打ち上げ要素となる船内保管室は、2008年3月11日に打ち上げられたスペースシャトル「エンデバー」、ミッションSTS-123で宇宙に運ばれ、同月14日国際宇宙ステーションに取り付けられ、翌15日から運用が始まった(日付は全て日本時間)。続いて同年6月にミッションSTS-124で船内実験室及びロボットアームを設置、2009年7月に打ち上げられたエンデバーによって、7月18日に船外実験プラットフォームが取り付けられ完成した。電力供給や通信機能といった機能にも問題がないことが確認され、本格的な運用を開始した。同年9月には、宇宙ステーション補給機 (HTV) による実験装置と物資の輸送が始まった。2010年2月の衛星間通信システム (ICS) の本格稼働、3月の子アームの設置をもって、基本要素の設置は終了した。

設置にあたって、船内実験室はスペースシャトルが打ち上げるISSモジュールの中でも最大(デスティニーをも上回る)であり、重量制限から打ち上げ時のスペースシャトルにセンサ付き検査用延長ブーム (OBSS) を搭載できなかった。このため、ひとつ前のフライトで船内保管室を輸送した際に、OBSSをISSに残して帰還し、次のフライトでこれを回収して使用することでスペースシャトルの熱防護システムの点検を行う苦肉の策が取られた。また、打上げ時に船内実験室に搭載するラックも最小限とせざるを得ないため、システム機器用ラック(システムラック)のうち5台と実験ラック2台、保管ラック1台は事前に船内保管室でISSに輸送した。船内実験室とともに打ち上げられるシステムラックだけでは片系統のみのシステムしか起動できないが、船内保管室から上記ラックを移設することで、有人運用に必要な2系統のシステムを構築できるようにした。

1J/Aミッション[29]
  • ミッションナンバー:STS-123、打ち上げオービター「エンデバー
  • 打ち上げ部位:船内保管室
  • 打ち上げ年月日:2008年(平成20年)3月11日
  • JAXA任務飛行士:土井隆雄(保管室の取り付け及び室内の設定作業)
  • 1J/Aは日本と米国のISS機材を同時に運ぶミッションの1回目を表している。米国側機材は特殊目的ロボットアーム「デクスター」。
  • 船内保管室には実験ラックなどが積み込まれた状態で打ち上げられ、一時的にハーモニー天頂側結合部に設置された。
1Jミッション[30]
  • ミッションナンバー:STS-124、打ち上げオービター「ディスカバリー
  • 打ち上げ部位:船内実験室、ロボットアーム
  • 打ち上げ年月日:2008年(平成20年)6月1日
  • JAXA任務飛行士:星出彰彦(実験室の取り付け及び室内の設定作業)
  • 1Jは日本の機材のみを運ぶミッションの1回目を表す。
  • 船内実験室をハーモニー左舷側に設置後、船内保管室を船内実験室天頂側に移設し、ラックの搬入を行い、船内実験室を起動した。
2J/Aミッション[31]
  • ミッションナンバー:STS-127、打ち上げオービター「エンデバー
  • 打ち上げ部位:船外実験プラットフォーム、船外パレット、衛星間通信システム(船外機器)
  • 打ち上げ年月日:2009年(平成21年)7月15日
  • JAXA任務飛行士:若田光一(2009年3月にSTS-119で出発。第18/19/20次長期滞在クルーとしてISSに4ヶ月半滞在。打ち上げ各部位の船体取り付け及び設定作業。本任務終了後、STS-127にて帰還した。)
  • 日本と米国による2回目の打ち上げ。米国側ペイロードはISSの交換用のバッテリーと、その他の曝露機器の予備品
  • 船外パレットは回収した。

船体[編集]

「きぼう」は与圧部である船内実験室 (PM) と船内保管室 (ELM-PS)、曝露部の船外実験プラットフォーム (EF) と船外パレット (ELM-ES)、きぼう専用マニピュレーターのロボットアーム (JEM-RMS)、衛星間通信システム (ICS) といった6つの主要部位で構成されている[32]。すべてを結合した状態での、きぼうの全長は約20.5m、全高約8.6m、全幅8.9mである[33]

船内実験室外観
入り口側から見た船内実験室内部。画面中央の円形部がエアロック、その右上と左上に窓がある。(2008年6月)

船内実験室 (PM)[編集]

船内実験室 (Pressurized Module:PM)は、きぼうの中心となる部位。地上と同じ1気圧の空気が保たれ、飛行士はシャツ1枚で過ごせ、最大4名が同時搭乗できる。主に微小重力環境を利用した実験を行う。内部にはきぼう全体のシステムを管理・制御する装置や実験設備が備えられた23個のラックを設置できるよう設計されており、そのうち10個は実験ラックを予定している。きぼうの主要システムは、ラックも含めてA系とB系の二重冗長構成になっている[34]。船内と船外実験プラットフォームとの間で実験装置や交換用の機器などの出し入れに使うエアロックも装備されているが、寸法が小さいため宇宙服を着た人間の出入りはできない。このエアロックは、使用時にエアロック内の空気を船内に回収できる機能があり、3時間でエアロック内の空気の約8割を回収できる[35]。これらを使用して、地球観測、材料の実験や製造、生命科学(宇宙医学・バイオなど)、通信などの実験が行われる。ラックなどが運び入れられると、宇宙飛行士が活動できる空間は約2.2m四方となる[36]。窓が2つあるが[37]、通常はシャッターで閉じられている[38]

主要諸元[39][34][36]
  • 形状 - 円筒形
  • 直径(外径) - 4.4m
  • 直径(内径) - 4.2m
  • 全長 - 11.2m
  • 壁の厚さ - 約10cm(メテオロイド・デブリシールドとして、進行方向側以外の壁が外から順に、アルミ合金のデブリバンパ、多層断熱材(Multi Layer Insulation:MLI)、アルミ合金の与圧壁(アイソグリッド構造で最薄4.8mm)で構成されている「Whippleバンパ」でできており、進行方向側150度分のみ「スタッフィング入りバンパ」(バンパ側から順にMLI、アルミメッシュ、セラミック、炭素複合材でできている)が設けられている。)[40][41]
  • 質量 - 14.8t
  • 搭乗員 - 通常2名、最大4名(時間制限あり)、居住設備は米国モジュールに依存
  • 搭載ラック - 総数23台
    • システム機器用ラック - 11台
      • 電力ラック(Electrical Power System:EPS) - 分電盤や分電箱が搭載されているラックで、ISSの太陽電池パドル(Solar Array Wing:SAW)で発電した電気(直流120V×2系統)を、きぼうの各機器に分配する役割を持っており、2台設置し冗長構成にしている。
      • 情報管制ラック(Data Management System:DMS) - きぼうのメインコンピューター「きぼう制御装置」(JEM Control Processor:JCP)と実験装置用の中速データ伝送装置などが搭載されているラックで、2台設置し冗長構成にしており、片方が故障しても自動的に残りの1台に切り替わる。
      • 空調/熱制御ラック(ECLSS/TCS Rack:Environmental Control and Life Support System(イークレス)/Thermal Control System Rack) - きぼう内の温度、湿度、気圧の調整、空気の循環・浄化、各ラックに冷却水の供給を行うラックで、ECLSS/TCS1(LTL(Low Temperature Loop))とECLSS/TCS2(MTL(Medium Temperature Loop))の2台設置し冗長構成にしている。
      • ロボットアーム制御ラック - 船内実験室へ最初に設置された、きぼうロボットアーム(JEM Remote Manipulator System:JEMRMS)のロボットアーム操作卓を収めたラック。
      • ワークステーションラック(Work Station Rack) - 画像データ等の切替機器、音声通信端末装置(Audio Terminal Unit:ATU)、テレビモニター2台(1台のみ設置)、警告・警報パネル(Caution and Warning Panel:C&W Panel)などが収められているラック。
      • 衛星間通信システムラック(ICS/PROX:Inter-orbit Communication System/Proximity Communication System) - 衛星間通信システム機器とHTV用のPROX装置を搭載したラック。
      • 保管ラック(JEM Resupply Stowage Rack:JRSR) - 2台
    • 実験ラック - 10台(予定)(2017年12月26日時点で、JAXA 5台、NASA 2台、冷凍・冷蔵庫ラック 2台を設置[34]
    • 各ラックの位置 - きぼう船内実験室の入り口から向かって左側手前(後方:After)から、「JPM1A1」がNASAの冷凍・冷蔵庫のMELFI-2、「JPM1A2」が細胞実験ラック、「JPM1A3」が流体実験ラック、「JPM1A4」が多目的実験ラック(MSPR)、「JPM1A5」が保管ラック(Zero-g StowageRack:ZSR)、「JPM1A6」がきぼうロボットアーム制御ラック(JEM Remote Manipulator System:JEMRMS)となっており、反対の右側手前(進行方向:Forward)から「JPM1F1」がNASAの米国実験ラック(EXPRESS(Expedite the Processing of Experiment to the Space Station) Rack 5)、「JPM1F2」が多目的実験ラック2(MSPR-2)、「JPM1F3」が勾配炉実験ラック、「JPM1F4」がワークステーションラック、「JPM1F5」がNASAの米国実験ラック(EXPRESS Rack 4)、「JPM1F6」がNASAの保管ラック(ZSR)となっている。また、入り口から向かって床側手前(床:Deck)から、「JPM1D1」が空調・熱制御用のECLSS/TCS1(LTL)ラック、「JPM1D2」が電力ラック1(EPS1)、「JPM1D3」が保管空間、「JPM1D4」がNASAとJAXAの冷凍・冷蔵庫のMELFI-1、「JPM1D5」が電力ラック2(EPS2)、「JPM1D6」が空調・熱制御用のECLSS/TCS2(MTL) ラックとなっており、反対の天井側手前(天井:Overhead)から、「JPM1O1」が情報管制ラックのDMS2と可搬式酸素マスクのPBA(Portable Breathing Apparatus)と消火器のPFE(Portable Fire Extinguisher)、「JPM1O2」がシステム保管ラック1(JRSR-2)、「JPM1O3」がユーザー保管ラック1(JRSR-1)、「JPM1O4」が衛星間通信システムラックのICS/PROX、「JPM1O5」が情報管制ラックのDMS1となっており、更にその奥に可搬式酸素マスクのPBAと消火器のPFEが設置されている。[42][34][39]
  • 電力 - 直流120V・最大24kW
  • 通信制御 - 32ビット計算機システム、高速データ伝送最大100Mbps
  • 環境制御性能 - 温度:18.3-26.7度、湿度:25-70%
  • 寿命 - 10年以上
エアロック主要諸元[36]
  • 外径 - 船外実験プラットフォーム側1.7m、船内実験室側1.4m
  • 長さ - 2.0m
  • 耐圧性能 - 約1,047hPa
  • 通過可能荷物寸法 - 約0.64m×0.83m×0.80m
  • 通過可能荷物重量 - 300kg
  • 消費電力 - 600W以下
船内保管室

船内保管室 (ELM-PS)[編集]

船内保管室 (Experiment Logistics Module Pressurized Section:ELM-PS)は、軌道上で保管庫として使用される部位で、日本が打ち上げた初の有人施設となった[43]。実験室同様に1気圧が保たれ、8台のラックを搭載できる[43]。打ち上げ時に搭載していたラックは船内実験室打ち上げ後に移設され、その後は保管空間として荷物の保管に使われている[43]

上部が斜めに切られたような形状になっているが、ここには船外実験プラットフォームと同じ実験装置交換などに使う船内保管室装置交換機構が1基設置されている。これはHTV到着時に、後述の船外パレットをここに仮置きして、HTVの曝露パレットを取り付ける場所を空けるために使用する計画であったが、その後船外パレットは地上に回収することになったため、このような使い方は必要なくなった。[36]

当初計画では、この船内保管室はスペースシャトルを使用して、運用を終えたラックや試料などを地上に回収したり、新しいラックや実験材料をISSへ輸送することを考慮していた。しかし、シャトル運用がISS完成と同時に終了することになり、地上へは持ち帰らない方針になったため、スペースシャトルへの積み込みに必要な部品の一部(把持部であるグラプルフィクスチャなど)は実機からは取り外された。

主要諸元[43][36]
  • 形状 - 円筒形
  • 直径(外径) - 4.4m
  • 直径(内径) - 4.2m
  • 全長 - 4.2m
  • 壁の厚さ - 約10cm(メテオロイド・デブリシールドとして、進行方向側以外の壁が外から順に、アルミ合金のデブリバンパ、多層断熱材(MLI)、アルミ合金の与圧壁(アイソグリッド構造で最薄4.8mm)で構成されている「Whippleバンパ」でできており、進行方向側223度分のみ「スタッフィング入りバンパ」(バンパ側から順にMLI、アルミメッシュ、セラミック、炭素複合材でできている)が設けられている)[44][41]
  • 乾燥重量 - 4.2t(打ち上げ時8.4t)
  • 搭載ラック - 8台
  • 電力 - 直流120V・最大3kW
  • 環境制御性能 - 温度:18.3-29.4度、湿度:25-70%
  • 寿命 - 10年以上
船外実験プラットフォーム

船外実験プラットフォーム (EF)[編集]

船外実験プラットフォーム (Exposed Facility:EF)は、微小重力・高真空の宇宙曝露環境を利用して、科学観測、天体観測、地球観測、通信、理工学実験、材料曝露実験などを行う多目的実験空間を提供する装置[36]。船外実験装置や衛星間通信装置を取り付けるための12箇所の結合部である船外実験プラットフォーム装置交換機構(Equipment Exchange Unit:EEU)があり、この結合部に各実験装置を取り付けることで様々な実験が行える[36]。なお、曝露実験装置の設置場所は米、露、欧州も有しているが、排熱用の冷却能力まで提供可能なのは「きぼう」の船外実験プラットフォームだけである。船外実験プラットフォーム結合機構(Exposed Facility Berthing Mechanism:EFBM)により、きぼう船内実験室と結合している[39][45]。EF先端(後方側)の結合部は、スペースシャトルで船外機器を輸送した「船外パレット」と、HTVで船外機器を輸送するための「曝露パレット」を取り付けるのに使われる。

主要諸元[46][47]
  • 形状 - 箱形
  • 幅 - 5.0m
  • 長さ - 5.2m
  • 高さ - 3.8m
  • 質量 - 4.1t
  • 実験装置取付け場所 - 12箇所
    • システム機器用 - 2箇所
    • 実験装置設置用 - 9箇所
    • 実験装置仮置き用 - 1箇所
  • 電力 - 直流120V・最大11kW
    • システム機器用 - 最大1kW
    • 実験装置用 - 最大10kW
    • 個別の実験装置 - 最大3kW
  • 通信制御 - 16ビット計算機システム、データ伝送速度:最大100Mbps
  • 環境制御性能 - なし
  • 寿命 - 10年以上
船外パレット

船外パレット (ELM-ES)[編集]

船外パレット (Experiment Logistics Module Exposed Section:ELM-ES)は、船外実験プラットフォームに取り付ける船外機器を3基取り付けて、スペースシャトルで輸送するためのパレット[48]。船内保管室と同様に、シャトルによる複数回の利用を想定して設計され、機器の地上への回収も可能なように設計されたが、同様な理由で再使用はしない方針になった[48]

2J/Aミッションでは、船外実験装置2基 (MAXI, SEDA-AP) と衛星間通信システム (ICS-EF) を搭載し運搬した。これらの搭載機器はJEMRMSを使用して船外実験プラットフォームに移設され、船外パレットは空のままスペースシャトルのペイロードベイに戻されて、地球へ回収された。

主要諸元[36]
  • 形状 - フレーム型
  • 幅 - 4.9m
  • 長さ - 4.1m
  • 高さ - 2.2m(実験装置を含む)
  • 質量 - 1.2t(実験装置を含まない)
  • 実験装置取付け場所 - 3箇所
    • 実験装置2個+R-ORU 3個またはE-ORU 2個
  • 電力 - 直流120V・最大1kW
  • 熱制御方式 - ヒーター、断熱材
  • 環境制御性能 - なし
  • 寿命 - 10年以上
ロボットアーム

ロボットアーム (JEM-RMS)[編集]

きぼうロボットアーム (JEM-Remote Manipulator System:JEM-RMS)は、実験や船体の保全作業支援に使用するロボットアームである。全長10mの親アームと、親アームの先端に取り付けて使用する2.2mの子アームの2つと船内のアーム作業卓(RMSラック)からなる。アームはそれぞれ6つの関節を持ち、人間の腕と同じような動作が可能である。[36]

親アームは、親アームブーム(船内実験室側から順に1から3まである)、関節、把持手であるエンドエフェクター、テレビカメラ、雲台、照明で構成され、親アームブーム2と3にテレビカメラ、雲台、照明があり、カメラ超しに映像を見ながら船外実験装置の交換作業を中心に使われる。子アームは、子アームエレクトロニクス、子アームブーム、関節、把持手であるエンドエフェクター(ツールと呼称)、テレビカメラで構成されている。親アームのエンドエフェクターで子アームを把持した上で、船外実験プラットフォームにある軌道上交換ユニット(ORU)の交換など、精度の高い作業で使われるため、アーム先端が対象物に合わせて自動でアームの姿勢制御を行うコンプライアンス機能が搭載されている。子アームを使わない時は、船外実験プラットフォーム上に設けられている「子アーム保管装置」に収められており、親アームも使わない時は、親アームブーム1を垂直に立てた上で親アームブーム2を斜め下に折り曲げた山折りの状態の保存姿勢で待機している[49][36]

子アームはHTV初号機の与圧部に搭載して打ち上げられ、きぼう内で組み立てられた後、きぼうのエアロックを使って船外実験プラットフォームへ搬出され、子アーム保管装置に収納された。JEM-RMSは地上からも遠隔操作で動かすことができる。2012年のHTV3号機からこの地上からの遠隔操作を本格使用する予定であり、そのための試験が2011年12月6日に行われた[50][51]。以後、ロボットアームの操作は主に地上からの遠隔で行われており、その分宇宙飛行士の活動時間を他の作業に割り当てることができるようになっている[52][53]

主要諸元[36][54]
  • 親アーム
    • 型式 - 親子式6自由度アーム
    • 自由度 - 6
    • 長さ - 10m
    • 質量780kg
    • 取扱量 - 最大7,000kg
    • 位置決め精度 - 並進±50mm、回転±1度
    • 先端速度 - 60mm/s(対象物:600kg以下)、30mm/s(対象物:3,000kg以下)、20mm/s(対象物:7,000kg以下)
    • 最大先端力 - 30N以上
    • 寿命 - 10年以上
  • 子アーム
    • 型式 - 親子式6自由度アーム
    • 自由度 - 6
    • 長さ - 2.2m
    • 質量190kg
    • 取扱量 - 最大300kg
    • 位置決め精度 - 並進±10mm、回転±1度
    • 先端速度 - 50mm/s(対象物:80kg以下)、25mm/s(対象物:300kg以下)
    • 最大先端力 - 30N以上
    • 寿命 - 10年以上

衛星間通信システム (ICS)[編集]

衛星間通信システム(Inter-orbit Communication System:ICS)は、地上と双方向通信を行う日本独自の通信システムである。船内実験室の与圧系サブシステム(ICS Pressurized Module subsystem:ICS-PM)でデータ処理を行い、2J/Aミッションで船外実験プラットフォームに設置された、直径約80cmのアンテナを持つ曝露系サブシステム(ICS Exposed Facility subsystem:ICS-EF)で中継衛星・地上とを繋ぐ。ICSとJAXAのデータ中継衛星こだまを利用して、こだまが2017年8月5日に退役するまでの間[34]筑波宇宙センターとの間でデータ・画像・音声などの双方向通信を行っていた。こだまが1機しかなく、連続通信は不可能であるため、管制には使用せず大容量の実験データ送受信等に使用する。通信速度は、地上へのダウンリンクが50Mbps、地上からのアップリンクが3Mbpsとなっており、きぼうから地上へのハイビジョン映像の送信にも使われている[55][36]

主要諸元[36]
  • 大きさ - ICS-PM・2.0m×1.0m×0.9m、ICS-EF・アンテナ収納時1.1m×0.8m×2.0m、ICS-EF・アンテナ展開時2.2m×0.8m×2.0m
  • 重さ - ICS-PM・330kg、ICS-EF・310kg
  • 通信速度・周波数・変調方式 - ICSから地上・50Mbps・約26GHz・QPSK(Quadrature Phase Shift Keying:四位相偏移変調)、地上からICS・3Mbps・約23GHz・BPSK(Binary Phase Shift Keying:二位相偏移変調)
  • DRTS可視時間(理論値) - 1日あたり計約7.8時間(DRTSが1機の場合)、1回あたり最大約40分

実験装置[編集]

きぼうは実験施設であり、宇宙実験を行うことが利用目的である。スペースシャトルの打上げ能力の制限のため、打ち上げ時には実験ラックは2台しか装置しか搭載しておらず、残りは米国実験棟デスティニーから移設した。また2011年以降に順次HTVで残りの実験ラックを輸送している。きぼうで最初に行われた実験は、2008年8月22日から始まった流体実験ラックで行われたマランゴニ対流実験である[56]

船内実験室実験装置[編集]

きぼう船内実験室には実験ラックの設置する場所が10か所あり、その内米国、欧州と共通の国際標準実験ラック (ISPR) をJAXAが5基、NASAが5基設置する予定である[42]。NASAは一部の実験装置をデスティニーから移設している。2009年夏のSTS-128でISPRと同じ大きさのISS長期滞在員用の個室1台を「きぼう」内に運んで仮設置した(滞在クルー1名と野口聡一宇宙飛行士が利用)が、2010年9月にこの個室はハーモニーへ移設された。

JAXAが設置しているラックは以下の通り。

流体実験ラック (RYUTAI)[編集]

1J/Aミッションで、船内保管室に搭載して打ち上げられ、1Jミッションで船内実験室に移設された。マランゴニ対流の観察や結晶成長実験などを行い、結晶生成メカニズムの解明や結晶成長制御技術開発を行うための実験を行う。

  • 流体物理実験装置 (Fluid Physics Experiment Facility:FPEF) - 沸騰、熱伝達、濡れ性、燃焼、泡挙動、マランゴニ対流などの流体の動きを、地球の重力の影響を排して微小重力環境下で実験・観察を行う[57]
  • 溶液結晶化観察装置 (Solution Crystallization Observation Facility:SCOF) - 自然対流の発生しない宇宙空間で、結晶の形・組織・温度・濃度・生成成長過程の様子を観察する[58]
  • 蛋白質結晶生成装置 (Protein Crystallization Research Facility:PCRF) - セルカートリッジが6つあり、それぞれ個別に蛋白質の個性に合った温度、濃度、圧力などの条件を細かく設定ができる[59]
  • 画像取得処理装置 (Image Processing Unit:IPU) - 地上へ送信できなかった実験画像データを、同時にモニター・録画(データ保存用ハードディスク120Gバイトを最大6台搭載可能)し圧縮(MPEG2方式、6チャンネル同時)処理を行い、伝送ラインを用いて地上に送る機能を持つ[60]

細胞実験ラック (SAIBO)[編集]

1J/Aミッションで、船内保管室に搭載して打ち上げられ、1Jミッションで船内実験室に移設された。植物や細胞などを培養し、宇宙環境が生物に与える影響を解明するための実験を行う。

  • 細胞培養装置 (Cell Biology Experiment Facility:CBEF) - 微小重力培養室と回転テーブルによる最大2Gまでの人工重力を起こせる培養室の2つの培養室を持っている[61]
  • クリーンベンチ (Clean Bench:CB) - 生物実験で実験試料がカビやほこりに汚染されないよう、微小粒子が100から1,000個の環境を作り出す装置[62]。2018年8月2日現在、運用を行っていない[42]

冷凍・冷蔵庫 (MELFI)[編集]

冷凍・冷蔵庫(Minus Eighty degree Celsius Laboratory Freezer for ISS:MELFI)は、ESAが開発した窒素ガスを冷媒にした冷凍・冷蔵庫で、4つの冷凍室があり、-80度、-26度、+4度に温度を設定でき、常温の実験試料を3時間以内に-80度まで冷却でき、8時間停電しても設定温度を維持できる性能を持っている。実験試料を冷却したまま運べるようになっており、15回の打ち上げと10年間の運用ができるようになっている。米国実験棟デスティニーから1台が移設され、「きぼう」内には計2台設置されている。[63]

勾配炉ラック (KOBAIRO)[編集]

2011年1月にHTV2号機で運搬されて設置された。

  • 温度勾配炉(Gradient Heating Furnace:GHF) - 試料を最高摂氏1,600度まで加熱して融解、冷却、結晶化して半導体の性質を研究する材料実験ラック。最大15個の試料をあらかじめ搭乗員が装着しておくことにより、地上からの遠隔操作で試料の交換や実験操作が可能である。炉体部 (GHF-Material Processing Unit:GHF-MP)、試料自動交換機構 (Sample Cartridge Automatic Exchange Mechanism:SCAM)、制御装置 (GHF-Control Equipment:GHF-CE)の3つで構成されている。[64]

多目的実験ラック (MSPR)[編集]

多目的実験ラック (Multi-purpose Small Payload Rack:MSPR)は、2011年1月にHTV2号機で運搬されて設置された。大型実験装置用のワークボリューム(WV)、小型実験装置用の小規模実験エリア(SEA)、作業台のワークベンチ(WB)からなっており、電力・通信・ガスといった各リソースを提供し、以下の実験装置を入れ替えることにより様々な実験が行える。[65]

  • 燃焼実験チャンバー (Chamber for Combustion Experiment:CCE)(HTV2で運搬) - 多目的実験ラックのワークボリューム内に設置されている燃焼実験を行うための装置[66]
  • 水棲生物実験装置 (Aquatic Habitat:AQH)(HTV3で運搬) - モデル生物(簡単に飼育でき世代交代が早く、人工的に遺伝子を操作でき、DNAが小さく塩基配列がわかっている生物のこと)であるメダカゼブラフィッシュを90日間かけて3世代の継代飼育を行う装置[67]。2018年8月2日現在、運用を行っていない[42]
  • 液滴群燃焼実験供試体(Group Combustion Experiment Module:GCEM)(HTV5で運搬) - 熱による自然対流が起きない微小重力下で燃料液滴群(燃料を微小粒子化したものの群体)の燃焼の仕組みを観察する装置[68][69]
  • 沸騰・二相流体ループを用いた気液界面形成と熱伝達特性(Interfacial Behaviors and Heat Transfer Characteristics in Boiling Two-Phase Flow:TPF)(HTV6で運搬) - 無重力化で液体の熱の伝わりやすさを調べ、得られたデータを人工衛星、探査機、宇宙基地などの排熱システムの設計に応用させるためのデータベース構築を行う実験[70]
  • 微粒化観察装置(Atomization Observation Equipment:AOE) - 無重力環境下で液糸が分かれていく過程をハイスピードカメラで撮る装置。この実験により明らかにされた新しい微粒化概念を噴霧燃焼シミュレーターに反映させ、新型エンジン開発に応用する[71]
  • 次世代水再生実証システム(JEM Water Recovery System: JWRS)(開発中) - 現在ISSで使われている水再生システムより、小型で消費電力が少なく再生効率の高い、保守整備が容易な次世代型水再生システムを開発するにあたって、小型の実証システムを先に開発し、きぼうで実証実験を行う予定[72]

多目的実験ラック2 (MSPR-2)[編集]

多目的実験ラック2 (Multi-purpose Small Payload Rack 2:MSPR-2)は、2015年8月にHTV5号機で運搬されて設置された。

  • 静電浮遊炉 (Electrostatic Levitation Furnace:ELF)(HTV5で運搬) - 地上では容器から不純物が入るため、微小重力下で静電気を使ってガラスなどの材料を浮かせ、複数のレーザーを照射して溶かしたり固めたりすることができる装置[73]

その他の機器[編集]

  • 受動積算型宇宙放射線線量計(Passive Dosimeter for Lifescience Experiments in Space:PADLES) - 搭乗員や生物試料が受ける宇宙放射線と微小重力環境の影響を調べるためのもので、プラスチック飛跡検出器(CR-39)と熱蛍光線量計(TLD-MSO)の2つの検出器で構成されている生物実験用ドシメーターパッケージと自動線量解析システムのこと。これを利用した「Area PADLES線量計」は、きぼう内の17か所に設けて計測が行われており、2008年6月以降約半年ごとに回収と交換が行われる。また「Crew PADLES線量計」は、宇宙飛行士個人の被曝線量計として被曝管理に使われており、ストラップが付いた携帯用のものである。[74]
  • 宇宙放射線リアルタイムモニター装置(Position Sensitive Tissue Equivalent Proportional Chamber:PS-TEPC) - JAXAと高エネルギー加速度研究機構(KEK)が共同開発した、宇宙放射線の線量計測を行う装置で、きぼう船内実験室のエアロック横の壁に設置されている。従来、JAXAの受動型線量計とNASAの能動型計測器を用いて日本人宇宙飛行士の被曝線量管理を行っていたが、測定精度に難があったため、新たに開発されたこの装置でより正確な線量計測技術の技術実証を行う。[75]
  • 微小重力計測装置(Microgravity Measurement Apparatus:MMA) - ISS内の微小重力環境は常に変化し、実験に影響を及ぼすため、3軸の加速度センサーを持っているこの装置で微小重力環境の測定を行う。きぼう内の実験ラックの表面に5個まで設置可能。[76]

船外実験プラットフォーム実験装置[編集]

実験装置は大きさ0.8m×1.0m×1.85mの重さ500kg以内で、直方体の形をしたJEM曝露部搭載型共通バス機器部(APBUS)と呼ばれる標準ペイロードの箱に入れられ、船外実験プラットフォームに設置される。きぼう船外実験プラットフォームには、船内実験室と同じく実験機器の設置する場所が10か所あり、各実験機器へ電力・冷却水・通信機能を供給している。10か所の内、JAXAが5基、NASAが5基の実験機器を設置する権利を持っている。船外実験プラットフォームに取り付けた状態で打ち上げることはできないため、船外パレットかHTVの曝露パレットに搭載して打ち上げ、ロボットアームを使用して取り付けられる。[77][14]

JEM曝露部搭載型共通バス機器部(APBUS)[編集]

JEM曝露部搭載型共通バス機器部(Attached Payload BUS for Kibo Exposed Facility Payload:APBUS)は、実験機器をきぼう船外実験プラットフォームに設置する際に使われる共通バス機器部で、実験機器を入れる質量や重心を最適化したミッションインタフェース構造部(Mission Interface Structure: MSTR)と、きぼうで使われる特殊な通信方法を地上での通信方法に変換し、実験機器ときぼう間の通信を中継する通信制御部(Attached Payload Remote Terminal:APRT)と、ISS特有の120Vの電圧が1系統供給されているものを、人工衛星などで使われている28Vに変圧し、複数の系統への分配も行える電力分配器(Power Distribution box for Attached Payload:PDAP)と、太陽光の有無で実験装置の温度が下がるのを防ぐため、実験装置を一定の温度に保温するヒーター制御器(Heater Control Equipment:HCE)と伸展マストに実験機器を搭載して1m以上伸展でき、地上からの遠隔操作や宇宙飛行士が手動で伸展と収納を行うことができる伸展機構(Extension Mechanism Assembly:EMA)の5つで構成されている[78]

宇宙環境計測ミッション装置 (SEDA-AP)[編集]

宇宙環境計測ミッション装置(Space Environment Data Acquisition equipment - Attached Payload:SEDA-AP)は、2009年の2J/Aで船外パレットに取り付けて打ち上げられた。人体や人工衛星に影響を与える各種の宇宙環境を計測する。3年間の計測を行う予定。JEM曝露部搭載型共通バス機器部(APBUS)の軌道上技術実証も目的としている。微小粒子捕獲実験装置・材料曝露実験装置 (MPAC/SEED) はスペースシャトル (STS-131) で回収された。SEDA-AP本体は将来HTVで廃棄される予定(未定:当面は軌道上に残したままにする)。[79]

  • 中性子モニター (Neutron Monitor:NEM) - 中性子の計測を行う。
  • 重イオン計測装置 (Heavy Ion Telescope:HIT) - 重イオン(Li-Fe)の粒子別エネルギー分布の計測を行う。
  • プラズマ計測装置 (Plasma Monitor:PLAM) - 宇宙空間のプラズマの密度と電子温度の計測を行う。
  • 高エネルギー軽粒子モニター (Standard Dose Monitor:SDOM) - 電子、陽子、アルファ線等の高エネルギー軽粒子の粒子別エネルギー分布の計測を行う。
  • 原子状酸素モニター (Atomic Oxygen Monitor:AOM) - ISS周回軌道上の原子状酸素量の計測を行う。
  • 電子部品評価装置 (Electronic Device Evaluation Equipment:EDEE) - きぼうにある電子部品の宇宙放射線によるシングルイベント現象(宇宙放射線粒子の入射で、電子部品の回路が破損したり、一時的な誤動作が起きる現象)や劣化の計測を行う。
  • 微小粒子捕獲実験装置 (Micro-Particles Capturer:MPAC) - ISS周回軌道上に存在する微小粒子を捕獲し、地上へ回収した後、粒子の大きさ・組成・衝突エネルギー等を調べる。STS-131で回収済み。
  • 材料曝露実験装置 (Space Environment Exposure Device:SEED) - 熱制御材料や固体潤滑剤等といった宇宙用材料を直接宇宙空間に曝す装置で、地上へ回収した後、宇宙用材料の劣化の度合いを調べる。STS-131で回収済み。

全天X線監視装置 (MAXI)[編集]

全天X線監視装置(Monitor of All-sky X-ray Image:MAXI)は、2009年の2J/Aで船外パレットに取り付けて打ち上げられた。広視野のX線観測装置を備えて、ISSの公転により90分間隔で全天のX線天体1,000個超を撮影し、X線の強度変化や突発的な天文現象の発生を発見する[80]

超伝導サブミリ波リム放射サウンダ (SMILES)[編集]

超伝導サブミリ波リム放射サウンダ(Superconducting Submillimeter-Wave Limb-Emission Sounder:SMILES)は、2009年9月にHTV初号機で打ち上げて設置された。成層圏の大気に含まれる微量な物質が放射するサブミリ波を計測し、オゾン層および関連する化学物質の観測を行う。SMILESは2010年4月に、サブミリ波受信系の一部の機器が故障したため、観測運用は出来なくなった[81][82]。稼働していた半年分の大気観測データは得られており、また2014年3月まで行われた、SMILESに搭載されている小型長寿命化した機械式冷凍機による極低温冷却の技術実証による温度変化の特性データも得られている[83]

なおHTV初号機では、同時にNASAの船外実験装置HREP (Hyperspectral Imager for the Coastal Ocean (HICO) & Remote Atmospheric & Ionospheric Detection System (RAIDS) Experimental Payload) も運んで設置した。

ポート共有実験装置 (MCE)[編集]

ポート共有実験装置(Multi-mission Consolidated Equipment:MCE)は、2012年にHTV3号機で打ち上げて設置された。MCEは、比較的小型の5つのミッションをひとつの実験装置に混載し、ポートを共有して実験・観測を行う実験装置である[84]

  • 地球超高層大気撮像観測 (Ionosphere,Mesosphere,upper Atomosphere, and Plasmasphere mapping:IMAP) - 高度80km以上で発生する光学現象の大気光とプラズマ共鳴散乱光を可視光線、近赤外線、極端紫外線の3つの波長域で観測し、カーマン・ライン近辺での擾乱の物理機構を明らかにする。
  • スプライト及び雷放電の高速測光撮像センサー (Global Lightning and Sprite Measurement Mission:GLIMS) - CMOSカメラ、フォトメーター、VHF干渉計、VLF受信機などが搭載されており、これらを用いて雷放電とスプライトの観測を行う。
  • 宇宙インフレータブル構造の宇宙実証 (Space Inflatable Membranes Pioneering Long-term Experiments: SIMPLE) - インフレータブル構造(気体の内圧を用いて風船状膜材を膨らませる超軽量の空気膜構造物)を、宇宙空間での長期運用で技術実証を行い、基礎データを取得する。
  • EVA支援ロボットの実証実験 (Robot Experiment on JEM:REXJ) - 宇宙飛行士の支援を行う「有人宇宙活動支援ロボット(Astronaut Support Robot:Astrobot)」の技術開発の一環として、伸縮自在のロボットアームとテザーを用いた空間移動の技術実証を行う[85]
  • 船外実験プラットフォーム用民生品ハイビジョンビデオカメラシステム (Commercial off - the - shelf high Definition TV Camera - Exposed Facility:COTS HDTV-EF) - 国際宇宙ステーションに民生品ハイビジョンビデオカメラを宇宙空間に曝しての実証実験で、地球の200km×350kmの範囲の動画・画像を撮り、宇宙線によるCMOS撮像素子の損傷具合などを調べ、市販の民生品を宇宙利用できないか検証する[86]

高エネルギー電子・ガンマ線観測装置 (CALET)[編集]

高エネルギー電子・ガンマ線観測装置 (CALorimetric Electron Telescope: CALET)は、2015年にHTV5号機で打ち上げて設置された[87]。CALETはTeV領域の高エネルギー電子線・ガンマ線を観測し、高エネルギー宇宙線の起源と加速の仕組み、宇宙線の銀河内伝播の仕組み、暗黒物質の正体などの解明を目指したものである[88][89]

  • カロリメーター(CALorimeter:CAL) - 電荷測定器(CHD)、イメージングカロリメーター(IMC)、全吸収型カロリメーター(TASC)の3つの検出器で構成されており、宇宙線の入射方向や種類を調べる[90]
  • ガンマ線バーストモニター(Gamma-ray Burst Monitor:CGBM) - 、硬X線観測装置(HXM)2台、軟ガンマ線観測装置(SGM)1台の3つの検出器で構成されており、CALのガンマ線観測機能を補い、ガンマ線の突発的な天体現象を観測する[90]
  • 地球観測用小型赤外カメラ(Compact Infrared Camera:CIRC) - 地上の森林火災を監視する相乗りミッション[91][90]

中型曝露実験アダプター(i-SEEP)[編集]

中型曝露実験アダプター(IVA-replaceable Small Exposed Experiment Platform:i-SEEP)は、2016年12月にHTV6号機で打ち上げて設置された。 寸法50cm×70cm×35cmで重さ200kgまでの実験装置を複数搭載できるプラットフォームで、曝露環境下での搭載機器の技術実証を行う[92]

  • 次世代ハイビジョンカメラ(High Definition TV Camera - Exposed Facility 2:HDTV-EF2)システム - 光学20倍ズームのハイビジョンカメラ、高感度で光学5倍の4Kカメラが搭載されており、地上から遠隔操作できる。自然災害の観測や、民生品カメラの曝露環境下での技術実証、映像の広報・教育への利活用を行う。
  • 高性能小型GPSR/Wheelユニットの軌道上実証 - 小型衛星に搭載される、民生品で作られた「GPS/Wheel Demo Unit」を曝露環境下で技術実証を行う。

その他の機器[編集]

  • 小型衛星放出機構(JEM Small Satellite Orbital Deployer:J-SSOD) - 2012年10月にHTV3号機で打ち上げられた。CubeSat(1Uサイズのもので、1Uは縦・横・長さが10cm角のもの)や50kg級超小型衛星(55×55×35cm)を「衛星搭載ケース」に格納した状態で無人宇宙補給機でISSに運び、「親アーム先端取付型実験プラットフォーム(Multi-Purpose Experiment Platform:MPEP)」に設置し、きぼうエアロックのスライドテーブルに取り付け、固定カバーを外して多層断熱材(Multi-Layer Insulation)を組み付け、これをきぼうのエアロックから船外に出してロボットアームで把持し、放出地点に移動した後、ISS進路の反対方向の斜め下45度に向けてバネを使った分離機構で秒速1.1m-1.7m程度で放出する一連の仕組みのこと。放出された衛星はISSと同じ軌道傾斜角51.6度で、ISSとの衝突を避けるためISSより低い軌道を周る。[93][94][95][96]
  • NanoRacks小型衛星放出機構(NanoRacks CubeSat Deployer:NRCSD (en) - 日本の小型衛星放出機構(JEM Small Satellite Orbital Deployer:J-SSOD)の成功を見て、その有用性に着目したアメリカのNanoRacks社が商業利用を目的に開発した大型の小型衛星放出機構で、6U分の衛星搭載ケースが8本の計48U分の衛星放出能力を持っている[97][98]。2018年5月16日現在、180機が放出されている[99]。NanoRacks社は50kg級衛星とCubeSatの両方に対応したKaber小型衛星放出機構(NanoRacks Kaber Microsat Deployer)も開発している[100]
  • サイクロップス(Space Station Integrated Kinetic Launcher for Orbital Payload Systems:SSIKLOPS、Cyclops) - NASAが開発した小型衛星放出機構[101]。きぼうロボットアームの先端に取り付けられた子アーム(Small Fine Arm:SFA)で放出機構を把持する仕組みで、2014年11月29日に、直径56cmで重さ57kgの球体状の衛星であるSpinSatの放出に成功している[97][102][100]
  • 簡易曝露実験装置(Exposed Experiment Handrail Attachment Mechanism:ExHAM) - 上面7個、側面13個の計20個の実験サンプル(縦・横100mm、奥行き20mm)を搭載できる、直方体の形をした曝露実験用の装置である。今までは搭乗員による船外活動が必要であったこの種の実験は、この装置ではロボットアームときぼうのエアロックを使って実験試料の回収が容易なため船外活動は不要である。実験を終了した試料は地上へ回収できる。[103]

計画中[編集]

以下の実験・観測装置が計画されている。打ち上げはHTVを利用する。

  • 超高エネルギー宇宙線望遠鏡(Extreme Universe Space Observatory:EUSO) - 世界16か国が参加する国際プロジェクトで、当初は2017年の打ち上げを予定していたが[104]、2018年11月現在、計画は遅れている。きぼうには超高エネルギー宇宙線を観測する超広角望遠鏡が設置される予定である(JEM-EUSO)[105]

運用管制[編集]

無重量環境プール内のきぼう実験モジュールの模型

ISSでは、「参加主体は、自己が提供する要素を運用する責任を有する。」としているIGA第10条とMOU第9条2a項により[2]、実験棟を持っている国はそれぞれ独自に自国の実験棟を管制しており、日本はきぼうの管制を受け持っている[106]。きぼうの管制は、筑波宇宙センターにある宇宙ステーション総合推進センター (Space Station Integration and Promotion Center: SSIPC) の宇宙ステーション運用棟で行われる。運用管制施設はこの他に、宇宙ステーション試験棟、宇宙実験棟、宇宙飛行士養成棟、無重量環境試験棟があり、宇宙ステーション運用棟を含め計5施設で構成されている。

SSIPCの宇宙ステーション運用棟では、きぼう自体の運用を行う「システム運用」を1階の運用管制室で、搭載している実験装置の運用を行う「実験運用」が1階のユーザー運用エリア(User Operations Area: UOA)で、きぼうの運用計画立案も1階で行われ、4階の運用リハーサル室で管制員の訓練や統合リハーサル、NASAとの共同統合訓練が行われる[107][108]2016年8月8日に、きぼう運用管制室が一新されている[109]

初めてきぼうの運用管制が行われたのは、きぼう船内保管室などのISSへの運搬と設置を行ったSTS-123の国際宇宙ステーション組立てミッション(1J/A)からである[110]。きぼう運用管制チームは、普段はきぼうの管制を行っているが、こうのとりがISSに係留している間は、こうのとりの管制も行っている[111]

きぼうの運用システム[編集]

きぼうの運用システムの構成要素は以下の7つからなっている[107][112][108]

  • 運用管制システム(Operations ControlSystem:OCS) - きぼうや搭載実験装置の監視・制御・運用支援、実運用計画の立案、データ管理、管制ネットワーク運用管理、地上要員の訓練などを行う。
  • 運用利用計画立案システム - 電力や通信、搭乗員活動時間などのリソースをISS参加国の間で配分する運用計画を長期・詳細の2つに取りまとめる。
  • 搭乗員運用訓練システム - 搭乗員のきぼう運用にかかる知識、技能、操作手順の訓練を行う。
  • 運用技術支援システム - きぼうと搭載実験装置の運用性、安全性、物理的適合性の確認を行う「エレメントインテグレーションシステム」、きぼうに搭載されているソフトウェアや運用データファイルを作成、検証、管理する「フライトソフトウェア/運用データファイル(ODF:Operations Data File)生成システム」、きぼうの機器が故障した場合に、各機器の電気的・機械的な状態の模擬実験を行う「エンジニアリングシミュレーター」、無重量環境試験設備にてきぼうの実物大模型を用いた運用手順の確認を行う「きぼうの水中モックアップ」などで構成されている。
  • 保全補給運用管理システム - きぼうの部品交換や消耗品の補給、修理の管理を行う。
  • 運用ネットワークシステム - 筑波宇宙センターとジョンソン宇宙センターの間で、きぼうのデータの送受信を行う。
  • ケネディ宇宙センター射場支援装置システム - 補給品の打ち上げ時に射場作業の支援を行う。

システム運用[編集]

SSIPC内にある運用管制室で、運用管制チームは最大10ポジションの3交代シフト(8:00-17:00、16:00-1:00、0:00-9:00[113])の24時間体制で365日監視を行っており[114]、指揮を執るフライトディレクターと運用管制員は総勢50名以上が勤めているが、常駐している運用管制官の1シフト最小構成は5人のみで、多くても15人程度と効率的な運用がなされている[115][107][113]。きぼうのシステムを監視するほか、利用計画や補給物資の選定や輸送計画、不具合発生時の修理計画などの立案も担っており、不具合対応の運用シミュレーション訓練も行い練度向上に努めている[107][109]。また、ISS全体を統括しているのはNASAのフライトディレクターであり、予定の変更が必要な場合はNASAのフライトディレクターと交渉する必要があるため、筑波の運用管制室からはNASAのジョンソン宇宙センターにあるミッションコントロールセンター(MCC-H)を映すことができ、かつ常時NASAのフライトディレクターと連絡が付くようになっている[106]

きぼうとSSIPCの通信は、ISSの通信システムからTDRSジョンソン宇宙センター、ホワイトサンズ地上局(White Sands Complex:WSC)を経由したNASAリンク(Sバンド、kuバンド)[116]で24時間行われる[112]。当初は、日本のデータ中継技術衛星こだま(DRTS)とDRTS地上局を経由したJAXAリンク(Kaバンド、Sリンク)での通信も可能であったが、こだまが2017年8月5日に退役したため、現在はNASAリンクのみとなっている[34][117][116]。きぼうに搭載される衛星間通信システムは、中継する衛星がこだま1機しかなく連続通信はできないため、大量のデータを送受信する場合などに使われていた。組み立てが始まった2008年以降、重大事案や緊急事態は起きていない[115]

実験運用[編集]

実験運用計画は筑波宇宙センターでまとめた後、マーシャル宇宙飛行センターに送り調整を行い、最終的にISS全体の運用計画を統括しているジョンソン宇宙センターでISSの運用計画に組み入れられ、実験が行われる[107]。きぼうでの実験は、実験運用管制チームが搭乗員の作業を支援したり、データの監視や遠隔操作で実験機器を制御し実験を行う。他にも簡素な実験機器等を使った教育文化ミッション(Education Payload Observation: EPO)[118][119]や宇宙飛行士の健康管理に関する医学ミッションなどの運用、更に運用の進め方・規則・手順書などの作成等も実験運用管制チームが行う[120]

実際に各実験を進めるにあたって、実験運用管制チームに加え、ユーザーとなる実験テーマ提案者の代表研究者(Principal Investigator:PI)や共同研究者(Co-Investigator:CI)、代表研究者と実験運用管制員の橋渡しを行うユーザーインテグレーター(User Integrator:UI)や実験装置開発担当(Engineer)が協力して実験を行っていく[120]。また、実験装置を搭載したユーザーは、運用管制室に隣接したユーザー運用エリアで実験の模様をモニターし、適宜実験に関する指示を実験運用管制チームへ行ったり、ISSと連絡を取り合うことができる[107][120]

きぼう運用モード[編集]

きぼうには4つの運用モードがあり、運用状態や各作業内容に応じて変更を行う。運用モードの変更は搭乗員や地上からの指令で行えるが、ISSの7つの運用モードと適合している必要があり(例:ロボティクス運用モードに変更する場合、ISSは外部運用モードでなくてはならない)、適合していない場合は自動的に「スタンバイモード」に変更される。[121]

きぼう運用モード[121]
1.「標準モード」 - 搭乗員が実験を行うことができロボットアームの運用は行えない。通常はこのモードを中心に運用されている。
2.「ロボティクス運用モード」 - ロボットアームの運用が行える。
3.「スタンバイモード」 - 異常時に最小限のシステムで運用する。
4.「隔離モード」 - 与圧環境に異常が生じた場合に隣のモジュールであるハーモニーとのハッチが閉じられる。このモードでは「きぼう」内に立ち入ることはできない。
国際宇宙ステーション(ISS)運用モード[121][122]
「標準モード」 - 船内保守、ペイロード運用などの時に運用されているモード。普段はこのモードを中心に運用されている。
「リブーストモード」 - ISSが軌道変更(リブースト等)を行うときのモード。
「微小重力モード」 - 微小重力環境で実験装置の運用を行うため、微小重力性能が適用される。
「サバイバルモード」 - ISSの姿勢や電力に異常が生じるなど、搭乗員に危険が及ぶ恐れがある場合などに発動される、ISSの長期間運用を行うモード。電力、通信、排熱等のペイロード運用支援は保証されない。このモードへの移行はいつでも可能となっている。
「接近モード」 - ソユーズ、プログレス、こうのとり等の他の宇宙機の接近や離脱時に運用支援を行う。
「ASCR(安全確実なクルーの帰還)モード」 - 異常時に搭乗員が危機に晒され、地上への帰還を行うにあたって、ソユーズ宇宙船の離脱を支援する。このモードへの移行はいつでも可能となっている。
「外部運用モード」 - 船外活動(EVA)やロボットアーム運用時等、船外での組立作業や保全作業を支援する。
国際宇宙ステーション(ISS)と「きぼう」の運用モード対応表[121]
ISS
標準モード
ISS
リブーストモード
ISS
微小重力モード
ISS
サバイバルモード
ISS
接近モード
ISS
ASCRモード
ISS
外部運用モード
きぼう標準モード ×
きぼうロボティクス運用モード × × × × × ×
きぼうスタンバイモード
きぼう隔離モード
「きぼう」運用モードがISS運用モードに対し、○は適合、×は不適合

インクリメント・マネージャー[編集]

インクリメント・マネージャー(Increment Manager:IM)とは、インクリメント(ISSの運用期間単位で、搭乗員の交代を基準にした区切り。「ISS第45/46次長期滞在」の場合、「インクリメント45/46」となる。[123][124])期間中、管制チーム・技術チーム・実験チームを含め、各インクリメントの利用計画、目標設定、運用計画の履行、危機管理、対応調整など、インクリメント担当フライトディレクターと連携し[113]、きぼうが関わるミッション全体を統括するプロデューサー役を果たす[123][124]。インクリメントマネージャー制度は2015年度(平成27年度)後半のインクリメント45/46から始まった[125]

管制ポジション[編集]

きぼうの運用管制チームは、きぼう全体を統括する「きぼう運用管制チーム」(JAXA Flight Control Team:JFCT)と、きぼうでの実験などの利用を統括する「きぼう実験運用管制チーム」(Payload Flight Control Team:PLFCT)の2つから成っている[109]

きぼう運用管制チーム[編集]

運用管制室での「きぼう運用管制チーム」(JAXA Flight Control Team:JFCT)の各役割と配置は以下のようになっている[109][106]

  • ExPO(Exposed Facility Payload Officer、エクスポ・エキスポ) - 最前列左右の席。曝露ペイロードオフィサー。曝露実験全体の運用を取り纏める。きぼう実験運用管制チームに属しているが、唯一運用管制室に詰めている。[126]
  • CANSEI(Control and Network Systems, Electrical Power, and ICS Communication Officer、カンセイ) - 前から2列目左の席。通信・電力・管制系担当。きぼうのコンピューター、通信機器、電気・電力系機器・管制システムの状態を監視し、これらの制御を行う。
  • FLAT(Fluid and Thermal Officer、フラット) - 前から2列目右の席。熱・環境・実験支援系担当。きぼう内の環境制御のため、各装置から出る熱を制御する空調機器などの状態を監視・制御を行い、実験の支援を行う。
  • J-FLIGHT(JAXA Flight Director、ジェイフライト) - 前から3列目左の席。フライトディレクター。「きぼう運用管制チーム」と「きぼう実験運用管制チーム」を含め、「きぼう」の運用管制に関する全てを統括しており、きぼう運用の指揮を執る責任者。ISSと「きぼう」に関するあらゆる知識の習得とシミュレーション訓練に合格した後、実務経験を経て認定される[113]
    • リード・フライトディレクター(インクリメント担当フライトディレクター) - シフト毎に交代するフライトディレクターのチームの中から、各インクリメント毎にインクリメント担当フライトディレクターが選ばれる。インクリメントマネージャーと連携し、インクリメント期間中の取りまとめ役となり、きぼう運用の指揮を執る。[113][123]
  • J-COM(JEM Communicator、ジェイコム) - 前から3列目右の席の左側。きぼう交信担当。きぼうにいる搭乗員と交信を行う。管制員が搭乗員に指示を出す場合、必ずジェイコムを通して伝えられ、交信は英語で行われる。
  • ARIES(Astronaut Related IVA and Equipment Support、アリーズ) - 前から3列目右の席の右側。船内活動支援担当。きぼう内の機器・物品などの管理や、宇宙飛行士の船内活動(Intra-Vehicular Activity:IVA)を支援する。
  • KIBOTT(Kibo Robotics Team、キボット) - 前から4列目左の席。ロボティクス・構造・機構系担当。きぼうのロボットアーム、エアロック、機構系機器を遠隔操作で運用を行う。以前は搭乗員が直接ロボットアームの運用を行っていたが、現在はKIBOTTが行っている。
  • Tsukuba GC(Tsukuba Ground Controller、ツクバジーシー) - 前から4列目右の席。きぼう地上システム担当。きぼうの運用管制システム、運用ネットワークシステムなどといった地上設備の運用・管理を行う。
  • J-PLAN(JAXA Planner、ジェイプラン) - 実運用計画担当。かつては管制室に詰めていた[127]が現在は入らない。きぼう運用計画の立案、日勤シフトで運用計画室に入り運用計画の変更・調整を行う。
  • JEM PAYLOADS(JEM Payload Officer、ジェムペイローズ) - ペイロード運用担当。かつては管制室に詰めていた[127]が現在は入らない。きぼうでの実験実施者の窓口となり、実験運用が円滑に行われるよう支援する。かつて、実験運用管制チーム(Payload Flight Control Team:PL FCT)が「JEM PAYLOADS」の下に属していたこともあった[127]
  • JET(JEM Engineering Team、ジェット) - 技術支援チーム、システム運用技術支援担当。管制室には入らず、バックルームに詰めている。主にきぼう開発メンバーで組織され、きぼう運用管制チームを技術面で支援を行い、きぼうのデータ評価や機能拡張機器の開発検討なども行う。
  • JAXA EVA(JAXA Extravehicular Activity、ジャクサイーブイエー) - 技術支援チーム、船外活動支援担当。管制室には入らない。日本人宇宙飛行士の船外活動(Extra-Vehicular Activity:EVA)、きぼうに関係する船外活動を技術面で支援を行う。
  • OMT(Operations Management Team、オーエムティー) - 運用管理チーム、国際間調整担当。管制室には入らない。きぼうの運用にあたって、国際間での情報収集・連絡・調整を筑波宇宙センターとジョンソン宇宙センターで行う。

かつて存在したポジション

  • SENIN(System Element Investigation and Integration Officer、センニン) - システム担当。きぼうのシステムを監視し、複数の管制ポジションにわたる作業をまとめる。[127]

実験運用管制チーム[編集]

ユーザ運用エリア(UOA)での「実験運用管制チーム」(Payload Flight Control Team:PL FCT)は、きぼう船内の実験装置を担当する与圧実験運用管制チームと、船外実験プラットフォームの実験装置を担当する曝露実験運用管制チームの2つに分かれており、各役割と配置は以下のようになっている[120]

  • 与圧実験運用管制チーム - J-FLIGHTが統括し、各実験ラックごとの責任者であるラックオフィサー(Rack Officer:RO)と、各実験ラックへのコマンド送信や監視などの運用を行うオペレータ(operator:OP)で構成されており、2017年1月現在、実験運用管制員約40名が在籍している[120]
    • BIO(BIology Ops Lead、バイオ) - 細胞実験ラック担当。細胞培養装置(Cell Biology Experiment Facility:CBEF)とクリーンベンチ(Clean Bench:CB)の、2つの機器が搭載されている。
    • FISICS(FluId ScIence and Crystalization Science Ops Lead、フィジィクス・フィジックス) - 流体実験ラック担当。流体物理実験装置(Fluid Physics Experiment Facility:FPEF)と、溶液結晶化観察装置(Solution Crystallization Observation Facility:SCOF)と、蛋白質結晶生成装置(Protein Crystallization Research Facility:PCRF)と、画像取得処理装置(Image Processing Unit:IPU)の、4つの機器が搭載されている。
    • MEISTER(MSPR Engineering and Integration Staff for Enterprising Research、マイスター) - 多目的実験ラック、多目的実験ラック2担当。水棲生物実験装置(Aquatic Habitat:AQH)、液滴群燃焼実験供試体(Group Combustion Experiment Module:GCEM)、静電浮遊炉(Electrostatic Levitation Furnace:ELF)、沸騰・二相流実験供試体(Two-Phase Flow:TPF) などの機器が搭載されている。
    • GOLEM(GHF Ops Lead and Engineer of Material Science、ゴーレム) - 勾配炉実験ラック担当。温度勾配炉(Gradient Heating Furnace:GHF)が搭載されている。
    • GNOME(General Non-rack Operation for Medical and Education、ノーム) - ラックに搭載されていない実験装置、教育文化ミッション(Education Payload Observation:EPO)、医学ミッションなどを担当。これらの実験やミッションを行う宇宙飛行士の作業の支援を行う。
  • 曝露実験運用管制チーム - J-FLIGHTが統括し、全体の指揮を執る曝露ペイロードオフィサー(ExPO)の元、各曝露実験のコマンド送信や監視などの運用を行うオペレーター(operator:OP)で構成されており、2017年1月現在、実験運用管制員約15名が在籍している[120]
    • SEDA-AP OP - 宇宙環境計測ミッション装置(Space Environment Data Acquisition equipment - Attached Payload:SEDA-AP)を担当。
    • MAXI OP - 全天X線監視装置(Monitor of All-sky X-ray Image:MAXI)を担当。
    • CALET OP - 高エネルギー電子・ガンマ線観測装置(CALorimetric Electron Telescope:CALET)を担当。
    • i-SEEP OP - 中型曝露実験アダプター(IVA-replaceable Small Exposed Experiment Platform:i-SEEP)を担当。
    • SMILES OP - 超伝導サブミリ波リム放射サウンダ(Superconducting Submillimeter-Wave Limb-Emission Sounder:SMILES)を担当。運用を終了している。
    • MCE OP - ポート共有実験装置(Multi-mission Consolidated Equipment:MCE)を担当。運用を終了している。

かつて存在したポジション

  • JPOC(JAXA Payload Operations Conductor、ジェイポック) - 運用管制室のJEM PAYLOADSを補佐し、日本の実験運用全てを取りまとめる、実験運用管制室の指揮官[127]
  • RYUTAI Rack UI/PI/Eng.(User Integrator/Principal Investigator/Engineer (RYUTAI Rack)、リュータイ ユーザインテ/ピーアイ/エンジニア、流体実験ラック実験研究者チーム、エンジニアチーム) - 実験テーマ提案者かつ代表研究者のPI、各実験機器・サンプルの製作や実験計画の立案に関わるUI、実験装置の開発を担ったEngineerから構成される、流体実験ラックの実験遂行チーム[127]
  • SAIBO Rack UI/PI/Eng.(User Integrator/Principal Investigator/Engineer (SAIBO Rack)、サイボウ ユーザインテ/ピーアイ/エンジニア、細胞実験ラック実験研究者チーム、エンジニアチーム) - RYUTAI Rack UI/PI/Eng.と同様、細胞実験ラックの実験遂行チーム[127]
  • EPO/Medical(Education Payload Observation Officer、イーピーオー/メディカル) - 教育文化・医学ミッション担当。各ミッションの機器製作、計画の立案を提案者と共に行ってきた教育文化・医学ミッションの各担当者が、EPOやMedicalとして実験運用管制室に詰める。[127]

「きぼう」に関連する計画[編集]

HTVとH-IIB[編集]

日本は1997年(平成9年)から、米国のスペースシャトルやロシアソユーズなどに頼らず、地球からISSへ物資を輸送する独自の宇宙輸送システムを開発することを決定した。これは宇宙ステーション補給機: H-II Transfer Vehicle、略:HTV)と呼ばれる機体で、全長10メートル弱、直径4メートルの円筒形で、推進モジュール・電気モジュール・キャリアの三区画からなる。2009年9月11日、HTVを打ち上げる事を主たる目的として開発されたH-IIBロケットによってHTV技術実証機 (HTV-1) が打ち上げられ、午前2時16分に無事に軌道に投入、9月18日午前10時49分にISSとの結合に成功した。2010年度以降は毎年1機ずつHTVを打ち上げISSへ物資を輸送する予定である。

小型衛星放出事業[編集]

2012年10月5日にきぼうから放出されたにわか衛星F-1TechEdSat[128]

きぼうは、国際宇宙ステーション (ISS) 内に持ち込まれた超小型衛星を自身のロボットアームを用いた小型衛星放出機構(J-SSOD)により軌道上に放出することができる。これによりロケットで直接軌道に投入するより小さい衝撃で、より多くの超小型衛星を効率的に軌道上に投入できる[129]

通常のロケットでの打ち上げと比べ、放出される衛星はISSへの物資輸送機の船内貨物として打ち上げられるため、ソフトバッグと呼ばれる緩衝材[98]で包んで輸送用バッグ(CTB)に入れられた後に輸送機でISSへ運ばれる。これにより緩衝材・輸送用バッグ・輸送機与圧室・フェアリングの4重保護となり、打ち上げ時の環境条件が自動車の荷台と同じ水準にまで緩和されるため、衛星開発の負担軽減に繋がる。[94]

きぼうを利用した衛星放出の検討が始まったのは2010年頃で、アメリカの大学が開発していたcubesat放出装置の設計をもとにJ-SSODは開発されている[98]。初めて放出されたのは、2012年10月4日に明星電気WE WISH和歌山大学東北大学RAIKO (雷鼓)、同10月5日に福岡工業大学のFITSAT-1(にわか衛星)・他海外衛星のF-1TechEdSatの計5機で、星出彰彦宇宙飛行士が操作するきぼうのロボットアームにより世界で初めて宇宙空間に衛星を放出した[128]

当初はCubesatのみの放出で、最大6U分の放出能力しかなかったが[97]、2016年4月27日に初めて50kg級衛星用の搭載ケースを用いて50kg級超小型衛星が放出されている[128]。2016年12月9日には、今までの3Uサイズの衛星搭載ケースを左右に2本あった6U対応のものを2段重ねにした、計12U対応の新型放出機構をHTV6号機でISSに輸送され、2017年1月16日の衛星放出時に初めて使われている[130]。2018年10月9日現在、これまでに34機が放出されている[128]

2018年2月23日に、きぼう利用戦略[131]に基づくきぼう利用事業の民営化の第1弾として、2024年末までの契約で2023年度までに自立的運営を目指し技術移転を行う条件で超小型衛星放出サービス事業者の募集を開始し[132][133]、2018年5月29日に応募があった5社の中からSpace BD三井物産が選ばれている[134][133]

今後の計画では、2018年に6Uサイズの衛星を放出可能にし、2019年に24U相当、2020年には48U相当に能力を向上させた衛星放出機構を開発し運用する予定で、2020年以降は年間100Uの衛星放出を構想している[99][135][102]。この年間100Uの内、民間の割合が7割に、JAXAが3割になる予定である[102][133]。なお、この小型衛星放出機構(J-SSOD)を利用した衛星放出事業のJAXAでの税込み標準価格は、1Uが300万円、2Uが500万円、3Uが800万円、50kg級が1億400万円となっているが、民間事業者での価格は未定となっている[133][136]

セントリフュージ[編集]

セントリフュージ(生命科学実験施設、Centrifuge)は、日本が「きぼう」打ち上げの見返りとして、アメリカ航空宇宙局の実験棟「セントリフュージ」における重力発生装置、生命科学グローブボックス、重力発生装置搭載モジュールの開発・製造を行い、アメリカに引き渡す予定であった施設で、1997年8月に日本とNASAはこの条件で合意しており、開発費として約430億円を見込んでいた[137][138]。人工的に0.01Gから0.01G刻みで2Gまでの重力を発生させ、生物飼育箱(Habitat:ハビタット)を最大4つ搭載し、質量1.2トンのローターが1分間に最大42回転を連続90日間行える、直径が2.5m、奥行き1.5m、質量約2トンの「重力発生装置(Centrifuge Rotor:CR)」、450リットルの隔離した作業空間で生物試料を扱う高さ2m、横1m、奥行き2m、質量約1トンの「生命科学グローブボックス(Life Sciences Globvebox:LSG)」、生物飼育箱搭載ラック(Habitat Holding Racks:HHRs)、保管ラック(Stowage Racks)、顕微鏡、冷凍冷蔵庫と、これらを搭載する外径4.4m、長さ9m、質量約10トンで15個のラックを搭載できる「重力発生装置搭載モジュール(Centrifuge Accommodations Module:CAM)」で構成されている。[139][140][141]

だが2005年(平成17年)8月31日に発表されたNASAの変更計画で「セントリフュージ」計画は中止され、2005年10月に正式に中止の通知を受け日本における開発も終了した[142] [143]。NASAとはその後の調整によって、開発品の一部を納入することにより、契約を完了すること、及び「きぼう」の打ち上げについて合意している。

日本単独宇宙ステーション (JSS)[編集]

JAXAで構想している小型宇宙ステーション。ISS運用予定が短かった頃に構想されたもので、運用終了時に廃棄されるモジュールから設計上10年程度寿命の残っているきぼうを回収し、発展型HTVによって独自の居住モジュールやドッキングモジュール、太陽電池アレイ、推進モジュール(場合によっては打ち上げに使ったHTVの与圧キャリアや推進モジュールを流用する)を打ち上げ、組み合わせる予定であった。いまだ日本は有人での往還技術や長期間稼働できる生命維持システムを持っていないため、構想の域を出ない。

費用[編集]

1984年4月にNASDA科学技術庁に提出した資料では、実験モジュールと共通実験装置の開発費が約3,000億円弱、実験装置開発費を除く年間運用利用費は約300億円強で、スペースシャトル1回の打ち上げ費は8,300万ドル(1984年レート、1ドル230円)と見積もっている[144]。また、1986年の段階で推定された開発費は、1987年度以降に日本実験モジュールの開発費が約2,600億円、宇宙環境利用共通技術や共通実験装置開発費などに約450億円と見積もられ、日本実験モジュールの打ち上げ費は実費支弁契約が想定された[145]

実績値としては、きぼうの運用と利用を主たる目的とした日本における国際宇宙ステーション計画の2010年までの総費用は約7,100億円で、その内訳は、きぼう開発費に約2,500億円、きぼう実験装置開発費に約450億円、HTV開発費(技術実証機の建造費含む)に約680億円、地上施設開発費と宇宙飛行士訓練費とシャトルによるきぼう打ち上げ費に約2,360億円、運用費(管制・保全など)と利用費(実験関連費)に約1,100億円である。なお、ここにはH-IIBの開発費と試験1号機の打ち上げ費は含まない[146]

2011年以後の1年毎の日本の国際宇宙ステーション計画費用は約400億円で、その内訳は、運用費(管制・保全・宇宙飛行士訓練など)に約90億円、利用費(実験関連費)に約60億円、物資輸送費(H-IIBによるHTV打ち上げ)に約250億円である[146]。日本の宇宙開発費のうちJAXA独自の予算は毎年約1,800億円であり、毎年約400億円の支出となる国際宇宙ステーション計画費用は日本の宇宙開発予算の中で情報収集衛星に次ぐ比重を占めている[147]。ただ、2010年以降は日本の負担するISS関連経費は減少傾向にあり[2]、2018年度は約342億円となっている[148]

(各国ごとの支出は国際宇宙ステーションを参照。)

受賞歴[編集]

  • 2008年4月30日 - きぼう船内保管室の組み立てを行ったSTS-123での1J/Aミッションへの貢献により、NASAが主催する「Lyndon B. Johnson Space Center Group Achievement Award」をきぼう運用管制チームが、「Lyndon B. Johnson Space Center Certificate of Appreciation」を松浦真弓フライトディレクターがそれぞれ受賞している[149]
  • 2008年7月10日 - きぼう船内実験室の組み立てを行ったSTS-124での1Jミッションへの貢献により、NASAが主催する「Lyndon B. Johnson Space Center Group Achievement Award」をきぼう運用管制チームが、「Lyndon B. Johnson Space Center Certificate of Appreciation」を東覚芳夫フライトディレクターがそれぞれ受賞している[150]
  • 2010年1月15日 - きぼうの開発により、一般社団法人日本航空宇宙学会が主催する「2010年度技術賞(プロジェクト部門)」を、JAXAと三菱重工業、IHIエアロスペース、NEC、NEC東芝スペースシステム、川崎重工業、三菱電機が共同受賞している[151]
  • 2010年11月10日 - 宇宙空間での実験設備に要求される高い機能性・安全性・操作性を実現したことが評価され、2010年度グッドデザイン賞において「金賞(経済産業大臣賞)」を受賞した[152][14]
  • 2010年11月26日 - JAXAとNECが「宇宙用遠隔操作ロボット「ロボットアーム」(親アーム)」で応募し、経済産業省一般社団法人日本機械工業連合会などが主催する「第4回ロボット大賞 日本科学未来館館長賞」を受賞している[153][154]
  • 2011年9月8日 - 「「きぼう」ロボットアームと装置交換機構による軌道上組立技術の実用化」により、一般社団法人日本ロボット学会が主催する「第16回(2011年)日本ロボット学会実用化技術賞」を受賞している[155][156]
  • 2011年9月28日 - 1997年8月7日に打ち上げられたスペースシャトルSTS-85において行われた、きぼうに実装する前の技術実証として精密ロボットアーム実験(マニピュレーター飛行実証試験、MFD:Manipurator Flight Demonstration)を世界で初めて宇宙空間で行った成果により、きぼうはアメリカ航空宇宙学会(AIAA)による「2011AIAA Space Automation andRobotics Award」をきく7号と共に受賞している[157][158][159]
  • 2014年3月28日 - きぼうの「REX-J」開発・運用チームが、一般社団法人日本機械学会が主催する「2013年度宇宙工学部門一般表彰スペースフロンティア」を受賞している[160]
  • 2014年6月19日 - きぼうの船外実験装置であるポート共有実験装置(MCE)に搭載されている「スプライト及び雷放電の高速測光撮像センサー(JEM-GLIMS)」での研究成果により、第3回ISS Research and Development Conferenceにおいて、アメリカのAmerican Astronautical Society(AAS)が主催する「ISS Research Awards(Space Station Top Results for Discoveries)」を受賞している[161][162]
  • 2016年4月20日 - きぼうの船外実験装置であるポート共有実験装置(MCE)に搭載されている「スプライト及び雷放電の高速測光撮像センサー(JEM-GLIMS)」での研究成果により、一般社団法人電気学会が主催する「第72回電気学術振興賞 進歩賞」を受賞している[163][164]
  • 2016年7月14日 - きぼうでの蛋白質結晶化実験と船外実験装置MAXIでの実験の成果により、第5回ISS Research and Development Conferenceにおいて、アメリカのAmerican Astronautical Society(AAS)が主催する「ISS Research Awards(Space Station Top Results for Discoveries)」を受賞している[165]
  • 2017年3月31日 - きぼうの小型衛星放出チームが、一般社団法人日本機械学会が主催する「2016年度宇宙工学部門宇宙賞」を受賞している[166][167]
  • 2017年7月20日 - きぼうからの超小型衛星放出の取り組みが、第6回ISS Research and Development Conferenceにおいて、アメリカのAmerican Astronautical Society(AAS)が主催する「ISS Research Awards(Innovation Award- Commercialization)」を、JAXAのJ-SSODチームとアメリカのナノラック社(NanoRacks)が共同受賞している[168]
  • 2017年7月25日 - 第50次/51次ISS長期滞在クルーの帰還記念イベントにおいて、NASAが主催する「Lyndon B. Johnson Space Center Group Achievement Award」を、きぼうのエアロックチームが受賞している[169]
  • 2017年11月13日-11月15日 - きぼうの多目的実験ラック(MSPR)に搭載されている液滴群燃焼実験装置(GCEM)の開発により、第55回燃焼シンポジウムにおいて、一般社団法人日本燃焼学会が主催する「平成29年度日本燃焼学会 技術賞」を、JAXAと株式会社IHI検査計測、日本大学山口大学が共同受賞している[170][171]
  • 2018年3月30日 - きぼうの簡易曝露実験装置(ExHAM)開発・運用チームが、一般社団法人日本機械学会が主催する「2017年度宇宙工学部門一般表彰スペースフロンティア」を受賞している[172]
  • 2018年4月10日 - きぼうでの超小型衛星放出機構を用いた取り組みに対し、文部科学省主催の平成30年度科学技術分野の文部科学大臣表彰「科学技術賞(科学技術振興部門)」を受賞している[173][174]
  • 2018年7月14日-7月22日 - アメリカで開催されたCOSPAR 2018において、きぼうの流体実験ラックでのマランゴニ対流の実験の成果により、国際宇宙空間研究委員会(Committee on Space Research:COSPAR)とロシア科学アカデミー(Russian Academy of Sciences:RAS)が主催する「Zeldovich Medal」を、研究チームの横浜国立大学大学院の矢野大志助教が受賞している[175][176]
  • 2018年7月26日 - きぼうの船外実験装置CALETでの研究とマウス実験の成果により、第7回ISS Research and Development Conferenceにおいて、アメリカのAmerican Astronautical Society(AAS)が主催するISS Research Awardsの「2018 ISS Award for Compelling Results」を受賞している[177]
  • 2018年10月20日-10月21日 - マランゴニ対流の実験の成果により、一般社団法人日本機械学会が主催する熱工学コンファレンス2018にて行われた熱工学コレクション2018において「最優秀動画賞」を受賞している[178]

情報漏洩事件[編集]

運用上の不具合・故障など[編集]

  • 船内実験室設置直後に、空気調和装置の凝縮水熱交換器出口の水分検出器が自動で停止している。これは、船内実験室が通常2名、時間制限つきで4名在室できるよう設計されているのに、スペースシャトルのSTS-124搭乗員7人とISSの第17次長期滞在搭乗員3人の計10人の宇宙飛行士のほぼ全員が船内実験室に同時に集まってしまったことにより、一時的に船内湿度が上昇したことなどが原因で水分検出器の自動停止機能が作動したためだと考えられている。前述のとおり、船内実験室はISS最大の与圧モジュールであり、ラック搬入前の船内実験室の広さに宇宙飛行士たちが「はしゃぎすぎた」のであった。[179][180]
  • 2010年4月21日18時頃、超伝導サブミリ波リム放射サウンダ (SMILES) の受信系の機器の一部が待機モードとなったため観測を中断した。その後原因究明調査したところ、サブミリ波局部発振器 (SLO) 内部のガン発振器の異常だという事がわかった。今後もなぜ異常が発生したのが原因を究明していく事となる[181]
  • 2010年5月13日、『きぼう』有償利用事業[182]において2009年8月より約8ヵ月間軌道上で保管され、4月に回収された植物種子の一部が所在不明となっていることが発覚[183]。その後、所在不明とされていた植物種子は軌道上に運ばれずNASAジョンソン宇宙センターに残されていたことが確認された[184][185]

上記のような不具合・トラブルなどが起きてはいるが、きぼうの不具合件数は、打上げから36か月後の2011年3月までに75件となっており、これはアメリカの実験棟デスティニーの打ち上げから48か月後の2005年2月までの175件より、不具合件数の発生頻度が少なく良好な実績を示している[2]

展示モデル[編集]

日本実験棟「きぼう」の展示モデルは、JAXA筑波宇宙センターの展示館「スペースドーム」内に、1985年4月から行われた日本実験モジュールの予備設計時に作られた、内部にも入れる実物大模型(モックアップ)が展示されているほか[186][187]名古屋市科学館の屋外展示スペースに実際に開発に使われた船内実験室の構造試験モデルが展示されている[188]

登場作品[編集]

注釈[編集]

[ヘルプ]
  1. ^ “ミニ衛星放出 お任せを/JAXAが事業化/ISS活用 300万円から”. 『読売新聞』夕刊. (2017年8月19日). http://premium.yomiuri.co.jp/pc/#!/news_20170819-118-OYT1T50061/newstop 
  2. ^ a b c d e 付録1 国際宇宙ステーション(ISS)計画概要”. 文部科学省 (2014年9月29日). 2018年12月4日閲覧。
  3. ^ 国際宇宙ステーション(ISS)計画の実績と成果”. JAXA (2014-04-). 2018年12月4日閲覧。
  4. ^ a b c d e f g h i j 「きぼう」ハンドブック”. 1.2.2 国際宇宙ステーション計画の経緯. JAXA (2008年4月). 2018年12月4日閲覧。
  5. ^ a b c ISS計画の歩み:国際宇宙ステーション(ISS)”. JAXA宇宙ステーション・きぼう 広報・情報センター (2009年4月30日). 2018年12月4日閲覧。
  6. ^ a b 未来への挑戦~日本初 有人宇宙施設「きぼう」開発物語~”. YouTube JAXA公式チャンネル (2010年4月19日). 2018年12月4日閲覧。
  7. ^ 宇宙にかける「きぼう」 国際宇宙ステーション計画参加活動史”. 第2章 宇宙ステーション計画参加活動の全体経緯 2-24. JAXA (2011年2月28日). 2018年12月6日閲覧。
  8. ^ 宇宙にかける「きぼう」 国際宇宙ステーション計画参加活動史”. 第2章 宇宙ステーション計画参加活動の全体経緯 2-69. JAXA (2011年2月28日). 2018年12月6日閲覧。
  9. ^ 宇宙にかける「きぼう」 国際宇宙ステーション計画参加活動史”. 第2章 宇宙ステーション計画参加活動の全体経緯 2-24. JAXA (2011年2月28日). 2018年12月6日閲覧。
  10. ^ a b c d 「きぼう」ハンドブック”. 1.3 「きぼう」開発経緯. JAXA (2008年4月). 2018年12月4日閲覧。
  11. ^ 宇宙にかける「きぼう」 国際宇宙ステーション計画参加活動史”. 第2章 宇宙ステーション計画参加活動の全体経緯 2-54. JAXA (2011年2月). 2018年12月6日閲覧。
  12. ^ 宇宙にかける「きぼう」 国際宇宙ステーション計画参加活動史”. 第2章 宇宙ステーション計画参加活動の全体経緯 2-23 図2-15及び図2-16. JAXA (2011年2月28日). 2018年12月6日閲覧。
  13. ^ a b 宇宙にかける「きぼう」 国際宇宙ステーション計画参加活動史”. 第2章 宇宙ステーション計画参加活動の全体経緯 2-37 図2-22 JEM 基準コンフィギュレーション変遷. JAXA (2011年2月28日). 2018年12月4日閲覧。
  14. ^ a b c d e JAXA's No.037”. JAXA (2011年3月1日). 2018年11月22日閲覧。
  15. ^ a b c 宇宙にかける「きぼう」 国際宇宙ステーション計画参加活動史”. 第2章 宇宙ステーション計画参加活動の全体経緯 2-34及び2-35の図2-20. JAXA (2011年2月28日). 2018年12月6日閲覧。
  16. ^ a b 宇宙にかける「きぼう」 国際宇宙ステーション計画参加活動史”. 第2章 宇宙ステーション計画参加活動の全体経緯 2-41から2-44. JAXA (2011年2月28日). 2018年12月5日閲覧。
  17. ^ a b 宇宙にかける「きぼう」 国際宇宙ステーション計画参加活動史”. 第2章 宇宙ステーション計画参加活動の全体経緯 2-45. JAXA (2011年2月28日). 2018年12月5日閲覧。
  18. ^ a b 「きぼう」日本実験棟の開発にはどんなメーカーが携わっていたのですか ?| ファン!ファン!JAXA!”. JAXA. 2018年11月23日閲覧。
  19. ^ 三菱重工 | 日本実験モジュール「きぼう(JEM)」”. 三菱重工業. 2018年11月23日閲覧。
  20. ^ 日本実験モジュール“きぼう”の開発”. 三菱重工業 (2002年1月). 2018年12月4日閲覧。
  21. ^ IHIエアロスペース (ロケット関連技術) 国際宇宙ステーション計画Archived 2012年1月24日, at the Wayback Machine.
  22. ^ 国際宇宙ステーション | 宇宙開発 | 事業紹介 | 株式会社IHIエアロスペース”. IHIエアロスペース. 2018年11月23日閲覧。
  23. ^ Kawasaki News 149 Winter2008”. 川崎重工業 (2008年1月). 2018年11月23日閲覧。
  24. ^ NEC 宇宙ソリューション きぼうArchived 2010年1月29日, at the Wayback Machine.
  25. ^ NEC技報 Vol.64(2011年) No.1(3月) 宇宙特集国際宇宙ステーション日本実験棟「きぼう(JEM)」の開発”. NEC (2011年3月). 2018年12月4日閲覧。
  26. ^ 宇宙にかける「きぼう」 国際宇宙ステーション計画参加活動史”. 第2章 宇宙ステーション計画参加活動の全体経緯 2-26. JAXA (2011年2月28日). 2018年12月7日閲覧。
  27. ^ 宇宙にかける「きぼう」 国際宇宙ステーション計画参加活動史”. 第2章 宇宙ステーション計画参加活動の全体経緯 2-53,2-57,2-58. JAXA (2011年2月28日). 2018年12月7日閲覧。
  28. ^ 宇宙にかける「きぼう」 国際宇宙ステーション計画参加活動史”. 第2章 宇宙ステーション計画参加活動の全体経緯 2-38,2-41,2-46,2-47,2-53,2-55,2-57,2-58,2-61.2-66. JAXA (2011年2月28日). 2018年12月7日閲覧。
  29. ^ 1J/Aミッション - 「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年5月19日). 2018年12月3日閲覧。
  30. ^ 1Jミッション - 「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年8月5日). 2018年12月3日閲覧。
  31. ^ 2J/Aミッション - 「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2009年11月11日). 2018年12月3日閲覧。
  32. ^ 「きぼう」ハンドブック”. 2.1 「きぼう」の構成. JAXA (2008年4月). 2018年11月30日閲覧。
  33. ^ 「きぼう」ハンドブック”. 3.1 各要素の主要諸元. JAXA (2008年4月). 2018年11月30日閲覧。
  34. ^ a b c d e f 金井宇宙飛行士 ISS長期滞在プレスキット”. 付録2 「きぼう」日本実験棟概要. JAXA (2017年12月26日). 2018年11月29日閲覧。
  35. ^ 宇宙にかける「きぼう」 国際宇宙ステーション計画参加活動史”. 第5章 日本の宇宙実験システムJEM の技術開発 [Ⅰ] ―有人宇宙システム技術(与圧系)の開発と将来展望― 5-7. JAXA (2011年2月). 2018年12月6日閲覧。
  36. ^ a b c d e f g h i j k l m 「きぼう」ハンドブック”. 4. 「きぼう」の各システム. JAXA (2008年4月). 2018年11月30日閲覧。
  37. ^ 1Jミッション:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年5月30日). 2018年11月23日閲覧。
  38. ^ JAXAきぼうフライトディレクタ (@JAXA_JFLIGHT)さん | Twitter”. JAXA Twitter (2018年11月13日). 2018年11月23日閲覧。
  39. ^ a b c 船内実験室:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年8月19日). 2018年11月30日閲覧。
  40. ^ 「きぼう」与圧壁の厚さはどのくらいですか?”. JAXA. 2018年11月30日閲覧。
  41. ^ a b 国際宇宙ステーションの日本の実験棟 (JEM)の安全設計について(報告)”. JAXA (2013年6月10日). 2018年11月30日閲覧。
  42. ^ a b c d 船内実験装置:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年8月2日). 2018年11月16日閲覧。
  43. ^ a b c d 船内保管室:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年9月12日). 2018年11月30日閲覧。
  44. ^ 「きぼう」与圧壁の厚さはどのくらいですか?”. JAXA. 2018年11月30日閲覧。
  45. ^ 「きぼう」ハンドブック”. 4.3.3 構成要素. JAXA (2008年4月). 2018年11月30日閲覧。
  46. ^ きぼう船外実験プラットフォーム利用ハンドブック”. 1.1 きぼう船外実験プラットフォームとは. JAXA (2010年9月). 2018年11月30日閲覧。
  47. ^ 船外実験プラットフォーム:ISS関連用語集”. 1.1 きぼう船外実験プラットフォームとは. JAXA宇宙ステーション・きぼう 広報・情報センター. 2018年11月30日閲覧。
  48. ^ a b 船外パレット:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年12月19日). 2018年11月30日閲覧。
  49. ^ 1Jミッション 「きぼう」ロボットアーム:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年5月28日). 2018年12月3日閲覧。
  50. ^ “きぼうアーム、筑波から操作=HTV3号機で初運用-宇宙機構”. 時事通信. http://www.jiji.com/jc/zc?k=201111/2011113001124 2011年12月5日閲覧。 
  51. ^ “「きぼう」ロボットアームの遠隔操作デモンストレーション#3を実施”. JAXA. http://iss.jaxa.jp/kibo/archive/2011/12/111220_jemrms_demo.html 2012年3月18日閲覧。 
  52. ^ ロボットアーム作業は重圧との戦い”. 朝日新聞 (2017年4月24日). 2018年12月2日閲覧。
  53. ^ 「きぼう」のシステム:ロボットアーム/エアロック”. JAXA宇宙飛行士金井宣茂公式ブログ「宇宙、行かない?」 (2017年11月8日). 2018年12月2日閲覧。
  54. ^ ロボットアーム:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年9月12日). 2018年11月30日閲覧。
  55. ^ ISS・きぼうウィークリーニュース第376号”. JAXA宇宙ステーション・きぼう 広報・情報センター (2010年3月2日). 2018年11月30日閲覧。
  56. ^ 「きぼう」日本実験棟において実施されていた、マランゴニ対流実験の1テーマ目が終了しました”. JAXA宇宙ステーション・きぼう 広報・情報センター (2013年2月28日). 2018年12月3日閲覧。
  57. ^ 流体物理実験装置(FPEF):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年6月17日). 2018年11月16日閲覧。
  58. ^ 溶液結晶化観察装置(SCOF):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2007年12月28日). 2018年11月16日閲覧。
  59. ^ タンパク質結晶生成装置(PCRF):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年9月14日). 2018年11月16日閲覧。
  60. ^ 画像取得処理装置(IPU):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年9月9日). 2018年11月16日閲覧。
  61. ^ 細胞培養装置(CBEF):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年6月16日). 2018年11月16日閲覧。
  62. ^ クリーンベンチ(CB):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年8月2日). 2018年11月16日閲覧。
  63. ^ 冷凍・冷蔵庫(MELFI):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2007年12月28日). 2018年11月16日閲覧。
  64. ^ 温度勾配炉(GHF):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2011年2月8日). 2018年11月16日閲覧。
  65. ^ 多目的実験ラック(MSPR):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年2月16日). 2018年11月22日閲覧。
  66. ^ 燃焼実験チャンバー:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年2月16日). 2018年11月16日閲覧。
  67. ^ 水棲生物実験装置(AQH):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年8月2日). 2018年11月16日閲覧。
  68. ^ 液滴群燃焼実験供試体(GCEM):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年2月16日). 2018年11月16日閲覧。
  69. ^ 国際宇宙ステーション・「きぼう」日本実験棟での燃焼実験に成功~JAXAと山口大学の共同実験 Group Combustion実験(研究代表者:三上真人教授)~”. 国立大学法人 山口大学 (2017年3月3日). 2018年11月16日閲覧。
  70. ^ 沸騰・二相流実験供試体:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年3月16日). 2018年11月16日閲覧。
  71. ^ Atomization実験が始まりました:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年8月29日). 2018年11月16日閲覧。
  72. ^ 次世代水再生実証システム:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年2月1日). 2018年11月16日閲覧。
  73. ^ 静電浮遊炉(ELF):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2016年1月19日). 2018年11月16日閲覧。
  74. ^ 受動積算型宇宙放射線線量計(PADLES):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2015年11月11日). 2018年11月20日閲覧。
  75. ^ 宇宙放射線リアルタイムモニタ装置:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年3月30日). 2018年11月21日閲覧。
  76. ^ PLT・MMA・UDC:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2009年9月29日). 2018年11月21日閲覧。
  77. ^ 船外実験装置:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター. 2018年11月16日閲覧。
  78. ^ JEM曝露部搭載型共通バス機器部(APBUS):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2004年12月15日). 2018年11月16日閲覧。
  79. ^ 宇宙環境計測ミッション装置(SEDA-AP):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2015年6月22日). 2018年11月16日閲覧。
  80. ^ 全天X線監視装置(MAXI):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年10月18日). 2018年11月17日閲覧。
  81. ^ “超伝導サブミリ波リム放射サウンダ(SMILES)の観測中断について”. JAXA. http://www.jaxa.jp/press/2010/04/20100423_smiles_j.html 2010年4月23日閲覧。 
  82. ^ 超伝導サブミリ波リム放射サウンダ(SMILES):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2015年6月18日). 2018年11月17日閲覧。
  83. ^ 超伝導サブミリ波リム放射サウンダ(SMILES)の成果:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2015年5月14日). 2018年11月17日閲覧。
  84. ^ ポート共有実験装置(MCE):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2015年4月21日). 2018年11月17日閲覧。
  85. ^ REXJトップ”. JAXA (2011年12月7日). 2018年11月17日閲覧。
  86. ^ 船外実験プラットフォーム用民生品ハイビジョンビデオカメラシステム(COTS HDTV-EF)による地球表面映像取得結果:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2012年9月11日). 2018年11月18日閲覧。
  87. ^ 8/19にCALETがこうのとり5号機とともに打ち上げられました”. 早稲田大学理工学術院理工学研究所 鳥居研究室. 2016年2月20日閲覧。
  88. ^ “国際宇宙ステーション・「きぼう」日本実験棟搭載の高エネルギー電子、ガンマ線観測装置(CALET)により、世界初のテラ電子ボルト(TeV)領域の電子直接観測を開始” (プレスリリース), 国立研究開発法人宇宙航空研究開発機構、早稲田大学, (2015年10月22日), http://www.jaxa.jp/press/2015/10/20151022_calet_j.html 2016年2月20日閲覧。 
  89. ^ 高エネルギー電子・ガンマ線観測装置(CALET):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2014年4月17日). 2018年11月18日閲覧。
  90. ^ a b c 高エネルギー電子・ガンマ線観測装置 CALET”. JAXA (2016年3月16日). 2018年11月18日閲覧。
  91. ^ CIRCについて”. 宇宙航空研究開発機構. 2016年2月20日閲覧。
  92. ^ 中型曝露実験アダプター(i-SEEP):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年2月24日). 2018年11月19日閲覧。
  93. ^ 小型衛星放出機構(J-SSOD):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年11月2日). 2018年11月19日閲覧。
  94. ^ a b JAXAがHTV6搭載の超小型衛星7機を公開 - 強化した新型放出機構を初使用”. マイナビニュース (2016年11月11日). 2018年11月19日閲覧。
  95. ^ 星出宇宙飛行士、小型衛星放出機構(J-SSOD)を設置:JAXA宇宙飛行士によるISS長期滞在”. JAXA宇宙ステーション・きぼう 広報・情報センター (2012年9月24日). 2018年11月20日閲覧。
  96. ^ 「きぼう」からの小型衛星放出実証ミッションに係る搭載小型衛星の選定結果について”. JAXA (2011年6月15日). 2018年11月23日閲覧。
  97. ^ a b c 小型衛星放出機構:ISS関連用語集”. JAXA宇宙ステーション・きぼう 広報・情報センター. 2018年11月20日閲覧。
  98. ^ a b c 宇宙と人をつなぐ架け橋となるために 小型衛星放出ミッション 主任開発員 和田勝”. JAXA (2014年8月). 2018年11月20日閲覧。
  99. ^ a b 「きぼう」から3カ国の超小型衛星放出 今後は48Uキューブサットへ対応を拡大”. sorae (2018年5月16日). 2018年11月20日閲覧。
  100. ^ a b 油井宇宙飛行士 ISS長期滞在プレスキット”. 4-19ページ目. JAXA (2015年10月7日). 2018年11月20日閲覧。
  101. ^ Meet Space Station’s Small Satellite Launcher Suite | NASA”. NASA (2014年3月3日). 2018年11月20日閲覧。
  102. ^ a b c 超小型衛星放出事業の事業者募集概要 ~事業の一部民営化~”. JAXA (2018年2月27日). 2018年11月20日閲覧。
  103. ^ 簡易曝露実験装置(ExHAM):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年3月12日). 2018年11月20日閲覧。
  104. ^ “Space station to host new cosmic ray telescope”. シカゴ大学. (2013年3月11日). http://news.uchicago.edu/article/2013/03/11/space-station-host-new-cosmic-ray-telescope 2013年4月11日閲覧。 
  105. ^ 広報誌 RIKEN 2018”. 16ページ目. 国立研究開発法人理化学研究所 (2018年6月). 2018年11月20日閲覧。
  106. ^ a b c 宇宙航空の最新情報マガジン JAXA's No.065”. JAXA (2016年7月1日). 2018年11月13日閲覧。
  107. ^ a b c d e f 運用管制施設 宇宙ステーション運用棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年3月21日). 2018年11月13日閲覧。
  108. ^ a b 「きぼう」 ハンドブック”. 5.3 「きぼう」の運用管制. JAXA (2008年4月). 2018年11月15日閲覧。
  109. ^ a b c d 「きぼう」日本実験棟 運用管制チーム”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年1月13日). 2018年11月13日閲覧。
  110. ^ 地上で支える人々(1J/Aミッション)”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年3月21日). 2018年11月13日閲覧。
  111. ^ JAXAきぼうフライトディレクタ (@JAXA_JFLIGHT)さん | Twitter”. JAXA Twitter (2018年11月6日). 2018年11月24日閲覧。
  112. ^ a b 「きぼう」日本実験棟 運用管制システム”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年11月24日). 2018年11月13日閲覧。
  113. ^ a b c d e 金井飛行士長期滞在ミッション担当フライトディレクタ概要説明”. JAXA (2017年8月24日). 2018年11月23日閲覧。
  114. ^ JAXA's 018”. JAXA (2008年2月1日). 2018年11月23日閲覧。
  115. ^ a b JAXA's No.070”. JAXA (2017年10月). 2018年10月22日閲覧。
  116. ^ a b 「きぼう」ハンドブック”. 5.3 「きぼう」の運用管制. JAXA (2008年4月). 2018年11月30日閲覧。
  117. ^ 「きぼう」船内実験室利用ハンドブック”. 11ページ目. JAXA (2018年8月). 2018年11月30日閲覧。
  118. ^ 文化・人文社会科学利用(EPO):「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2014年1月29日). 2018年11月15日閲覧。
  119. ^ 人文・社会科学:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター. 2018年11月15日閲覧。
  120. ^ a b c d e f 実験運用管制チーム:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年1月13日). 2018年11月15日閲覧。
  121. ^ a b c d 「きぼう」ハンドブック”. 3.2 「きぼう」運用モード. JAXA (2008年4月). 2018年11月30日閲覧。
  122. ^ きぼう船外実験プラットフォーム利用ハンドブック”. 1-13及び1-14. JAXA (2006年10月). 2018年12月7日閲覧。
  123. ^ a b c 第54次/第55次「チーム・きぼう」の紹介 その1”. JAXA宇宙飛行士金井宣茂公式ブログ「宇宙、行かない?」 (2017年8月28日). 2018年11月23日閲覧。
  124. ^ a b 金井宣茂 ISS長期滞在ミッション 長期滞在概要:JAXA宇宙飛行士によるISS長期滞在”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年6月7日). 2018年11月23日閲覧。
  125. ^ 「きぼう」での実験 利用の計画 インクリメント57/58”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年10月4日). 2018年11月23日閲覧。
  126. ^ 実験運用管制官チーム”. JAXA宇宙飛行士金井宣茂公式ブログ「宇宙、行かない?」 (2017年10月16日). 2018年11月22日閲覧。
  127. ^ a b c d e f g h 星出宇宙飛行士 ISS 長期滞在プレスキット”. 付録2.5 運用管制. JAXA (2012年7月10日). 2018年11月21日閲覧。
  128. ^ a b c d 放出履歴:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年10月9日). 2018年11月19日閲覧。
  129. ^ 読売新聞朝刊 2011年6月16日
  130. ^ 「こうのとり」6号機(HTV6)が「きぼう」に運んだ超小型衛星6機の放出に成功:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年1月16日). 2018年11月20日閲覧。
  131. ^ きぼう利用戦略:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年8月). 2018年11月20日閲覧。
  132. ^ 国際宇宙ステーション(ISS)「きぼう」日本実験棟からの超小型衛星放出事業の事業者の企画提案募集(「きぼう」利用初の民間開放)について”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年2月23日). 2018年11月20日閲覧。
  133. ^ a b c d JAXAが「きぼう」利用の一部を民営化、超小型衛星放出事業を2社へ移管”. マイナビニュース (2018年6月4日). 2018年11月20日閲覧。
  134. ^ 国際宇宙ステーション(ISS)「きぼう」日本実験棟からの超小型衛星放出事業 民間事業者の選定結果(「きぼう」利用初の民間開放)について”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年5月29日). 2018年11月20日閲覧。
  135. ^ きぼう利用戦略 「きぼう」利用成果最大化に向けて アジェンダ2020 〔第2版〕”. 22ページ目. JAXA (2017年8月). 2018年11月20日閲覧。
  136. ^ 「きぼう」からの超小型衛星の放出機会提供 募集案内 <有償の仕組み(試行版)>”. 6ページ目. JAXA (2014年4月). 2018年11月20日閲覧。
  137. ^ 第6章 国際宇宙ステーション(ISS)・セントリフュージ計画”. 100ページ目,107ページ目. 一般財団法人宇宙システム開発利用推進機構 (2006年). 2018年12月7日閲覧。
  138. ^ 宇宙にかける「きぼう」 国際宇宙ステーション計画参加活動史”. 第2章 宇宙ステーション計画参加活動の全体経緯 2-50. JAXA (2011年2月28日). 2018年12月7日閲覧。
  139. ^ 生命科学実験施設 セントリフュージ”. JAXA宇宙ステーション・きぼう 広報・情報センター (2005年12月20日). 2018年12月7日閲覧。
  140. ^ 生命科学実験施設(セントリフュージ):ISS関連用語集”. JAXA宇宙ステーション・きぼう 広報・情報センター. 2018年12月7日閲覧。
  141. ^ 第6章 国際宇宙ステーション(ISS)・セントリフュージ計画”. 一般財団法人宇宙システム開発利用推進機構 (2006年). 2018年12月7日閲覧。
  142. ^ 第6章 国際宇宙ステーション(ISS)・セントリフュージ計画”. 108ページ目. 一般財団法人宇宙システム開発利用推進機構 (2006年). 2018年12月7日閲覧。
  143. ^ 宇宙にかける「きぼう」 国際宇宙ステーション計画参加活動史”. 第2章 宇宙ステーション計画参加活動の全体経緯 2-64,2-65. JAXA (2011年2月28日). 2018年12月7日閲覧。
  144. ^ 宇宙にかける「きぼう」 国際宇宙ステーション計画参加活動史”. 第2章 宇宙ステーション計画参加活動の全体経緯 2-18. JAXA (2011年2月28日). 2018年12月6日閲覧。
  145. ^ 宇宙にかける「きぼう」 国際宇宙ステーション計画参加活動史”. 第2章 宇宙ステーション計画参加活動の全体経緯 2-26. JAXA (2011年2月28日). 2018年12月6日閲覧。
  146. ^ a b 付録1 国際宇宙ステーション(ISS)計画概要(その3) 宇宙開発委員会 国際宇宙ステーション特別部会 -中間とりまとめ- 平成22年6月
  147. ^ 我が国宇宙政策の課題と方向性”. 内閣府 (2012年9月). 2018年12月4日閲覧。
  148. ^ 有人宇宙技術部門紹介パンフレット”. 11ページ目. JAXA (2018年6月). 2018年12月4日閲覧。
  149. ^ 「きぼう」運用管制チームがNASAから表彰されました”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年5月16日). 2018年12月3日閲覧。
  150. ^ http://iss.jaxa.jp/kibo/mission/1j/news/nasa_award_1j.html”. JAXA宇宙ステーション・きぼう 広報・情報センター (2008年8月5日). 2018年12月3日閲覧。
  151. ^ 日本航空宇宙学会 - 受賞者_平成21年”. 一般社団法人日本航空宇宙学会 (2010年1月15日). 2018年11月29日閲覧。
  152. ^ 宇宙実験施設 (「きぼう」日本実験棟)”. 公益財団法人日本デザイン振興会 (2010年9月29日). 2018年11月13日閲覧。
  153. ^ 第4回ロボット大賞 大賞 アーカイブ - 2010受賞ロボット”. ロボット大賞 事務局 (2010年11月). 2018年11月25日閲覧。
  154. ^ 「きぼう」ロボットアームが「第4回ロボット大賞」にて優秀賞および日本科学未来館館長賞を受賞しました!:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2010年11月25日). 2018年11月25日閲覧。
  155. ^ 実用化技術賞|賞区分|日本ロボット学会”. 一般社団法人日本ロボット学会 (2011年1月1日). 2018年11月25日閲覧。
  156. ^ 「きぼう」ロボットアームなどによる組立技術、「日本ロボット学会 実用化技術賞」を受賞!:「きぼう」日本実験棟”. JAXA宇宙ステーション・きぼう 広報・情報センター (2011年9月12日). 2018年11月25日閲覧。
  157. ^ JAXA's No.041”. JAXA (2011年11月1日). 2018年11月13日閲覧。
  158. ^ 「きぼう」、アメリカ航空宇宙学会「Space Automation and Robotics Award 2011」受賞!”. JAXA (2011年10月4日). 2018年11月13日閲覧。
  159. ^ Space Automation and Robotics Award”. アメリカ航空宇宙学会(AIAA) (2011年9月28日). 2018年11月13日閲覧。
  160. ^ 「REX-J」開発/運用チーム 日本機械学会 宇宙工学部門 一般表彰スペースフロンティアを受賞!”. JAXA宇宙ステーション・きぼう 広報・情報センター (2014年4月28日). 2018年11月23日閲覧。
  161. ^ 「スプライト及び雷放電の高速測光撮像センサ(JEM-GLIMS)」の研究成果がNASAから表彰されました”. JAXA宇宙ステーション・きぼう 広報・情報センター (2014年6月25日). 2018年11月26日閲覧。
  162. ^ Space Station Top Results for Discoveries Announced | NASA”. NASA (2014年6月19日). 2018年11月26日閲覧。
  163. ^ 平成28年表彰受賞者が決定しました|一般社団法人 電気学会”. 一般社団法人電気学会 (2016年4月20日). 2018年11月28日閲覧。
  164. ^ JEM-GLIMS”. 北海道大学 (2016年5月27日). 2018年11月28日閲覧。
  165. ^ 「きぼう」で行われた日本の実験成果が、2016年の ISS Research Awards "Space Station Top Results for Discoveries"を受賞しました”. JAXA宇宙ステーション・きぼう 広報・情報センター (2016年7月15日). 2018年11月26日閲覧。
  166. ^ Space Engineering 宇宙工学部門ニュースレター No.32(Web版)”. 一般社団法人日本機械学会 (2018年2月23日). 2018年11月22日閲覧。
  167. ^ 「きぼう」からの小型衛星放出チーム 日本機械学会 宇宙工学部門 宇宙賞を受賞!”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年4月7日). 2018年11月22日閲覧。
  168. ^ 「きぼう」からの超小型衛星放出の利用促進活動が、2017年の ISS Research Awards(Innovation Award- Commercialization分野)を受賞!!”. JAXA宇宙ステーション・きぼう 広報・情報センター (2017年7月21日). 2018年11月26日閲覧。
  169. ^ 日本の実験棟「きぼう」(JEM)エアロックチームが、JSC Group...”. JAXA Houston Office Facebook (2017年7月25日). 2018年11月29日閲覧。
  170. ^ 平成29年度日本燃焼学会表彰”. 一般社団法人日本燃焼学会 (2017年11月). 2018年11月29日閲覧。
  171. ^ 報告 日本燃焼学会より技術賞受賞 「国際宇宙ステーションにおける液滴群燃焼実験装置(GCEM)の開発」”. 株式会社IHI検査計測 (2018年4月). 2018年11月29日閲覧。
  172. ^ 「きぼう」簡易曝露実験装置(ExHAM)開発/運用チームが日本機械学会の宇宙工学部門スペースフロンティア受賞”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年4月6日). 2018年11月23日閲覧。
  173. ^ 「きぼう」超小型衛星放出プラットフォームにおける取組みが文部科学大臣表彰「科学技術賞」を受賞”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年4月19日). 2018年11月22日閲覧。
  174. ^ 平成30年度 科学技術分野の文部科学大臣表彰 科学技術賞 受賞者一覧”. 文部科学省 (2018年4月10日). 2018年11月22日閲覧。
  175. ^ 「きぼう」での流体実験の研究成果により、COSPAR 2018で"Zeldovich Medal"を受賞:「きぼう」での実験”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年8月14日). 2018年11月28日閲覧。
  176. ^ Zeldovich Medals|cospar”. Committee on Space Research (2018年8月7日). 2018年11月28日閲覧。
  177. ^ 「きぼう」で行われた日本の実験成果が、ISS R&D Conference において、"2018 ISS Award for Compelling Results"を受賞しました”. JAXA宇宙ステーション・きぼう 広報・情報センター (2018年7月27日). 2018年11月26日閲覧。
  178. ^ JAXA、「きぼう」での対流実験により熱コレ2018で最優秀動画賞を受賞”. 財経新聞 (2018年11月7日). 2018年11月28日閲覧。
  179. ^ 「きぼう」船内実験室打上げ・星出宇宙飛行士搭乗ミッションの結果について”. 7ページ目 【参考2】ミッション中の主な課題と対応. JAXA (2008年6月18日). 2018年12月3日閲覧。
  180. ^ ミッションダイジェスト「きぼう」第2回組み立てミッションSTS-124(1J)”. 7:43-7:52にかけて. YouTube JAXA公式チャンネル (2009年4月7日). 2018年12月3日閲覧。
  181. ^ 超伝導サブミリ波リム放射サウンダ(SMILES)のサブミリ波受信系異常の現状について”. 2010年5月28日閲覧。
  182. ^ 第2回「きぼう」有償利用テーマの選定結果及び追加募集について JAXA 2009年6月10日
  183. ^ 宇宙ステーションから持ち帰った植物種子が紛失 - JAXAが発表[リンク切れ] マイコミジャーナル 2010年5月14日
  184. ^ カボチャの種、NASAで発見 宇宙に運ばれず 47NEWS 2010年6月17日
  185. ^ 行方不明のカボチャの種、NASAに残る 千葉日報 2010年06月18日
  186. ^ 宇宙にかける「きぼう」 国際宇宙ステーション計画参加活動史”. 第5章 日本の宇宙実験システムJEM の技術開発 [Ⅰ] ―有人宇宙システム技術(与圧系)の開発と将来展望― 5-8. JAXA (2011年2月28日). 2018年12月6日閲覧。
  187. ^ 筑波宇宙センター 展示館「スペースドーム」”. JAXA. 2018年11月22日閲覧。
  188. ^ JAXA's No.042”. JAXA (2012年1月1日). 2018年11月7日閲覧。

外部リンク[編集]