平方数

出典: フリー百科事典『ウィキペディア(Wikipedia)』

これはこのページの過去の版です。Oz0118 (会話 | 投稿記録) による 2016年4月2日 (土) 11:27個人設定で未設定ならUTC)時点の版 (→‎他のトリビア: オンライン数列を追加)であり、現在の版とは大きく異なる場合があります。

平方数(へいほうすう、square number)とは、ある整数の2乗(平方)で表される整数のことである。四角数(しかくすう)とは、多角数の一種で、正方形の形に点を並べたときにそこに並ぶ点の総数に合致する整数のことである。表現が異なるが、実際には2つの概念は一致する。定義より最小の平方数は 02 = 0 であり、平方数は無限にある。

例えば16は、1つの辺に点を4つ並べて正方形を作ったときに該当するので平方数の1つである。

1 4 9 16
* **
**
***
***
***
****
****
****
****

平方数を小さいものから順に列記すると

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, …(オンライン整数列大辞典の数列 A290

である。

平方数による表現

他のトリビア

  • 0, 1以外の平方数は合成数であり、約数奇数個持つ。
  • n + 1 番目の平方数 Sn+1n2 であり、1 から 2n − 1 までの n 個の奇数の和に等しい。
  • n 番目の平方数 Sn までの であり、n 番目の四角錐数となる。また組み合わせの記号を用いて とも表現できる。
  • 0を除く平方数の逆数総和である。(→ゼータ関数バーゼル問題
  • n2 と (n + 1)2 の間に必ず素数があるかは、証明されていない。だが、素数であるか2個の素数の積である数が存在することは、1975年陳景潤によって証明されている。
  • 平方数は、完全数になりえないことが分かっている。
  • 平方数がフィボナッチ数であるのは 01144 のみである。
  • 平方数が三角数であるのは 0, 1, 36, 1225, (オンライン整数列大辞典の数列 A001110)
  • 平方数が五角数であるのは 0, 1, 9801, 94109401, (オンライン整数列大辞典の数列 A036353)
  • 平方数がハーシャッド数であるのは 1, 4, 9, 36, 81, 100, 144, 225, 324, 400, 441, 576, (オンライン整数列大辞典の数列 A118547)
  • 平方数が立方数であるのは n6 の形で表せる数である。 0, 1, 64, 729, 4096, (オンライン整数列大辞典の数列 A001014)
  • 平方数は2つの連続した三角数の和として表される。
  • 1、1、1などの数は 104n = (102n)2 と表されるので全て平方数である。
  • 十の位が奇数の場合は、一の位は必ず 6 になる。16, 36, 196, 256 など。
  • 下2桁が 25 の場合は、百の位は必ず、0, 2, 6 のいずれかになる(5番目の平方数である 25 の場合、百の位は0と見なす)。25, 225, 625, 1225 など。
  • 平方数の列の階差数列は公差2の等差数列であり、したがって第二階差数列は定数列2である。
  • 14444116919696125662510242401 のように、数字を並べ替えただけで、別の平方数になるものがある。(オンライン整数列大辞典の数列 A034289)
  • 平方数を二進記数法で表現する場合、二番目のビットは必ず0となる。二進記数法では下2桁は00,01,10,11の4通りであり、それぞれ平方すると002=00,012=01,102=100,112=1001といずれも二番目のビットが0であるため。
  • 平方数の下桁の数が自分自身と同じになる数については自己同形数を参照。

一般化

ある有理数の平方として表される有理数を平方数ということもある。あるいはさらに一般に、ある K の乗法群 K* の部分集合 {x2 | xK}(直積集合と紛れるおそれのないときにはこれを (K*)2 などと表す)の元を平方数とか平方元などということがある。主に (K*)2K* のときに意味を持つ。

参考文献

  • Chen, J. R. "On the Distribution of Almost Primes in an Interval." Sci. Sinica 18, 611-627, 1975.

関連項目

外部リンク

  • Weisstein, Eric W. "Square Number". mathworld.wolfram.com (英語).