六角数

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索

六角数(ろっかくすう、hexagonal number)とは多角数の一種で、正六角形の形に点を下図のように並べたとき、図に含まれる点の総数にあたる自然数である。六角数は無数にあり、そのなかでは1が最も小さい。4で割ると1余る整数を1から小さい順に足した数と定義してもよい。例:6(=1+5)、15(=1+5+9)、120(=1+5+9+13+17+21+25+29)

1 6 15 28
* **
* *
**
***
** *
* * *
** *
***
****
*** *
** * *
* * * *
** * *
*** *
****

n番目の六角数を Hn とすると上図より

H1 = 1 , Hn+1 = Hn + 4n + 1

が導かれる。よって六角数の式は

H_n = H_1 + \sum_{k=1}^{n-1} (4k + 1) = n(2n-1) \quad (n \ge 2)

これは n = 1 のときも成り立つ。六角数を小さいものから順に列記すると

1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 946, …(オンライン整数列大辞典の数列 A384

となる。

n番目の六角数は2n-1番目(すなわち奇数番目)の三角数に等しい。ゆえに全ての六角数は三角数でもある。

また偶数完全数は全て奇数番目の三角数でもあるので、知られている完全数は全て六角数でもある。

六角数は1から順に奇数偶数が交互に現れる。また1以外の六角数は全て合成数である。

全ての自然数は高々6つの六角数ので表すことができる(→多角数定理)。 ただし1791よりも大きな自然数は4つの六角数の和で表すことができ、十分に大きい自然数は3つの六角数の和で表すことができる。6つの六角数が必要な数は1126の二つのみで次のような和の形で表される。11=1+1+1+1+1+6 、26=1+1+6+6+6+6

六角数の逆数総和

\begin{align} \sum_{n=1}^{\infty} \frac{1}{n(2n-1)} &= 2\sum_{n=1}^{\infty} \left(\frac{1}{2n-1} - \frac{1}{2n} \right)\\                            &= 2 \left(\left(\frac{1}{1} - \frac{1}{2}\right)+ \left(\frac{1}{3} - \frac{1}{4} \right) + \cdots \right)\\                                                         &= 2 \ln{2}\\
                                                           & \approx{1.386294}\cdots\\
\end{align}

関連項目[編集]

外部リンク[編集]