常微分方程式

出典: フリー百科事典『ウィキペディア(Wikipedia)』

常微分方程式(じょうびぶんほうていしき、: ordinary differential equation, O.D.E.)とは、微分方程式の一種で、未知関数が本質的にただ一つの変数を持つものである場合をいう。すなわち、変数 t の未知関数 x(t) に対して、(既知の)関数 F を用いて

という形にできるような関数方程式を常微分方程式と呼ぶ。x(k)(t) は未知関数 x(t)k 階の導関数である。未知関数が単独でない場合には、関数の組をベクトルの記法を用いて表せば次のようになる。

ここで F, x

を表す。この方程式系はしばしば連立常微分方程式と呼ばれる。

また、多くの n 階常微分方程式は次のような形に書くことができる。

常微分方程式の理論およびその研究を微分方程式論という。あるいはまた関数方程式論の名で微分方程式論を指すこともある。

線型常微分方程式[編集]

常微分方程式が

の形に表されるとき線型であるという。ただし、ak(t) および b(t)t を変数とする既知の関数である。b(t) = 0 の方程式は特に斉次 (homogeneous) な方程式と呼ばれ、そうでない方程式は非斉次 (inhomogeneous) な方程式と呼ばれる。

非線型常微分方程式[編集]

線型でない常微分方程式は非線型であると言われる。非線型方程式の解は一般に、線型方程式のそれに比べて複雑な様相を呈する。そのような例として、ローレンツ方程式パンルヴェ方程式などがある。一方、求積法で解ける形の非線型方程式も数多く知られている[1][2][3]。 以下に例を挙げておく [1][3][4]

1階非線型常微分方程式[1][3][編集]

ここに、n は実数であり、f(·) は既知関数である。

  m, n は実数,ただし,m ≠ 0f は既知関数。
  A(x)F は既知関数。
  A(x )B(x )F は,いずれも既知関数。

2階非線型常微分方程式[1][3][4][編集]

上記の P(x)f(·) は既知関数とする。

  n は実数,ただし,n ≠ 2f は既知関数。
  f(y) は既知関数。
  α, γ, n は実数.ただし,n ≠ −1
  f (·) は既知関数。 は実数.ただし,

連立常微分方程式[編集]

連立常微分方程式(simultaneous ordinary differential equations)は、 1 つの独立変数 t と複数の未知関数 x1(t),..., xn(t) およびその導関数により構成される複数の方程式の組である。例えば、比較的簡単な例として、t の 2 つの未知関数を x1(t), x2(t) とする。それらの一階の導関数を x'1(t), x'2(t) として、

は一つの連立常微分方程式である。ただし、F, G既知関数である。

一般の連立常微分方程式は、1 つの独立変数と m 個の未知関数およびその n 階の導関数を含み、複数個の常微分方程式の組になる。

ここで xi(j)(t) は、未知関数 xi(t)j 階の導関数である (i = 0, 1,..., m; j = 0, 1,..., n)。 なお、連立常微分方程式を常微分方程式系(system of ordinary differential equations)と呼ぶこともある。 これら r 個の常微分方程式すべてを満足する関数の組 x1(t),..., xm(t) をそのという。

具体的な例を一つ示す。独立変数 x の未知関数を y, z とし、a, b, c, d を定数とすると、

は、一階の連立常微分方程式の例である。一般的な連立常微分方程式は、求積法で解くのは困難であるが、一般性を含む連立常微分方程式の例として、求積法で解ける連立常微分方程式が多少知られている[1][2][3]。 一例を挙げておく[3][5]

x は独立変数であり、y, z, wx を変数とする未知関数である。また、F, G, H を既知関数とする[5]

出典[編集]

  1. ^ a b c d e 長島 隆廣 『常微分方程式80余例とその厳密解』 近代文芸社、2005年 ISBN 4-7733-7282-6. 国立国会図書館蔵書, 請求記号:MA117-H55(東京 本館書庫)。
  2. ^ a b 長島 隆廣[常微分方程式134例とその解]丸善出版サービスセンター,1982年5月発行,国立国会図書館・請求記号 MA117-111,全国書誌番号 82049441
  3. ^ a b c d e f 長島 隆廣『常微分方程式80余例と求積法による解法』2018年12月 researchmap で公開,全編PDF: https://researchmap.jp/T_Nagashima または, https://researchmap.jp/multidatabases/multidatabase_contents/detail/263160/16f8fddfba5ab789f6475ac2962bfd31?frame_id=539358
  4. ^ a b 長島 隆廣 『数学セミナー』,日本評論社,1986年5月号,第25巻,第5号,通巻294号,pp.94-95。
  5. ^ a b 長島 隆廣 『数学セミナー』,日本評論社,1988年3月号,第27巻,第3号,通巻316号,p.98。

関連文献[編集]

和書[編集]

  • 藤原松三郎.(1930), 常微分方程式論.岩波書店
  • 吉江琢児.(1947), 微分方程式論. 共立出版.
  • フォーサイス 著,粟野保, 末岡清市, 石津武彦 共訳. (1947), 微分方程式 上巻. 朝倉書店.
  • 坂井秀隆. (2015). 常微分方程式. 東京大学出版会.
  • 大谷光春. (2011). 常微分方程式論. サイエンス社.
  • 福原満洲雄「常微分方程式 第2版」岩波全書. 岩波書店.
  • 常微分方程式, 朝倉書店, 高野恭一.
  • 常微分方程式と解析力学, 木村俊房飯高茂・西川青季・岡本和夫・楠岡成雄 (編集) 伊藤秀一著, 共立講座 21世紀の数学 第11巻ISBN 978-4-320-01563-0, 1998年01月, 共立出版.
  • ウイルス感染と常微分方程式, 岩見真吾, 佐藤佳, 竹内康博 著(シリーズ: 現象を解明する数学 / 三村昌泰, 竹内康博, 森田善久 編集)共立出版, 2017.4
  • 常微分方程式 新版, レフ・セミョーノヴィチ・ポントリャーギン/千葉克裕 共立出版 1981年02月
  • 常微分方程式の局所漸近解析, 柴田正和 森北出版 2010年08月

洋書[編集]

関連項目[編集]

方程式[編集]

数値計算[編集]