直角三角形

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索

直角三角形(ちょっかくさんかくけい、: right triangle)は、三角形の一種で最大の直角 (90°=π/2 rad) の図形である。直角三角形の各の長さの関係はピタゴラスの定理(三平方の定理)と呼ばれる。記号はであらわす。

直角三角形


直角三角形の直角の対辺を斜辺と言う。単に隣辺と言った場合、直角の隣辺を意味する。

三平方の定理(ピタゴラスの定理、勾股定理)[編集]

直角三角形の3本の辺では、常に斜辺が最も長くなる。直角でない角A, Bはどちらも90°未満の大きさである。斜辺 c と他の2辺 a, b との関係は

a^2+b^2=c^2\,

であり、これが成り立つ三角形は直角三角形である。

角が異なる頂点同士が重なるように2つの直角三角形を並べると、長方形ができる。直角三角形は面積 ab の長方形を1本の対角線で区切って2等分した図形なので、面積は ab/2 である。また直角三角形を直角の頂点同士および他のもう1角の頂点同士が重なるように2つ並べると二等辺三角形ができる。合同な三角形を2つ並べて別の三角形ができるのはこの場合のみである。

斜辺の中点は直角三角形の外心である。すなわち斜辺の中点から点A, B, Cまでの距離は全て等しい。また直角の頂点Cは垂心である。

三角関数[編集]

各辺の比は各内角の三角比

\sin B = \frac b c
\cos B = \frac a c
\tan B = \frac b a

と表す。

なお

\sin^2B + \cos^2B = \frac {b^2+a^2}{c^2}=1

である。

利用[編集]

三角定規は直角三角形であり、直角でない2つの角が30°および60°の半正三角形(正三角形を半分にしたもの)と2つの角がともに45°である直角二等辺三角形との2種類を1組とするのが一般的である。半正三角形の長いほうの隣辺と、直角二等辺三角形の斜辺の長さは同じ場合が多い。これらを使って平行線垂線を容易に作図できる。

東洋における歴史[編集]

明治初期の日本では、直角三角形は「勾股弦の形[1]」と呼ばれていた。この名の起源はの『九章算術』「勾股」章にまで遡ることができる。なお、『九章算術』は現代の中国はもちろんのこと、日本の和算にも引き継がれている。また「勾股弦」の語は現在の日本の伝統建築の規矩術[2]でも用いられている。(斜辺を「玄」、隣辺を「勾」、「殳」とあらわす。)

脚注[編集]

  1. ^ 久米邦武 編『米欧回覧実記・5』田中 彰 校注、岩波書店(岩波文庫)1996年、247頁
  2. ^ http://www2u.biglobe.ne.jp/~tyouken/sumigi/koukogen.htm