ファルコン9

出典: フリー百科事典『ウィキペディア(Wikipedia)』
Jump to navigation Jump to search
ファルコン9
KSC-20160408-PH KLS0001 0005 (25704320894).jpg
ファルコン9 FT
基本データ
運用国 アメリカ合衆国
開発者 スペースX
使用期間 2010年-2013年 (v1.0)
2013年-2016年 (v1.1)
2015年-2018年 (FT)
2017年- (Block4)
2018年- (Block5)
射場 ケープカナベラル空軍基地
ヴァンデンバーグ空軍基地
打ち上げ数 55(成功53)
打ち上げ費用

全て2011年見積もり LEO (<80% cap.) $49.9M [1]
LEO (>80% cap.) $56.0M [1]
GTO (<3,000 kg) $49.9M [1]

GTO (>3,000 kg) $56.0M [1]
原型 ファルコン1
公式ページ SpaceX - Falcon 9
物理的特徴
段数 2段
ブースター なし
総質量 333,400 kg (v1.0)
505,846 kg (v1.1)
549,054 kg (FT)
全長 54.3 m (v1.0)
68.4m (v1.1)
70 m (FT)
直径 3.66 m
軌道投入能力
低軌道 10,450 kg (v1.0)
13,150 kg (v1.1)
22,800 kg (FT)
静止移行軌道 4,540 kg (v1.0)
4,850 kg (v1.1)
8,300 kg (FT)
テンプレートを表示

ファルコン9Falcon 9)はアメリカ合衆国の民間企業スペースX社により開発され、打ち上げられている2段式の商業用打ち上げロケット低周回軌道に22,800 kgの打ち上げ能力を持つ中型クラスのロケット[2]2010年6月4日に初打ち上げが行われて成功した。

徹底した低コスト化が図られたロケットであり、打ち上げ価格は6,200万ドル(約66億円)[2]と100億円を超える同規模同世代のロケットと比較して遥かに安価で、商業衛星市場において大きなシェアを獲得している[3]。 その大きなシェアを示すように、2017年には年間18回の打ち上げに成功しており、ファルコン9だけで中国(18回)やロシア(21回)等の一国の打ち上げ規模に匹敵する。 さらに、2018年には年間30回程度打ち上げることを目指すとイーロン・マスク氏(CEO)とグウィン・ショットウェル氏(COO)は述べている。[4]

ファルコン9ロケットの名前は、スターウオーズミレニアム・ファルコン号に由来しており、ファルコンロケットシリーズの後ろにつく1と9の数字は1段エンジンの数を表す[5]

設計[編集]

ファルコン1、ファルコン9 Ver1.0、Ver1.1(3タイプ)、FT(3タイプ)、ファルコンヘビー

ファルコン9は大型の貨物や有人宇宙船の打ち上げを想定して設計されており、アメリカ航空宇宙局 (NASA) の商業軌道輸送サービス (COTS) 計画の下で開発したドラゴン補給機を使って国際宇宙ステーション (ISS) への補給を行う商業補給サービス (CRS) の契約をNASAから受注しており、その打上げロケットとしても使われる。

ファルコン9は同社が開発したファルコン1を基に機体を大型化し、液体酸素/RP-1を推進剤としたエンジンを使用する2段式のロケットである。第1段は同社が開発した海面高度での推力556 kN (125,000 lbf) のマーリンエンジンを9基クラスターにして使用し、総離陸推力 5.0 MN (1.1 million lbf) を実現している[6]。第1段の点火剤として自然発火性物質であるトリエチルアルミニウム-トリエチルボラン (TEA-TEB) を使用している[7]

上段には真空中での運転のためにノズルの膨張比を117:1に高めて燃焼時間を345秒に改良したマーリンバキュームロケットエンジンを1基使用している。このエンジンには再着火時の信頼性を高めるため、TEA-TEBを使用した自己発火性点火器を2重冗長構成で備えている[6]

ファルコン9の上段と下段を接続する段間構造はアルミニウムコア炭素繊維複合材を使用している。1・2段の分離には再利用可能な固定器具 (collet) をガス圧で押し出すことで作動するシステムを使用している。ファルコン9のタンク壁とドームはアルミニウム-リチウム合金製である。スペースX社は利用可能な溶接法としては最も信頼性が高く、強度も強い摩擦攪拌接合で全てのタンクを製造している。

ファルコン9の第2段のタンクは単純に第1段のタンクを短縮したもので、大半は同じ工具や材料および製造技術を使用している。これにより、製造経費を削減している[6]

ファルコン9は低コスト化が図られた優秀な使い捨て型ロケットであるが、さらなるコスト削減のためにロケットを再使用することも考慮している[8]。回収を意図した機体は姿勢制御用のフィンや着陸脚を備えており、2017年からは回収した機体が再使用されている[9]

構成と諸元[編集]

ファルコン9には最初の打ち上げ以後、随時改良が加えられており、中でもv1.1, FTと呼ばれるバージョンアップでは別のロケットと呼べるほどの変更が行われている[10]

ファルコン9 v1.0[編集]

ファルコン9 v1.0

ファルコン9 v1.0 (Version 1.0) は、初期型のファルコン9である。2010年6月の初打ち上げから2013年3月の5回目の打ち上げまで用いられた。

v1.0ではファルコン1で用いられていたマーリン1Cロケットエンジンが同じく用いられており、また9基あるエンジンは3列×3列の正方形で配置されている。全長は58.3 mで、後のバージョンと比べると短めであった。

v1.0でもパラシュートを装着して機体の回収が試みられたことがあったが、この段階では1度も成功しなかった。

ファルコン9 v1.1[編集]

ファルコン9 v1.1

ファルコン9 v1.1 (Version 1.1) は、2013年9月の6回目の打ち上げから2016年1月の21回目の打ち上げまで用いられた改良型のファルコン9である。

v1.1は、v1.0よりも全長が14m長く、エンジンは改良型のマーリン1Dを使用。1段のエンジン配置も変更され、正方形の配置から、Octawebと呼ばれる円形の配置(外周に8基、中央に1基)に変更された(このため射点設備も改修された)ほか、フェアリングも直径約5mの新しいものが開発され、段間分離システムも一新されて接続箇所が12箇所から3箇所に減らされて信頼性が向上した。また1段の回収に備えて耐熱塗装が強化された。

2014年4月からは1段を回収するための4本の着陸脚の装備が開始され[11][12][13]、打ち上げと並行してたびたび着陸試験が繰り返されたが、v1.1ではいずれも失敗に終わった。

ファルコン9 フル・スラスト[編集]

ファルコン9フル・スラスト (Full Thrust) は、2015年12月の20回目の打ち上げから2018年2月の49回目の打ち上げまで用いられた改良型のファルコン9である。

フル・スラストでは、エンジン推力の向上や第2段の延長などが図られた結果、打ち上げ能力はさらに33%向上している。着陸脚やスラスターなど、着陸機構の改良も図られており、2015年12月の初打ち上げでは第一段切り離し後にメインエンジンを逆噴射させ、ケープカナベラル内のLZ-1着陸地点への軟着陸を成功させた[10]。その後洋上の無人船への着陸も成功させている。2017年3月にはさらに回収した1段目の再使用にも成功した[9]

ファルコン9 ブロック4[編集]

ファルコン9ブロック4 (Block 4)は、2017年8月の39回目の打ち上げ以降用いられているマイナーチェンジ版のファルコン9である。詳細は明らかにされていないが、エンジン周りの構造の変化や、ファルコンヘビーのブースターとして使うための改造などが行われたと言われている。[14]

ファルコン9 ブロック5[編集]

ファルコン9ブロック5 (Block 5) は、2018年5月の54回目の打ち上げ以降用いられている改良型のファルコン9である[15]

ブロック5では、エンジンの推力を最大限まで増強することと着陸脚の改善が主な改善点。他には、第1段ロケットの再利用に寄与するマイナーな改良も含まれる[16]。ブロック5では、第1段ロケットは点検のみで10回の再使用が、リファビッシュを行うことで100回以上の再使用が可能になるとされている。[15]

「重要な細かい改良が全体的にたくさんあるが、推進力と着陸脚の改善が最も重要」と、2016年10月23日にイーロン・マスクは、ファルコン9ブロック5について説明している[17]。さらに2017年1月21日、ファルコン9ブロック5が「パフォーマンスと可用性を大幅に改善する」ともイーロン・マスクは述べている[18]。ファルコン9ブロック5をファルコン9ロケットの「最終的な」バージョンであるとも彼は言及した。

ファルコンヘビー[編集]

ファルコン9の1段目ロケットをデルタ IVアトラス V HLVロシアアンガラ・ロケットのように3本束ねた超大型ロケットがファルコンヘビーである。中央の1段目はコアと呼ばれ、両サイドのサイドブースターを含めた全負荷を受け止めるため、専用に設計された強化されたものを使用している。ファルコン9打ち上げ費用は約1億ドル、打ち上げ能力は低軌道で53,000 kg (120,000 lb)、静止トランスファ軌道で21,200 kg (47,000 lb) であり、初打ち上げを果たした2018年時点で、サターンVに次いで史上2番目の打ち上げ能力を持つ。

ファルコンヘビーの構想が初めて公表されたのは、ファルコン9の初打ち上げの翌2011年の事である。スペースXでは当初2014年にも打ち上げたいとしていたが、開発を進めたところ大幅な設計変更が必要となり、中央の1段目はファルコン9の1段目をそのまま流用することが出来ないことが判明。最終的に2018年2月6日(UTC)に初打ち上げを果たした。[19]

比較[編集]

バージョン ファルコン9 v1.0
(運用終了)
ファルコン9 v1.1
(運用終了)
ファルコン9 フル・スラスト
(運用中)
ファルコン9 ブロック5
(運用中)
第1段 マーリン1C × 9 マーリン1D × 9 マーリン1D(改良版) × 9[20] マーリン1D(改良版) × 9 [16]
第2段 マーリン1Cバキューム × 1 マーリン1Dバキューム × 1 マーリン1Dバキューム(改良版) × 1[21][20] マーリン1Dバキューム(改良版) × 1 [16]
全高 (m) 53[22] 68.4[23] 70[24][21] 70
直径 (m) 3.66[25] 3.66[26] 3.66[21] 3.66
離床推力 (kN) 3,807 5,885[23] 6,804[24][21]

7,607[27](2016年後半以降)

7,606
質量(トン 318[22] 506[23] 549[24] ~587
フェアリング直径 (m) N/A 5.2 5.2 5.2
低軌道 (LEO)
ペイロード (kg)
8,500–9,000
(ケープカナベラル)[22]
13,150
(ケープカナベラル)[23]
22,800
(使い捨て、ケープカナベラル)[2]
22,800
静止トランスファ軌道 (GTO)
ペイロード (kg)
3,400[22] 4,850[23] 8,300[2](使い捨て)
>5,300[28][29](再利用)
8,300(使い捨て)
5,500(再利用)

信頼性[編集]

ファルコン9ロケットは、SpaceX社は非常に高い信頼性を持つと説明している。同社の信頼性に対する考え方は、シンプルな構成にすることで信頼性と低コストを得るという哲学に基づいている。

実際に2018年5月22日の時点でシリーズを通して53/55回の打ち上げに成功しており、成功率は96%である。 失敗は、2015年6月28日のv1.1の19号機(打上げから139秒後に爆発)、2016年9月1日のフル・スラスト(打上げ前燃焼試験の準備中に爆発)の2回である。(いずれもUTC)

ファルコン9の打上げシーケンスは、全てのエンジンに点火して、システムのチェックを行ってから打ち上げることになっている。性能が正常である事が確認されるまでは機体は射点の保持機構で固定されたままとなる。このような方式は、サターンVスペースシャトルでも同様に使われてきた。もし、異常な状態が検知された場合は自動的にシャットダウンが行われ、推進薬の抜き取りが行われる。

サターンVと同様に、ファルコン9でも複数の1段エンジンをクラスター化しているため、飛行中にエンジンの1基が停止してもミッションを継続する事が出来る。ファルコン9は、アポロ計画のサターンロケット以降初めて、このエンジン停止時の対処能力 (engine-out capability) を持つロケットとなった。実際に4回目の打ち上げでは、上昇中にエンジン1基が異常を起こしたために停止されたが、他のエンジンに被害を与える事なく軌道に乗る事に成功した。

ファルコン9は三重冗長の飛行コンピュータと慣性誘導装置を有しており、さらにGPSを組み合わせる事で軌道投入精度をさらに高めている。

再使用[編集]

洋上の無人船に着陸する1段目

ファルコン9は、スペースシャトル以後では初となる、機体を回収・再使用する衛星打ち上げロケットである。かつてスペースシャトルでは軌道上に到達するオービタと呼ばれる上段部分が再使用されたのに対して、ファルコン9では1段目のロケットを再使用する(将来的には2段目やフェアリングの再使用も計画)。

1段目の回収は、陸上の着陸地点又は無人のドローン船(太平洋担当のJust Read the Instructions(説明書を読め)号、大西洋担当のOf Course I Still Love You(もちろんまだ君を愛している)号)に対して、1段目のロケットが自律誘導で装着されたグリッドフィンやサイドスラスターで姿勢を制御して、エンジンの再点火を行い減速しながら目標地点へ軟着陸することで行われる。着陸間際には4脚の着陸脚が展開されて、直立した状態で着陸した後に回収、整備されて再度打ち上げに利用される。

2015年11月22日の20号機(フル・スラスト初号機)で初めて地上への軟着陸に成功し、2016年4月8日の23号機フル・スラストで初めて無人船(Of Course I Still Love You)への軟着陸に成功した。 1段目の再使用は2017年3月30日の32号機においてはじめて実施されており、それ以前は全て新造された機体が用いられてきた。再使用の詳細なコストは2017年現在公表されていないが、スペースXは2016年の段階で最大で30%の割引が可能とのコメントを行っている[9]。(日付はUTC)

2017年から本格的に再利用ロケットの運用が始まり、2018年には大口顧客であるイリジウム社の同意が得られたこともあり、打ち上げ予定のロケットの半分以上が再利用されたものとなる予定である。

なお、1段目のロケットを回収するためには軟着陸用の装備(グリッドフィンや着陸脚、減速用の推進剤等)を搭載する必要があるため、その分だけ打ち上げ可能なペイロードの重量が減ってしまう。そのため、大型で重たい衛星や遠い軌道へ打ち上げる場合は使い捨てロケットとして使われる。

開発[編集]

ファルコン9の再使用計画は、v1.0の打ち上げが成功した後の2011年9月に初めて明らかにされた。この構想では、第1段・第2段ともにエンジンを逆噴射させて垂直着陸を行い、回収・再使用するという今日の形態が示されていた。発表では再使用が実現すれば、打ち上げコストは従来の100分の1程度になることが謳われた[30]。また同月には、FAAに対してファルコン9の1段目を改造したグラスホッパー (Grasshopper RLV) と呼ばれる垂直離着陸実験機を使う実験飛行を申請し[31]、実際に2012年9月から2013年10月まで8回の飛行試験が行われた。また、2014年4月からは後継機のF9R-Devを用いて試験が行われ、その成果はフル・スラストに反映された。

実験機とは別に、ファルコン9 v1.0においても一部の機体の1段目にはパラシュートが装備されており、回収を実証して可能であれば将来の再使用も試みるつもりであったが、2010年に行われた実験では2回とも失敗した。この手法では回収のためには高速で落下する機体を守るため耐熱用のアブレーティブ材の層で覆うと共に、海に着水して海水にさらされても腐食しない材料の使用が必要となるなど再使用への課題が多かったため、以後パラシュートを使用した1段目の回収案は破棄された。

洋上着陸のための無人船 Just Read the Instructions

2013年9月に行われたファルコン9 v1.1初号機の打ち上げでは、前述の垂直着陸を模した1段目の回収試験が実際に行われた。1段目ロケットは2段目を分離した後、地球へ落下しながら3基のエンジンを再点火させて減速し、着陸の直前に中央のエンジン1基を噴射して着陸するシーケンスがテストされた。この試験では洋上着水直前のエンジン1基の噴射が機体の回転の影響による遠心力で燃料供給できなくなり早期に燃焼が停止して洋上に激突したが、一部の機器の回収には成功した。このトラブルは、v1.1 4号機に装着する着陸脚を展開すれば回転をスラスタ噴射で制御出来ると考えられた。実際に、2014年4月のv1.1 4号機で洋上着水試験が行われ、着水直前に落下速度がゼロになったことが確認された。ただし、回収域の海は7mの大時化だったため機体の回収は断念した [32]。その後も試験は継続されたが最終的にv1.1では着陸は成功しなかった。

これらの経験をもとに開発されたファルコン9フル・スラストでは前記のように当初から軟着陸/着船を成功させ、以後のミッションでは打ち上げ能力に余裕がある場合は1段目の回収を行うことが常となった。

コスト[編集]

1段の回収に必要な余分な推進薬は、洋上で回収するのであれば15%程度、着陸地に帰還させる場合はおそらくその倍の30%になるだろう(すなわち打ち上げ可能なペイロード重量が30%失われる)と同社では解析している。しかし、1段目を再使用すれば、ロケットの費用の約3/4が節約できる可能性がある[33]

着陸脚を装備した場合は、打ち上げ可能なペイロードの重量は低下する。スペースX社が公開しているファルコン9 v1.1の打上能力4.850kg/GTOというのは、この性能低下分を含めた値(1段の回収に使うための余分な推進薬や着陸脚の重量分として確保)であり、着陸脚を装備しない場合は、このリザーブ分を利用できることから4,850kg以上の衛星でもGTO軌道に投入できる。このことはSES-9/10衛星(重量5,330kg)を受注した際に明らかになった[34]

1段目着陸の概要[編集]

  1. 2段目を切り離した直後は下部の水平4方向に付けられたスラスターで大まかな姿勢を保ちながら自由落下を開始する。
  2. 主エンジンの一部を適宜再点火して落下速度を落としながら、大気圏に入ると上部のグリッドフィン英語版を展開して細かな直立を保つ姿勢制御に入る。
  3. 目標の着陸地点上空まで到達すると、主エンジンを再度再点火して落下速度を急激に落とす。
  4. 着陸直前に下部に付けられた着陸用の4つの脚を高圧ヘリウムでテレスコピックの支柱を伸ばす方法で展開する。
  5. 主エンジンのノズルの向きとグリッドフィン、スラスターの相互制御で完璧な直立状態で、着陸と同時に相対速度0となるようにして着地する。

射場[編集]

ファルコン9の打ち上げ

2017年現在運用中の射場は3箇所。2020年までにもう1箇所を追加することが計画されている。

打ち上げの生中継[編集]

スペースXは同社の宣伝も兼ねて打ち上げの生中継に非常に力を入れており、毎回の打ち上げや着陸の様子は管制センターや発射台、着陸地点、ロケット本体等に装着されたカメラからインターネット上へ生配信[39]されており、誰でも視聴することが可能である。 カメラの搭載は商用ロケットとしては重量の面で不利になるが、ファルコン9には2段目も含めて多数のカメラが装着されているため、発射台~宇宙空間でフェアリングが外れて衛星が放出されるところまで打ち上げの全ての工程を見ることができる。 なお、軍事衛星等の機密性の高いものを打ち上げる際は2段目の速度や方位、フェアリング内のカメラの映像等は配信されない。

2018年2月6日(UTC)に試験打ち上げが行われたファルコンヘビーのインターネット配信では、同時視聴数が230万以上に達してYouTube史上2番目に視聴された生配信となった。

打上げ記録[編集]

形式
5
10
15
20
2010
'11
'12
'13
'14
'15
'16
'17
'18
  •   v1.0
  •   v1.1
  •   FT
  •   FT(再利用)
  •   ブロック5
  •   ヘビー
射場
5
10
15
20
2010
'11
'12
'13
'14
'15
'16
'17
'18
  •   ケープカナベラル
  •   ヴァンデンバーグ
  •   ケネディ
ミッション成否
5
10
15
20
2010
'11
'12
'13
'14
'15
'16
'17
'18
  •   失敗
  •   失敗(打ち上げ前)
  •   部分的失敗
  •   成功
着陸成否
5
10
15
20
2010
'11
'12
'13
'14
'15
'16
'17
'18
  •   着陸失敗
  •   無人船失敗
  •   着水失敗
  •   パラシュート失敗
  •   着陸成功
  •   無人船成功
  •   着水成功
  •   実施無し


2010-2017年の打ち上げ[編集]

2018年の打ち上げ[編集]

Flight № 打上げ日時
(UTC)
形式 射場 搭載物 搭載物の重量 目標軌道 荷主 打ち上げ
結果
着陸
結果
47 2018年1月8日
01:00
Falcon 9 Block 4
B1043.1
CCAFS SLC-40 Zuma 機密 LEO ノースロップ・グラマン
(政府機関の依頼)
成功
(※衛星は分離後軌道に乗らず)
成功
(陸上)
フェアリングに問題が見つかり、打ち上げが2ヵ月近く延期されていた。打ち上げには成功したが、衛星が2段目から分離できなかったのではないかという噂があるが、スペースXはロケットは正常に動作したと発表を出した。

この衛星は軍事用と思われ、その性質上正確な情報がほとんど発表されないため真相は不明である。1段目のブースターは17回目の回収に成功した。

48 2018年1月31日
21:25
Falcon 9 Full Thrust♺
B1032.2
CCAFS SLC-40 GovSat-1 / SES-16 4,230kg GTO SES 成功 成功
(海への着水)
2017年5月にNROL-76を打ち上げた1段目を再利用した。 3機の主エンジンを使用した海上着水実験に成功したが、1段目は沈没せずにそのまま残ってしまったため、破壊して沈没させた。
FH 1 2018年2月6日
20:45
Falcon Heavy core
B1033
KSC LC-39A SpaceX社CEO
テスラ・ロードスター
(※電気自動車)
1,250kg 太陽周回軌道
0.99–1.67AU
(ほぼ火星遷移軌道)
SpaceX 成功 失敗
(無人船)
B1023.2 (side) ♺ 成功
(陸上)
B1025.2 (side) ♺ 成功
(陸上)
ファルコンヘビーの初打ち上げ。Thaicom8およびCRS-9の打ち上げで回収した1段目をサイドブースターとして再使用した。打ち上げは成功し、サイドブースターは2本同時に着陸に成功したが、中央コアのドローン船への着陸はTEA-TEB化学点火装置が使い果たされ、2つの主エンジンの再点火に失敗したため無人船近くの海上に落下して失敗した。その時に無人船に損傷を与えてしまった。今回の打ち上げは試験目的のため衛星等は積み込まず、積み荷はスペースX社のCEOであるイーロン・マスク氏が保有するテスラ・ロードスター(マスク氏はテスラ社のCEOでもある)と、宇宙服を着せた人形が載せられた。打ち上げ前の1月24日に行われた発射台上でのエンジン点火試験では、初めてロケット三基分の27個のエンジンが一斉に点火された。これは開発中止されたロシアのN-1に迫る非常に多いエンジン数である。第二ステージの後、火星遷移軌道への最終燃焼を行い、イーロン・マスク氏は3回目の燃焼が成功したとツイートした 。ペイロードはヴァン・アレン帯の中を6時間かけて通過し火星へ向けて順調に飛行した。インターネット上での生配信はYouTubeで史上2番目に視聴された生配信となり、同時視聴数は230万以上に達した。分離されたテスラ・ロードスターに搭載されたカメラからは地球をバックに遠ざかる様子が映し出された。
49 2018年2月22日
14:17
Falcon 9 Full Thrust♺
B1038.2
VAFB SLC-4E Paz英語版 /Tintin 2,150kg SSO Hisdesat
exactEarth
SpaceX
成功 実施無し
フル・スラスト(ブロック3)の最後の打ち上げ。 Formosat-5打ち上げに使用した1段目を再利用した。 Paz(スペイン語で平和)は、ドイツの衛星と共同で運営されるスペイン初の偵察衛星です。積み荷には副ペイロードとして、2台のSpaceX社の衛星通信ネットワーク試験衛星が積まれており、これらは低軌道へ投入されました。この1段目には着陸用の装備は搭載されず、海上に落下して消費された。 また、今回はフェアリング(2つで600万ドル相当)の回収も試験され、フェアリング2.0と呼ばれる誘導システムとスラスタ、パラフォイルを装備したフェアリングが搭載されました。船の上に網を装備したMr. Steven号と呼ばれる有人船による回収が試験されたが、船から数100m離れた位置へ軟着水したため回収は成功したが直接捕まえることはできなかった。
50 2018年3月6日
05:33
Falcon 9 Block 4
B1044
CCAFS SLC-40 Hispasat 30W-6 6,092kg GTO Hispasat
NovaWurks
成功 実施無し
積み荷はスペインの通信衛星。SpaceXによって現在までに打ち上げられた最大の衛星で、「ほぼバスのサイズ」。 1段目は無人船への着陸が計画されたが、気象条件が悪いため実施されなかった。打ち上げ日程の遅延を防ぐためと、フェアリング内の加圧と3月1日にアトラスV によって打ち上げられたGOES-Sとの軌道の競合に関する懸念があったことから、回収の予定はないが着陸脚とチタン製のグリッドフィンは搭載されたまま打ち上げられた。
51 2018年3月30日
14:14
Falcon 9 Block 4 ♺
B1041.2
VAFB SLC-4E Iridium NEXT 41–50 9,600kg 極軌道LEO イリジウムコミュニケーションズ 成功 実施無し
5回目のイリジウムNEXTの打ち上げ。3回目のイリジウムNEXTの打ち上げに使用した1段目を改装して使用した。最新の再点火エンジンを搭載し、より多くの打ち上げで1段目を回収できるようにするための試験が行われた。また、海上でMr. Stevenを使ってフェアリングの半分を捕まえる2回目の試験を行ったが、パラフォイルがねじれてしまい上手く捕まえることができなかった。
52 2018年4月2日
20:30
Falcon 9 Block 4 ♺
B1039.2
CCAFS SLC-40 SpaceX CRS-14 2,647kg LEO (ISS) NASA 成功 実施無し
この打上げでは、CRS-12で使用された1段目を改装したものと、CRS-8で使用されたドラゴンを改装したものを使用した。ドラゴンの外部ペイロードにはISSで使用する、 材料研究プラットフォームMISSE-FF、ロボット給油ミッションTSIS、ASIMヘリオフィジックスセンサー、宇宙ゴミ除去実験装置等が積まれた。1段目は使い捨てにされ、ドラゴンの大気圏再突入では多くのデータを収集した。また、コスタリカ初の衛星ProjectIrazúとケニア初の衛星1KUNS-PFも同時に打ち上げられた。
53 2018年4月18日
22:51
Falcon 9 Block 4
B1045.1
CCAFS SLC-40 TESS 362kg HEO NASA 成功 成功
(無人船)
NASAの重要な科学ミッションの第一段。 TESSは太陽系外惑星の広域探索を目的とした宇宙望遠鏡です。SpaceXにとっては地球観測を目的としない科学衛星の初めての打ち上げとなった。2段目で衛星は長楕円軌道に投入され、その後は衛星自身のブースターで加速して、月フライバイ等の複雑な制御を行った後、2か月後には月と2:1の軌道共鳴に入る予定です。2018年1月にFalcon 9 Full Thrustは今回のようなNASAの「中リスク」ミッションを担当するために必要な「Launch Services Program Category 2認証」を取得していました。 今回は新造ブロック4の最後の打ち上げとなり、1段目は24回目の回収に成功した。また、フェアリング回収のための海上への着水実験が行われた。
54 2018年5月11日
20:14
Falcon 9 Block 5
B1046.1
KSC LC-39A Bangabandhu-1 3,600kg GTO タレス・アレーニア・スペース
バングラデシュ電気通信規制委員会(BTRC)
成功 成功
(無人船)
最初のブロック5の打ち上げ。最初の積み荷は2017年12月にアリアン5で打ち上げを予定していた、タレス・アレーニア・スペース製のバングラデシュ初の商業衛星(衛星通信サービス用)となった。1段目は25回目の回収に成功した。
55 2018年5月22日
19:47
Falcon 9 Block 4 ♺
B1043.2
VAFB SLC-4E Iridium NEXT 51–55
GRACE-FO 1, 2
6,460kg 極軌道LEO イリジウムコミュニケーションズ
GFZ  • NASA
成功 実施無し
6回目のイリジウムNEXTの打ち上げ。Zumaを打ち上げた1段目を再使用した。1段目の再利用間隔は4.5ヶ月の新記録であった。GFZは、2015年にGRACE-FOのウクライナのドニエプルよる打ち上げ契約が解除された後、Falcon 9によるイリジウムの打ち上げにライドシェアをするように手配していた。イリジウムのCEO Matt Deschは、2017年9月にGRACE-FOがこのミッションで打ち上げられると発表していた。

脚注[編集]

  1. ^ a b c d Falcon 9 Overview, Launch Cost”. SpaceX (2010年). 2010年12月6日閲覧。
  2. ^ a b c d Capabilities & Services”. SpaceX. 2016年5月6日閲覧。
  3. ^ 人工衛星打ち上げビジネスで始まった価格破壊。イーロン・マスクの「スペースX」の挑戦”. HARBOR BUSINESS Online (2016年3月13日). 2016年5月6日閲覧。
  4. ^ To Californians, It Looked Like a UFO. To Elon Musk, Success”. 2018年5月28日閲覧。
  5. ^ “Space X COTS 2 Presskit (P29)”. Space X. http://www.spacex.com/downloads/COTS-2-Press-Kit-5-14-12.pdf 2012年5月18日閲覧。 
  6. ^ a b c “Falcon 9 Overview”. SpaceX. (2010年5月8日). http://www.spacex.com/falcon9.php 
  7. ^ Mission Status Center, June 2, 2010, 1905 GMT, SpaceflightNow, accessed 2010-06-02, Quotation: "The flanges will link the rocket with ground storage tanks containing liquid oxygen, kerosene fuel, helium, gaserous nitrogen and the first stage ignitor source called triethylaluminum-triethylborane, better known as TEA-TAB."
  8. ^ Musk ambition: SpaceX aim for fully reusable Falcon 9, NASAspaceflight.com, 2009-01-12, accessed 2010-06-03
  9. ^ a b c 隼はふたたび飛び立った - 「ファルコン9」ロケット、再使用打ち上げに成功”. マイナビニュース (2017年3月31日). 2017年3月31日閲覧。
  10. ^ a b c 着陸に成功したスペースXの「ファルコン9」ロケット - 実は「フル・スラスト」という名の進化版だった”. マイナビ (2016年1月25日). 2016年2月6日閲覧。
  11. ^ “Q&A with SpaceX founder and chief designer Elon Musk”. Spaceflightnow.com. (2012年5月18日). http://spaceflightnow.com/falcon9/003/120518musk/ 2012年6月18日閲覧。 
  12. ^ a b c SpaceX Launches Next-Generation Private Falcon 9 Rocket on Big Test Flight”. space.com英語版 (2013年9月29日). 2013年9月30日閲覧。
  13. ^ “Upgraded Falcon 9 Mission Overview”. Space X. (2013年10月4日). http://www.spacex.com/news/2013/10/14/upgraded-falcon-9-mission-overview 2013年10月20日閲覧。 
  14. ^ スペースX、最後の"新造"補給船を打ち上げ - ファルコン9ロケットも改良”. マイナビニュース (2017年8月18日). 2018年5月12日閲覧。
  15. ^ a b スペースX「ファルコン9 ブロック5」打ち上げ成功 「Bangabandhu Satellite-1」投入”. Sorae (2018年5月12日). 2018年5月12日閲覧。
  16. ^ a b c https://www.reddit.com/r/spacex/comments/590wi9/i_am_elon_musk_ask_me_anything_about_becoming_a/d94v8p8/
  17. ^ Boyle, Alan (2016年10月23日). “SpaceX's Elon Musk geeks out over Mars interplanetary transport plan on Reddit”. GeekWire. http://www.geekwire.com/2016/spacex-elon-musk-geeks-out-mars-reddit/ 2016年10月24日閲覧。 
  18. ^ Berger, Eric (2017年1月22日). “SpaceX may be about to launch its final expendable rocket”. http://arstechnica.com/science/2017/01/spacex-may-be-about-to-launch-its-final-expendable-rocket/ 2017年1月22日閲覧。 
  19. ^ 地球の上で快哉を叫んだテスラ・ロードスター”. 日経ビジネス (2018年2月9日). 2018年2月16日閲覧。
  20. ^ a b SpaceX To Debut Upgraded Falcon 9 on Return to Flight Mission”. SpaceNews (2015年8月31日). 2015年9月18日閲覧。
  21. ^ a b c d Falcon 9 Launch Vehicle Payload User's Guide, Rev 2” (2015年10月21日). 2016年1月27日閲覧。
  22. ^ a b c d Space Launch report, SpaceX Falcon Data Sheet”. 2011年7月29日閲覧。
  23. ^ a b c d e Falcon 9”. SpaceX. 2013年11月29日時点のオリジナルよりアーカイブ。2013年12月4日閲覧。
  24. ^ a b c Falcon 9”. SpaceX. 2015年12月9日時点のオリジナルよりアーカイブ。2015年12月3日閲覧。
  25. ^ Falcon 9 Launch Vehicle”. SpaceFlight101. 2015年9月18日閲覧。
  26. ^ Falcon 9 v1.1”. SpaceFlight101. 2015年9月18日閲覧。
  27. ^ Elon Musk [@elonmusk] (1 May 2016). "F9 thrust at liftoff will be raised to 1.71M lbf later this year. It is capable of 1.9M lbf in flight." (ツイート) – Twitterより. 
  28. ^ Bergin, Chris (2016年2月8日). “SpaceX prepares for SES-9 mission and Dragon's return”. NASA Spaceflight. http://www.nasaspaceflight.com/2016/02/spacex-prepares-ses-9-mission-dragons-return/ 2016年2月9日閲覧. "The aforementioned Second Stage will be tasked with a busy role during this mission, lofting the 5,300kg SES-9 spacecraft to its Geostationary Transfer Orbit." 
  29. ^ Barbara Opall-Rome (2015年10月12日). “IAI Develops Small, Electric-Powered COMSAT”. DefenseNews. 2015年10月12日閲覧。 “At 5.3 tons, Amos-6 is the largest communications satellite ever built by IAI. Scheduled for launch in early 2016 from Cape Canaveral aboard a Space-X Falcon 9 launcher, Amos-6 will replace Amos-2, which is nearing the end of its 16-year life.”
  30. ^ スペースX社、再使用型ファルコン9ロケットのコンセプトを発表”. sorae.jp (2011年10月5日). 2011年10月11日閲覧。
  31. ^ SpaceX、サブオービタル実験機開発計画明らかに:Grasshopper RLV”. スペースレフ (2011年9月28日). 2011年10月11日閲覧。
  32. ^ “SpaceX’s Latest Cargo Flight Delivers a Step Toward Rocket Reusability”. SpaceNews.com. (2014年4月25日). http://www.spacenews.com/article/launch-report/40346spacex’s-latest-cargo-flight-delivers-a-step-toward-rocket-reusability 2014年4月27日閲覧。 
  33. ^ “Musk lays out plans for reusability of the Falcon 9 rocket”. NASAspaceflight.com. (2013年10月3日). http://www.nasaspaceflight.com/2013/10/musk-plans-reusability-falcon-9-rocket/ 2013年10月16日閲覧。 
  34. ^ “SpaceX Says Requirements, Not Markup, Make Government Missions More Costly”. SpaceNews.com. (2014年3月27日). http://www.spacenews.com/article/launch-report/40006spacex-says-requirements-not-markup-make-government-missions-more-costly 2014年4月27日閲覧。 
  35. ^ Simburg, Rand. “SpaceX Press Conference”. 2010年6月16日閲覧。. Musk quote: “We will never give up! Never! Reusability is one of the most important goals. If we become the biggest launch company in the world, making money hand over fist, but we’re still not reusable, I will consider us to have failed.”
  36. ^ “NASA Signs Agreement with SpaceX for Use of Historic Launch Pad”. NASA. (2014年4月15日). http://www.nasa.gov/press/2014/april/nasa-signs-agreement-with-spacex-for-use-of-historic-launch-pad/ 2014年4月22日閲覧。 
  37. ^ SpaceX Is Building a New Launch Site In Texas”. Time (2014年8月5日). 2017年4月2日閲覧。
  38. ^ Foust, Jeff (2016年2月4日). “SpaceX seeks to accelerate Falcon 9 production and launch rates this year”. SpaceNews. http://spacenews.com/spacex-seeks-to-accelerate-falcon-9-production-and-launch-rates-this-year/ 2017年4月2日閲覧。 
  39. ^ https://www.youtube.com/user/spacexchannel
  40. ^ Staff writer (2010年8月20日). “SpaceX Falcon 9 rocket enjoys successful maiden flight”. BBC News. http://news.bbc.co.uk/2/hi/science_and_environment/10209704.stm 2010年6月5日閲覧。 
  41. ^ 「スター・トレック」俳優の遺灰、宇宙へ (CNN.co.jp、2012年5月25日)
  42. ^ 宇宙船 0.5秒前に打ち上げ中止”. NHKニュース (2012年5月19日). 2012年5月21日閲覧。
  43. ^ “Orbcomm Craft Launched by Falcon 9 Falls out of Orbit”. SPACE NEWS. (2012年10月15日). http://spacenews.com/orbcomm-craft-launched-by-falcon-9-falls-out-of-orbit/ 2017年8月17日閲覧。 
  44. ^ ファルコン9 v1.1ロケット、通信衛星「SES-8」を打ち上げ”. sorae.jp (2013年12月4日). 2013年12月5日閲覧。
  45. ^ “SpaceX Falcon 9 successfully launches CRS-3 Dragon”. NASA Spaceflight.com. (2014年4月18日). http://www.nasaspaceflight.com/2014/04/spacex-crs-3-dragon-new-milestones/ 2014年4月20日閲覧。 
  46. ^ ファルコン9ロケット、通信衛星OG2 6機の打ち上げに成功 着水試験も実施”. sorae.jp (2014年7月17日). 2014年7月17日閲覧。
  47. ^ ファルコン9ロケット、通信衛星アジアサット8の打ち上げに成功”. sorae.jp (2014年8月5日). 2014年8月11日閲覧。
  48. ^ ファルコン9ロケット、通信衛星アジアサット6の打ち上げに成功”. sorae.jp (2014年9月7日). 2014年9月9日閲覧。
  49. ^ ファルコン9ロケット、ドラゴン補給船運用4号機の打ち上げに成功”. sorae.jp (2014年9月21日). 2014年9月22日閲覧。
  50. ^ New Commercial Rocket Descent Data May Help NASA with Future Mars Landings”. NASA (2014年10月27日). 2014年11月23日閲覧。
  51. ^ ファルコン9ロケット、ドラゴン補給船の打ち上げに成功 回収試験は失敗”. sorae.jp (2015年1月11日). 2015年1月22日閲覧。
  52. ^ “SpaceX shares dramatic video of Falcon 9’s crash landing”. Spaceflightnow.com. (2015年1月16日). http://spaceflightnow.com/2015/01/16/elon-musk-shares-images-of-falcon-9s-crash-landing/ 2015年1月18日閲覧。 
  53. ^ “SPACEX LAUNCHES DSCOVR SATELLITE TO DEEP SPACE ORBIT”. Space X. (2015年2月11日). http://www.spacex.com/news/2015/02/11/spacex-launches-dscovr-satellite-deep-space-orbit 2015年2月14日閲覧。 
  54. ^ ファルコン9ロケット、初の「オール電化」衛星2機の同時打ち上げに成功”. sorae.jp (2015年3月2日). 2015年4月15日閲覧。
  55. ^ ファルコン9ロケット、ドラゴン補給船の打ち上げに成功 第1段回収は再び失敗”. sorae.jp (2015年4月15日). 2015年4月15日閲覧。
  56. ^ ファルコン9ロケット、トルクメニスタン初の通信衛星の打ち上げに成功”. sorae.jp (2015年4月29日). 2015年6月29日閲覧。
  57. ^ ファルコン9ロケット、打ち上げ失敗 第2段機体に問題か”. sorae.jp (2015年6月29日). 2015年6月29日閲覧。
  58. ^ イーロン・マスクが「スペースX史上、最も難解で複雑な失敗」と語る理由”. スペースXの「ファルコン9」ロケットはなぜ爆発したのか. マイナビ (2016年9月15日). 2017年1月9日閲覧。
  59. ^ “Space X、軌道到達後の「Falcon 9」ロケット垂直着陸に成功”. ITmedia ニュース. (2015年12月22日). http://www.itmedia.co.jp/news/articles/1512/22/news072.html 2015年12月22日閲覧。 
  60. ^ 鳥嶋真也 (2016年5月6日). “「ファルコン9」ロケット、回収にまた成功 - スカパーの衛星打ち上げにも”. マイナビ. 2016年5月29日閲覧。
  61. ^ Anomaly Updates”. SpaceX (2016年9月2日). 2016年9月3日閲覧。
  62. ^ 解き明かされた"難解で複雑な"原因、1月8日に打ち上げ再開へ”. スペースXの「ファルコン9」ロケットはなぜ爆発したのか. マイナビ (2017年1月5日). 2017年1月9日閲覧。
  63. ^ スペースX、「ファルコン9」ロケット打ち上げに成功 - 昨年9月の事故以来初”. マイナビ (2017年1月15日). 2017年1月15日閲覧。
  64. ^ Siceloff, Steven (2017年2月19日). “NASA Cargo Headed to Space Station Includes Important Experiments, Equipment”. blogs.nasa.gov. 2017年2月19日閲覧。
  65. ^ Falcon 9 booster minus landing legs and grid fins poised for launch March 14, 2017
  66. ^ Masunaga, Samantha (2016年8月30日). “SpaceX signs first customer for launch of a reused rocket”. Los Angeles Times. http://www.latimes.com/business/la-fi-spacex-rocket-20160829-snap-story.html 2016年8月30日閲覧。 
  67. ^ Payer, Markus (2016年8月30日). “Leading satellite operator will be world's first company to launch a geostationary satellite on a reusable rocket in Q4 2016”. SES S.A.. 2016年8月30日閲覧。
  68. ^ “SpaceX、リサイクル成功のFalcon 9から約7億円のノーズ部も回収。イーロン・マスクはロケット全部再利用にも興味” (日本語). engadget. (2017年3月31日). http://japanese.engadget.com/2017/03/31/spacex-falcon-9-7/ 2017年4月1日閲覧。 
  69. ^ Bergin, Chris (2017年4月25日). “SpaceX Static Fire spy sat rocket and prepare to test Falcon Heavy core”. NASASpaceFlight.com. https://www.nasaspaceflight.com/2017/04/spacex-static-fire-tests-spy-sat-rocket-falcon-heavy-core/ 2017年5月3日閲覧。 
  70. ^ Gruss, Mike (2016年5月18日). “NRO discloses previously unannounced launch contract for SpaceX”. SpaceNews. http://spacenews.com/nro-discloses-previously-unannounced-launch-contract-for-spacex/. "SpaceX is under contract to launch NROL-76 in March 2017 from Cape Canaveral [...] for a smaller mission." 
  71. ^ “動画:スペースX、米国家偵察局の衛星打ち上げに成功 同社初の軍事衛星” (日本語). afpbb. (2017年5月2日). http://www.afpbb.com/articles/-/3127087 2017年5月4日閲覧。 
  72. ^ SpaceX Launches Spy Satellite, Streams Full Falcon 9 Landing”. ExtremeTech. Ziff Davis. 2017年5月4日閲覧。
  73. ^ Bergin, Chris (2017年5月3日). “SpaceX improving launch cadence, testing new goals”. NASASpaceFlight.com. https://www.nasaspaceflight.com/2017/05/spacex-launch-cadence-new-goals/ 2017年5月21日閲覧。 
  74. ^ Inmarsat Books Falcon Heavy for up to Three Launches”. SpaceNews (2014年7月2日). 2017年5月21日閲覧。
  75. ^ Krebs, Gunter. “Inmarsat-5 F1, 2, 3, 4”. Gunter's Space Page. 2017年5月21日閲覧。
  76. ^ de Selding, Peter B. (2016年11月3日). “Inmarsat, juggling two launches, says SpaceX to return to flight in December”. SpaceNews. http://spacenews.com/inmarsat-juggling-two-launches-says-spacex-to-return-to-flight-in-december/ 
  77. ^ a b c d Clark, Stephen (2017年5月5日). “Bulgaria’s first communications satellite to ride SpaceX’s second reused rocket”. Spaceflight Now. https://spaceflightnow.com/2017/05/05/bulgarias-first-communications-satellite-to-ride-spacexs-second-reused-rocket/ 2017年5月21日閲覧。 
  78. ^ a b Gebhardt, Chris (2017年5月28日). “SpaceX static fires CRS-11 Falcon 9 Sunday ahead of ISS mission”. NASASpaceflight.com. https://www.nasaspaceflight.com/2017/05/spacex-static-fire-crs-11-falcon-9/ 2017年6月4日閲覧。 
  79. ^ Multiple User System for Earth Sensing Facility (MUSES)”. NASA (2016年6月29日). 2017年6月4日閲覧。
  80. ^ Roll-Out Solar Array (ROSA)”. NASA (2016年8月18日). 2017年6月4日閲覧。
  81. ^ The Neutron star Interior Composition ExploreR Mission”. NASA. 2016年2月26日閲覧。 “Previously scheduled for a December 2016 launch on SpaceX-12, NICER will now fly to the International Space Station with two other payloads on SpaceX Commercial Resupply Services (CRS)-11, in the Dragon vehicle's unpressurized Trunk.”
  82. ^ Foust, Jeff (2016年10月14日). “SpaceX to reuse Dragon capsules on cargo missions”. Space News. http://spacenews.com/spacex-to-reuse-dragon-capsules-on-cargo-missions/ 
  83. ^ Dean, James (2017年6月1日). “Updates: Weather at KSC forces Falcon 9 launch scrub”. floridatoday.com. http://www.floridatoday.com/story/tech/science/space/2017/06/01/watch-live-spacex-falcon-9-launch-landing-nasa-kennedy-space-center-iss-crs-11/363212001/ 2017年6月4日閲覧。 
  84. ^ SSL Selected To Provide Direct Broadcast Satellite To Bulgaria Sat”. Space Systems/Loral (2014年9月8日). 2017年7月8日閲覧。
  85. ^ Graham, William (2017年6月24日). “SpaceX Doubleheader Part 2 – Falcon 9 conducts Iridium NEXT-2 launch”. https://www.nasaspaceflight.com/2017/06/spacex-falcon-9-iridium-next-2-launch/ 2017年7月3日閲覧。 
  86. ^ “SpaceX、Falcon 9を48時間以内に2度目の回収”. TechCrunch. (2017年6月26日). http://jp.techcrunch.com/2017/06/26/20170625spacex-successfully-launches-and-recovers-second-falcon-9-in-48-hours/ 2017年7月8日閲覧。 
  87. ^ Bergin, Chris (2017年6月29日). “SpaceX returns two boosters, fires up a third for Static Fire test”. NASASpaceFlight.com. https://www.nasaspaceflight.com/2017/06/spacex-returns-boosters-third-static-fire-test/ 2017年7月2日閲覧。 
  88. ^ Clark, Stephen (2016年8月30日). “SES agrees to launch satellite on 'flight-proven' Falcon 9 rocket”. Spaceflight Now. 2017年8月16日閲覧。 “Intelsat, one of the world's largest geostationary satellite operators alongside SES, has one launch reserved on a newly-built Falcon 9 rocket in the first quarter of 2017, when the Intelsat 35e satellite will launch from Cape Canaveral.”
  89. ^ Krebs, Gunter. “Falcon-9 v1.2(ex) (Falcon(ex))”. Gunter's Space Page. 2017年4月16日閲覧。
  90. ^ Gebhardt, Chris (2017年8月19日). “SpaceX static fire Formosat-5 Falcon 9, aims for another ASDS landing”. NASASpaceFlight.com. https://www.nasaspaceflight.com/2017/08/spacex-static-fire-formosat-5-falcon-9-asds-landing/ 2017年8月20日閲覧。 

関連項目[編集]

  • ファルコン1
  • ファルコンヘビー
  • ドラゴン (宇宙船)
  • 外部リンク[編集]