気動車・ディーゼル機関車の動力伝達方式

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索

気動車・ディーゼル機関車の動力伝達方式(きどうしゃ・ディーゼルきかんしゃのどうりょくでんたつほうしき)では、気動車ディーゼル機関車及びその他の内燃機関車の動力伝達方式について述べる。

内燃機関は、トルクの出方が山なりで、出力馬力)は回転数に比例して増大するという基本的な出力特性を持つ[1]。また、拘束状態からの起動は不可能であり、機関始動時には無負荷でなければならない。したがって内燃機関をこれらの車両に使用する場合には、電動機のように静止状態から直結発進することはできず、負荷を切り離す機構が必要となる。また、利用できる回転数が限られているため実用的な運転速度範囲を得るためには何らかの変速機構が必要となる。

近年、各種交通機関のエネルギー効率上昇に向けた取り組みが行われているが、現時点で内燃機関の熱効率の改善は限界に近付きつつあり、大幅な向上は見込めなくなってきている。一方、駆動系の伝達効率にはまだ向上の余地があり、世界各国で伝達効率の向上への取り組みが図られている。

鉄道車両用の動力伝達方式としては、一般に以下の3方式が存在する。

機械式[編集]

クラッチと、手動の選択摺動式、または常時噛み合い( constant mesh/コンスタントメッシュ)式変速機(ギアボックス)を組み合わせた方式で、自動車でいう「マニュアルトランスミッション」と同様である。クラッチは非自動の摩擦クラッチが使われる場合が多いが電磁クラッチなどが使われる場合もあり、車輌によってはシンクロナイザー流体継手を組み込んだものもある。

この方式の長所短所は、次のとおりである。

長所
  • 構造が簡易で小型軽量である。
  • 低コストである。
  • パワーロスがほとんどなく、動力伝達効率が95%以上と極めて高い。
短所
  • 運転操作に熟練を要する。
  • クラッチ板の押し付け力や、歯車の強度の面から大出力エンジンへの使用が困難。
  • そのままでは複数車両の変速機を遠隔操作できない(総括制御不能)[2]ため、連結運転時は1両ごとに運転士を必要とし、合理化に逆行する。

日本では1953年以前の気動車、1950年代までの入換用・軽便鉄道用小型機関車のほとんどが該当したが、液体式が実用化されると廃れた。2010年現在、気動車では営業運転に用いられる例はないが[3]、ディーゼル機関車においては大井川鐵道DB8・9が在籍しており、入換やまれに客車牽引にも使用されている。また石川県小松市には、旧・尾小屋鉄道の機械式変速機を持つディーゼル機関車DC121が動態保存されている[4]保線用機械に属するモーターカーの一部でも機械式が使われている。

欧州では特に小型の気動車を中心に採用されており、例えばスイスでは、1937年には285PSのディーゼルエンジンに圧縮空気電磁弁による遠隔制御式5段変速機、歯車式の2軸駆動台車を採用したRCm2/4形が製造されている。イギリスでは1970年代には一般型気動車の大半が総括制御機能を持つ機械式で占められていて付随車制御車も組み込んだ編成で運転されていた。国鉄レールバス キハ10000・10200(キハ01~03)形の手本となった西ドイツのレールバスも総括制御機能のついた機械式で、機械式の総括制御機能を開発しなかった日本とは対照的である。

電子制御機械式変速機[編集]

日本国外では近年、小型軽量で、後述する流体式トルクコンバータに比べ伝達効率も高い、という長所を伸ばす方向で、エンジンの回転数とトルクに応じたスムーズな変速と統括制御が可能な、電子制御機械式変速機の開発が行われている[5]

ただしこの種の新しい変速機は、かつての完全非自動な機械式変速機とは全くの別物と見なければならない。21世紀初頭の現代では、流体式トルクコンバータと歯車機構を用いた鉄道用変速機も、やはり電子制御式多段変速構造に進歩している。それらはロックアップクラッチを備え、トルクコンバータに依存する領域を狭める努力がなされており、運転時における電子制御機械式変速機との差異は起動時にトルクコンバータを利用するか半クラッチ制御を利用するか程度のものでしかない。

また、摩擦クラッチの電子制御のみに頼って発進・変速することは、トルクコンバータを併用する場合に比べると、大出力への対処能力やトルク確保、変速ショック対策などの面で依然として不利であり、効率面での絶対的優位性をスポイルする課題点である。

ハイブリッド気動車への応用例も出現している。2007年10月、北海道旅客鉄道(JR北海道)はモータアシスト方式ハイブリッド気動車の試作車を発表した(キハ160形気動車の改造車)[6]。この車両には、「アクティブシフト変速機」と称する電子制御デュアルクラッチトランスミッションが使用されている。2014年9月には、実用試作車となるキハ285系も落成したが、折からの不祥事続発により、同年に開発は中止された(後述)。

電気式[編集]

アメリカニュージャージー・トランジット向け電気(架線)・ディーゼル兼用機関車ALP-45DP型

英語ではガスエレクトリック、または、ディーゼルエレクトリックエンジンと呼ばれる。エンジンで発電機を駆動、発生した電力で電動機を回して走行する方式。発電所を積んだ電車電気機関車と言えば理解しやすい。

この方式の長所短所は、以下の通り。

長所
  • 運転操作は簡易。出力調整については原則的に燃料噴射ポンプ電磁弁で遠隔操作するだけで済む。このため総括制御も容易。
  • 駆動系が電気車(電車電気機関車)と同等のため、部品(特に主電動機や駆動装置など)の共用によるコスト削減が可能。エンジン出力制御以外に、電気車両と同様な制御を併用することで出力特性に幅を持たせることができる。
  • 電動機は発進時から大きなトルクを発生できる上、短時間であれば定格出力以上の出力での動作も可能である。
  • 変速機、逆転器(機)が不要[7]であるため、数千馬力クラスの大出力エンジンであっても駆動系に関わる機械的な負荷に関する制約が少なく、特に多動軸の大型機関車には有利。
  • 伝達効率は90%程度とかなり良好である。
  • 電気車両としての特質を併せ持つことから、環境対策面でその性質を活かした技術的応用が可能である。
    • 電化区間ではエンジンを停止させ、併設した集電装置を用いて、電車あるいは電気機関車として運行できるものもある[8]
    • ハイブリッドシステムの導入も行いやすい。大容量の蓄電池(バッテリー)を持つシリーズハイブリッド方式による電気式気動車が日本で出現している[9]
短所
  • 内燃車両としての機関や冷却系といった装備に加え、電気車としての発電セットや制御・駆動系の装備が必要になるため、大型化・複雑化の傾向があり、重量軽減やコスト抑制には不利。

電気式はエンジンの出力確保や車両搭載面での問題を克服さえすれば、先行して実用化されていた電気車両の技術を援用可能なため、技術的ハードルが比較的低かった。このため欧米では1920年代から採用例が出現し、1930年代以降は大出力機関を搭載した大型ディーゼル機関車・気動車の駆動方式における主流となって、大出力内燃車両の普及に大きな役割を果たした。欧米・ロシア中国等の大型機関車は、殆どこの方式が採用されている。

その歴史では長年に渡って一般に直流電動機が用いられていたが、1970年代西ドイツで、ヘンシェル-ブラウンボベリ両社によるDE2500(DB 202)形試作ディーゼル機関車において、ブラシレス同期発電機誘導電動機を組み合わせてインバータ制御する効率的な方式が確立され、そちらへの移行が進んでいる。

日本での事例[編集]

日本で電気式内燃車両を導入する試みは、技術不足によるエンジンの出力不足と発電効率の悪さに加え、低規格の線路条件による軸重制限という悪条件が重なり、長らく短所だけが目立つという状況が続いた。

機関車[編集]

機関車では、第二次世界大戦後にアメリカ陸軍が持ち込んだ8500形と呼ばれるキャタピラー社製180PS級機関を2基搭載するゼネラル・エレクトリック社製ディーゼル機関車が好成績を残し、1950年代にはMANズルツァーをはじめとする欧米大手エンジンメーカーと日本国内のメーカー各社の技術提携による大出力ディーゼルエンジンの導入に合わせ、いくつかの国鉄向け試作本線用電気式ディーゼル機関車が製造された。

国鉄では、これらのメーカー各社持ち込みの試作車群や、それらの使用実績を受けて開発されたDD50形での試行を経て、1956年よりDF50形として、1,000/1,200PS級機関を搭載し100kW級電動機6基を駆動する電気式ディーゼル機関車が量産化された[10]。だが、それらはいずれも代替されるべき蒸気機関車などに比して非力な割に自重が重くしかも高価であり、また検修設備をディーゼルエンジンのものと電気機関車用のものの2本立てとする必要があり煩雑であった。そのため、これらは後に日本で独自開発された1,000 - 1,350PS級エンジンを搭載する液体式ディーゼル機関車(DD51形など)の量産により、順次置き換えられて1980年代中盤までに全て淘汰された。

爾来長年にわたって、その後の国鉄の労使問題の悪化もあって日本で電気式ディーゼル機関車は主流にはなりえなかった[11]が、国鉄民営化後、1,700 - 1,800PS級の高効率直噴エンジン[12]とブラシレス交流発電機、インバータ制御とかご形三相誘導電動機の組み合わせにより、1992年の日本貨物鉄道(JR貨物)のDF200形で再び電気式が採用された。また、2010年から投入されている蓄電池を併用する入換用ハイブリッド機関車HD300形も、基本は電気式である。

気動車[編集]

日本では気動車においても、1930年代と1950年代にそれぞれ少数が製作されたのみであった。特に第二次世界大戦後は国鉄で限定して試作されるに留まり、それらも後に全て液体式に改造されている。

しかし2000年代に入り、機関車同様の交流電動機普及と省エネルギー化を背景に、蓄電池を併用するハイブリッド型として電気式の制御・駆動方式を備える気動車の研究が進められ、2007年には東日本旅客鉄道(JR東日本)によって営業運転用としてキハE200形 が導入されたのを皮切りに、その後も2010年に観光用のHB-E300系、2015年に一般用のHB-E210系が投入されている。また2016年に新製されたE001形「トランスイート四季島」は、基本は電車であるが、非電化区間では電気式気動車として機能するハイブリッド(EDC方式)車両である。

JR北海道のモータアシスト式ハイブリッド気動車キハ160形(2007年に試作車発表)[13]は、電動機の出力とエンジンの出力を電子制御機械式変速機に入力するものである。発電電源でモーターを回す点は電気式気動車であり、同時にその出力配分装置も兼ねた機械式変速機を用いる機械式気動車である点で、従来と異なる特異な例といえる。この方式は、同社の次期特急形気動車キハ285系に採用される予定で試作車も落成したが、安全への傾注方針により、2014年に開発は中止され[14]、試験を行わないまま2015年3月31日付で廃車、2017年3月に解体された[15]

液体式(流体式)[編集]

トルクコンバーターの断面図。
Aポンプ羽根車(ポンプインペラー)、B案内羽根(ステーター)、Cタービン羽根車(タービンランナー)、D入力軸、E出力軸、赤の矢印線は回転時における変速機油の流れ。
6要素3段形のトルクコンバーターの見取り図。
Aポンプ羽根車(ポンプインペラー)、Bタービン羽根車(タービンランナー、左側から第1・第2・第3と配置)、C案内羽根(ステーター、左側から第1・第2と配置)、D入力軸、E出力軸、赤の矢印線は変速機油の流れ。
DW22液体変速機
国鉄初の量産液体式気動車であるキハ10系(写真は茨城交通に譲渡されたキハ11形)

車輌の動力伝達にトルクコンバータ(日本では俗にトルコンと呼ばれる。以後トルコンと略)を用いた方式。かつては液圧式と呼んでいたが、静油圧駆動方式が登場してから液体式と呼ばれるようになった。

この駆動システムは気動車での使用が一般的であるが、交流電源の整流技術が未発達の頃、クモヤ790形試作交流電車において、回転数の連続可変制御が難しい交流電動機の段付き(トルク変動)を吸収するために用いられたこともあった。

トルコンとは、密封されたケースの中で比較的低粘度の液体(変速機油)を満して、入力軸に油の流れを生むポンプインペラーと、出力軸に油の流れを受けるタービンランナーの二つの羽根車を向き合わせ、それぞれの中間に置かれたステーター(案内羽根)と呼ばれる固定子が装備されており、入力軸により、ポンプインペラーを回転させると、油がエネルギーを受けて、遠心力により中心部から外周部に向かって流れ、ステーターで油の流れを整流後、タービンランナーに流れ、エネルギーを伝えながらタービンランナーを回転させ、その後、中心部に戻った油を、ポンプインペラー側に還元して再び油がエネルギーを受けて循環することにより、出力軸のトルク(回転力)を増幅する装置である。

このトルク増幅作用が流体クラッチ・フルードカップリングと異なる点である。

リスホルム・スミス式の液体式変速機であるTC2形とDF115形で使用されている6要素3段形のトルクコンバータの構造を右側の見取り図で説明すると、左側にあるポンプインペラーが入力軸により回転すると、エネルギーを受けた変速機油が、第1タービンランナー→第1ステーター→第2タービンランナー→第2ステーター→第3タービンランナーの順に経由して流れ、その後、ポンプインペラーに戻って循環することにより、出力側のトルクを入力側の4-5倍にして取出すことができる。

構造上、入力側と出力側の回転数の差が少なくなるとトルク増幅効果は薄れていき、固定されているステーターが流速の上がった戻り油に対して逆に抵抗となり始め、損失が増えていく[16]

また、トルコンのみでは大きな変速比を得られないため、中・高速域での加速力と低燃費の両立を求められる近年の気動車では、トルコンに頼る領域(変速段)またはトルコンに頼らない領域(直結段)において、1 - 4段の変速ギアと各ギア段に組込まれた湿式多板クラッチの組合わせとエンジンからの動力を機械的に直結させるロックアップ機構が装備されている。これらは、自動車の「オートマチックトランスミッション」と同様の構造と働きであり、カウンターシャフトを用いたギア機構や遊星歯車機構を電子制御することにより、日本の機械式では果たせなかった多段変速機の総括制御を実現した。

1950年代に日本国有鉄道(国鉄)に採用され、2010年時点でも一部で使われている液体式変速機であるリスホルム・スミス式のTC-2とDF115は、ともに戦前に設計された国外の製品を国産化したものである。運転席には変速切替レバー(中立・変速・直結の3段切替)があり、発進時にレバーを「中立」から「変速」に切り替えると、電気指令により、入力軸側にある変直クラッチ部[17]の変速クラッチが作動して、エンジンからの動力が直結軸(内軸)の外側(外軸)にあるトルコンの入力軸を介してトルコンに伝達され、その後、トルコンの出力軸(外軸)とフリーホイール(外軸と内軸の間にコロまたはスチールボールを挿入したもので外軸の回転がコロのくさび効果で内軸に伝達される機構)を介して直結軸(内軸)に伝達され、その後、出力軸に伝達される。この状態が発進から中速までの速度域を受け持ち、中速から最高速まではレバーを「変速」から「直結」に切り替えると、電気指令により直変クラッチ部の直結クラッチが作動して、エンジンからの動力を直結軸を介して出力軸に伝達を行っていたため、上記のような変速ギアを備えていなかった。両者の切り替え速度は共に45km/hであるが、その操作は運転士の判断による手動である。また、惰行時や制動から停止までは「中立」に切り替え、動力の伝達は行わない。そのため、特に入出力の回転差を吸収する機構が無く衝動が発生しやすい直結段での再力行時には、その時々の速度に応じ、中立位置で予めエンジンを適切な回転数に合わせる「空吹かし」(自動車における「ブリッピング」に相当)が必要となる。国鉄形気動車はコストダウンの必要からエンジン回転計は備わっておらず、スムーズな操作には相応の技量が求められる。

当時、機械式、電気式との比較で論じられていたこの方式の長所短所は、次のとおりである。

長所
  • 気動車・小型機関車に使用する場合は、電気式よりも低コスト・軽量・コンパクトに仕上がる。電気式よりも軽量のため、軸重が軽く、支線へも入線することが可能である。
  • 総括制御可能。
  • 機械式よりも運転操作は容易。
  • 同規模の電気式と比較して起動時の牽引力が大きい。
短所
  • 変速機の構造が極めて複雑で高価である。
  • 大量の変速機油(オートマチックトランスミッションフルード)が必要で、以前はシールの品質管理や組み付けも難点とされた。
  • トルコン内の滑り現象による損失が避けられず、動力伝達効率が80 - 85%程度と、電気式にやや劣る[18]
  • 大出力エンジンへの適応性では、電気式に劣る
  • 変速機油の過熱を抑える必要があるため、変速段のままでの長時間の力行に適さない。

鉄道用の液体式変速機は、1930年代にドイツやスウェーデンなどで開発された。日本では鉄道省で1936年から試験が行われていたが、戦時体制下での燃料統制もあって本格採用は遅れ、1953年国鉄キハ44500形気動車から正式に採用となった。以来、在来車の換装も含め、国私鉄を問わず日本のディーゼル鉄道車両のほとんどが液体式変速機を用いるほどの普及を示している。

世界的に、気動車や小型ディーゼル機関車に多く用いられるが、一時のドイツや日本では、大型ディーゼル機関車にも好んで使われた。多彩な方式があるが、日本で広く用いられているものは以下の2方式いずれかの系統に属する。

リスホルム・スミス型[編集]

トルコンは1個で、これに直結・変速クラッチが内蔵された変直クラッチ部、カウンターシャフト式変速ギア、遊星歯車式変速ギア、それに組込まれた湿式多板クラッチを組み合わせたタイプであり、構造的には自動車用自動変速機に類似している。変速の制御はトルコンとギアの切り替えで行う。比較的コンパクトで、日本の鉄道においては、ほとんどの気動車に採用されているが、直結段に変速する際にはクラッチによる切替が必要であり、変速の際のショックが大きいため、大出力の機関の組合わせには無理があり、機関車では、DMF31S形エンジンを装備したDD13形DD14形DD15形に使用されている。

フォイト型[編集]

フォイト型はホイト式とも称される。非常に複雑な方式であるが、原理的にはトルコンを2個以上並列で使用し、それぞれのトルコンに専用のギアを備えたタイプ。変速の制御は、使用するギア段のトルコンのみにオイルを満たして動力伝達させ、それ以外のトルコンはオイルを抜いて空回りさせるため、充排油式とも呼ばれる。リスホルム・スミス型と比べて直結段がなく、大出力、大トルクの機関にも適するが、その反面スペースを取る。このため、機関車向きの方式とされる。日本の鉄道においては、より強力なDML61Z形エンジンを装備したDD51形以降の機関車に用いられている。

メキドロ式変速機[編集]

西ドイツなどで採用され、日本ではDD91形DD54形に用いられた、1個のトルコンに多段式の歯車変速機を組み合わせたものである。歯車変速機が自動で変速を行うことから全領域で効率が高く、起動時のトルクも大きいが、変速に際して一度トルコンの出力軸を歯車変速機から外し、歯車の切替を行った後に再度出力軸を接続するため、変速機本体や機関に加わる衝撃を緩和する装置を必要とし、歯車変速機も自動変速の複雑な構造のものとなる。

アメリカ合衆国での流体式変速機[編集]

アメリカ合衆国では電気式が主流であったが、1960年代に西ドイツのクラウス=マッファイ社から導入した流体式変速機を搭載した機関車、ML-4000形サザン・パシフィック鉄道 (SP) とリオグランデ・ウェスタン鉄道 (RGW) に存在した。

SPは1950年代からより強力な機関車を欲していた。SPとRGWは当初3両ずつ発注した。初期の成績が良かったのでSPは15両追加発注した。山岳地帯の運用には適していなかったので平坦地で運用された。最初の3両はキャブ・ユニットで2次車はフード・ユニットの形態であった。より強力なEMDSD40形等の導入により1960年代末には使用が停止され、1970年代解体された。その後、1両はカメラカーとして乗員の訓練に使用され、2010年時点では復元のうえで保存され、将来的には動態保存が予定されている。

近年の液体式変速機搭載機関車[編集]

2010年現在、各国で生産されているディーゼル機関車は電気式が主流であるが、液体式も生産されている(en:Voith Maxima,de:Voith Gravita,de:Vossloh G 2000 BB)。

その他の方式[編集]

静油圧式
油圧モーターによる駆動方式
フリクション式
摩擦力を利用した駆動方式。
空気(ガス)式
エンジンで圧縮機を駆動し、その高圧空気(高圧ガス)で車軸を駆動する方式。

脚注[編集]

[ヘルプ]
  1. ^ 一般的には、排気量が大きくなるに従いトルク曲線は平らになって行く。
  2. ^ 日本国外においては、機械式でも電磁クラッチを利用した総括制御運転が行われているが、日本では採用例がない。
  3. ^ 日本での機械式変速機を搭載した営業用気動車としては、1997年に営業休止(2002年廃止)した南部縦貫鉄道レールバスであるキハ101・102が最後。
  4. ^ 以前は同地で動態保存されている気動車キハ1もオリジナルの機械式変速機を備えていたが、その後補修部品の入手難から液体式変速機に換装されている。
  5. ^ 例としてデンマーク国鉄 (DSB) のIC3型気動車は最高速度180km/hを可能としており、実用化に向けて200km/h運転も視野に入れた試験運転が行われている。
  6. ^ 世界初の環境に優しい『モータ・アシスト式ハイブリッド車両』の開発に成功! - JR北海道プレスリリース 2007-10-23
  7. ^ モータアシスト方式ハイブリッド(パラレルハイブリッド)気動車を除く。モータアシスト方式ハイブリッド気動車は、エンジンの出力も直接動力として用いるため、少なくとも変速機と逆転機は必要である。
  8. ^ 世界的にはアメリカ合衆国などで、大都市や地下線区間に乗り入れる場合での採用が見られ、例えばニュージャージー・トランジットのALP-45DP型は定格出力4400kWの電気機関車であるほか、出力1567kWのディーゼルエンジン2基による走行も可能である。また、ヨーロッパにおける例としてはスイスのレーティッシュ鉄道Gem4/4形機関車などがあり、スイスでは他にも入換用機関車などに例がある。
  9. ^ 日本の電気式気動車#電気式の将来(ハイブリッド気動車)JR東日本キハE200形気動車 も参照。
  10. ^ 民間向けでは、1953年富士製鐵室蘭製鉄所構内鉄道D-301として、DMH17Aを2基搭載し37kW級電動機4基を駆動する35t級D型電気式ディーゼル機関車が日立製作所によって製造されるにとどまった。
  11. ^ 例外的な存在として、釧路臨港鉄道(現・太平洋石炭販売輸送)が1970年に1両を購入した、ゼネラル・エレクトリック社のU10B形を日本車輌製造ノックダウン生産する形で製造したDE600形がある。
  12. ^ 当初はドイツ・MTU社製の1,700PS級エンジン、後の増備車では保守上の理由から、既存の液体式ディーゼル機関車であるDD51形の機関換装工事の際に採用したのと同型のコマツ製1,800PS級エンジンを搭載。
  13. ^ [1]
  14. ^ “新型特急車両の開発中止について” (PDF) (プレスリリース), 北海道旅客鉄道, (2014年9月10日), http://www.jrhokkaido.co.jp/press/2014/140910-1.pdf 2017年9月2日閲覧。 
  15. ^ “開発費25億円の夢、鉄くずに JR北海道、新型特急試作車を解体”. 北海道新聞(どうしんウェブ) (北海道新聞社). (2017年3月3日). オリジナル2017年3月3日時点によるアーカイブ。. https://web.archive.org/web/20170303021120/http://dd.hokkaido-np.co.jp/news/life-topic/life-topic/1-0374633.html 2017年9月2日閲覧。 
  16. ^ 損失増大を防ぐため、国鉄末期からJR化以降に設計されたものでは、ステーターが一方の方向だけに自由に回転できるよう、ワンウェイ・クラッチ(爪クラッチ)が組み込まれ、さらに負荷や車速の変化に合わせ、トルコンのロック、アンロックをきめ細かく電子制御されるものが主流となっている。
  17. ^ 湿式多板型式で複動式になっており、直結用または変速用のクラッチ板に油圧作動のクラッチピストンを押付けることにより、動力が伝達される。
  18. ^ トルコン以外に直結クラッチを用いる「ロックアップ機構」の多用で、ある程度改善を図れる。

参考文献[編集]

外部リンク[編集]