運動エネルギー

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索
古典力学

運動の第2法則
歴史英語版

運動エネルギー(うんどうエネルギー、英語: kinetic energy)は、物体運動に伴うエネルギーである。物体の速度を変化させる際に必要な仕事である。英語の kinetic は、「運動」を意味するギリシア語κίνησις(kinesis)に由来する。この用語は1850年頃ウィリアム・トムソンによって初めて用いられた。

歴史[ソースを編集]

後述する一般的説明がなされる以前にも、ガリレオ・ガリレイによって、物体の振り子運動の観察により、

という関係が発見されていた[要出典]。ここでv は物体の速さ、h は物体の基準点からの高さ、g重力加速度である。

質点の運動エネルギー[ソースを編集]

ニュートン力学において、物体の運動エネルギーは、物体の質量速さの二乗に比例する。 つまり、速度 v で運動する質量 m の物体の運動エネルギー K は

で与えられる[注 1]

ニュートンの運動方程式

と表されているとき、この力 F が時刻 t0 から t1 の間に為す仕事

となる。 従って、物体の運動エネルギーの変化量は、その物体に加えられた仕事に等しい

特に物体に一定の力 F が加えられ、物体の位置が から まで、 だけ変化したとき、

という等式が成り立つ。例えば物体が地表付近で自由落下する場合、重力加速度は一定と見なせるので、上記の等式が利用できる。 また、力F を物体の質量m と加速度 α の積で置き換えれば、等式は物体の質量に依存しない形に書き直される。

回転運動の運動エネルギー[ソースを編集]

同様に回転運動をする物体の運動エネルギーは、慣性モーメント I角速度 ω の2乗に比例する。であるから

解析力学における運動エネルギー[ソースを編集]

ラグランジュ力学の出発点となるラグランジアン L は運動エネルギー Kポテンシャルエネルギー V の差として定義することができる。

この際、ラグランジアンの変数一般化座標 とその時間微分 、及び時刻 である。 多くの場合、一般化座標として位置 や 回転角 とするので、運動エネルギーは

となる。

ハミルトン力学の出発点となるハミルトニアンH はラグランジアンのルジャンドル変換から、

として定義される。ハミルトニアンの変数は一般化座標 と一般化運動量 である。元のラグランジアンでポテンシャルが に依存せず、運動エネルギーが上の形をしていれば、

( l は回転角度 θ に共役な角運動量)となり、運動エネルギーは

となる。

脚注[ソースを編集]

  1. ^ v は速度 v の大きさを表す。

参考文献[ソースを編集]


関連項目[ソースを編集]