LE-5B

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索

LE-5B日本で開発されたロケットエンジンであり、H-IIAロケットH-IIBロケットの第二段エンジンである。

H-Iロケットの第二段エンジンであるLE-5の流れをくみ、H-IIロケットの第二段エンジンLE-5Aをもとに主にコストダウンをはかった改良型。推進剤は液体酸素(LOX)と液体水素(LH2)で真空中推力は137.2kN(=14トン)。

概要[編集]

LE-5BはH-IIAロケットの第二段用として、1995年から2000年にかけて開発された。主目的は信頼性の向上と製造コストの削減であり、そのためエンジンの性能の指標となる比推力は447秒と、LE-5(450秒)、およびLE-5A(452秒)よりもわずかに低い。複数回着火機能(再々着火能力)や、微小推力機能(アイドルモード燃焼機能[1])、スロットリング(推力調整)機能を持つ[2]宇宙開発事業団(NASDA) が開発し、燃焼器及び艤装の製造は三菱重工業、ターボポンプの製造は石川島播磨重工業が行っている。

H-IIロケット8号機の二段目で初めて使用されたが、打ち上げ中に第一段にトラブルが発生し、第二段燃焼途中で指令破壊が行われた。以後、実際に最後まで使用されたのはH-IIAロケット1号機が最初である。以降2009年3月現在まで失敗に直結するような重大なトラブルは起こしていない。

現在は改良されたLE-5B-2が生産され、H-IIAロケットの増強型であるH-IIBロケットの二段目にも使用されている。

構造[編集]

エンジンサイクルはLE-5Aと同じエキスパンダブリードサイクルと呼ばれる型式で、ポンプで昇圧された燃料の大部分は直接燃焼室に送り込まれるが、一部の燃料は燃焼器を冷却し、同時にタービンを駆動するためのエネルギを得る。この水素ガスでLH2ターボポンプ及びLOXターボポンプのタービンを直列に駆動する。その後、ノズルの壁面を冷却するためにノズル内に噴射される。ただしLE-5Aは燃焼室とノズルスカートの両方でLH2の吸熱を行っていたが、LE-5Bでは燃焼室のみで吸熱をしている。そのため、LE-5Aは「ノズルエキスパンダブリードサイクル」、LE-5Bは「チャンバエキスパンダブリードサイクル」と分類し呼ばれることもある。ノズルスカートに配管が通っていないため、LE-5Bではノズルスカートを取り外した状態で大気圧中で燃焼試験が行える。対し、LE-5Aはノズルスカートを取り外せず、つけた状態で大気圧中で燃焼させるとノズル流れが剥離するため、専用の高空燃焼試験設備が必要であった。

LE-5Bでは上記のように燃焼室のみでLH2の吸熱をしているため、吸熱量を稼ぐために燃焼室がLE-5Aよりも長くなっている。また燃焼室の構造も、LE-5Aの純ニッケルチューブをろう付けした管構造から、LH2を流す溝を掘った無酸素銅の内筒と、その外側の銅電鋳層からなる「銅電鋳溝構造」と呼ばれる構造に変更された。これはH-IIロケット5号機での事故(LE-5A燃焼室のチューブ間ろう付け部が破損)を踏まえたものである。

燃焼室に燃料・酸化剤を噴射する噴射器も製造コスト削減のためLE-5・5Aより簡略化されており、同軸型の噴射エレメントが208個から127個に減少している。(LE-5B-2では再び増加している。)

再々着火能力[編集]

LE-5ファミリーは再着火能力を持つが、特にLE-5Bはロケットエンジンとしては世界初の再々着火が可能である。これによりアポジエンジンなしに直接衛星を静止軌道に投入することも可能である。だが、現時点では、長時間使用出来る内蔵電源が無いため、実際にこの機能を使用しての打ち上げは今まで行ってない。三菱重工では電池の寿命を5時間まで延ばすことを考えており、文部科学省は再々着火のできる機体の2013年度の打ち上げを目指すとしている。

H-IIロケット8号機で再々着火試験を行う予定だったが、打ち上げ途中で指令破壊が行われたため、試験は行われなかった。その後、実際に再々着火試験が行われたのはH-IIA試験機2号機で、つばさ分離後の打ち上げ後1時間40分にエンジンのアイドルモード燃焼20秒に引き続き第3回燃焼が約30秒行われた。また、着火はしていないが、H-IIA試験機1号機で再々着火前予冷実験、H-IIA7号機で技術データの取得が打上げ後約16,000秒(予定7,200秒)まで行われた。

LE-5B-2[編集]

H-IIAロケット3号機において第二段燃焼中にそれまでの飛翔と比較して大きい振動が確認された。この時の振動レベルは衛星の規程値以下であり、衛星に問題はなかった。機軸方向(ロケットの長手方向)の振動の原因は、第2段機体の固有振動に起因するLE-5Bエンジンの燃焼圧の変動であるとされている。H-IIAロケット10号機以降は、第2段推進薬タンクの加圧を若干増加させることで振動を軽減している。

2003年3月からこの振動の主要因の一つである燃焼圧力変動の低減を目的として、LE-5B-2エンジンの開発が開始された[3]。設計変更はミキサーと噴射器について行われた。ミキサーにおいては噴射孔の位相を変更することで噴射器に流入する液体水素の混合を促進した。噴射器においてはマニホールド内流を整流する仕切り板を設けると共に、噴射器エレメントの小型化を図り、エレメント数を増加させることで、燃焼室に噴射する液体酸素の微粒化を促進した。これらの改良によってペイロードにかかる振動や燃焼圧力変動を従来の50%に抑えることに成功している[4]

H-IIAロケット14号機以降使用され、H-IIBロケットにも使用されている。

主要諸元[編集]

LE-5ファミリー主要諸元一覧
  LE-5 LE-5A LE-5B
燃焼サイクル ガスジェネレータサイクル エキスパンダブリードサイクル
(ノズルエキスパンダ)
エキスパンダブリードサイクル
(チャンバエキスパンダ)
真空中推力 kN 102.9(10.5 tf) 121.5(12.4 tf) 137.2(14 tf)
混合比 5.5 5 5
膨張比 140 130 110
真空中比推力 s 449 452 447
燃焼圧力 MPa 3.61 3.98 3.62
LH2ターボポンプ駆動ガス温度 k 約850 約600 約400
LH2ターボポンプ回転数 min-1 50,600 52,200 52,100
LOXターボポンプ回転数 min-1 16,500 17,400 17,700
全長 m 2.67 2.69 2.74
質量 kg 255 248 285
再着火能力 1回 多回数 多回数
その他の機能 スロットル 60%
アイドル燃焼推力 4 kN弱

出典[編集]

脚注[編集]

  1. ^ アイドルモード燃焼機能は、ターボポンプを回転させずにタンクの圧力だけで燃焼させる。推力は1/30程度。無重量状態での着火時に予備加速で使われる。ターボポンプでの燃焼後にタンクに残っている燃料を有効に使うこともできる。
  2. ^ JAXA宇宙輸送ミッション本部LE-5B(概要と燃焼試験)”. JAXA. 2010年11月21日閲覧。
  3. ^ 改良型LE-5Bエンジンおよび新たなSRB-Aの開発概要 (JAXA)
  4. ^ 改良型LE-5Bエンジンの飛行結果 および 新たなSRB-A等の開発概要 (JAXA)

参考文献[編集]

  1. 「機械工学便覧 応用システム編γ11 宇宙機器・システム」(日本機械学会編,2007年) ISBN 978-4-88898-154-5

関連項目[編集]

外部リンク[編集]