四酸化二窒素

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索
四酸化二窒素
識別情報
CAS登録番号 10544-72-6 チェック
EINECS 234-126-4
国連番号 1067
RTECS番号 QW9800000
特性
化学式 N2O4
モル質量 92.011 g/mol
外観 無色気体
密度 1.443 g/cm3 (液体, 21 ℃)
融点

-11.2 ℃ (261.9 K)

沸点

21.1 ℃ (294.3 K)

への溶解度 加水分解
蒸気圧 96 kPa (20 ℃)[1]
構造
分子の形 平面, D2h
双極子モーメント 0
熱化学
標準生成熱 ΔfHo -35.05 kJ/mol
標準モルエントロピー So 150.38 J K-1 mol-1
危険性
MSDS External MSDS
EU分類 猛毒 (T+)
腐食性 (C)
EU Index 007-002-00-0
Rフレーズ R26, R34
Sフレーズ (S1/2), S9, S26, S28, S36/37/39, S45
引火点 不燃性
関連する物質
関連する窒素酸化物 亜酸化窒素
一酸化窒素
三酸化二窒素
二酸化窒素
五酸化二窒素
三酸化窒素
特記なき場合、データは常温 (25 °C)・常圧 (100 kPa) におけるものである。

四酸化二窒素(しさんかにちっそ、dinitrogen tetroxide or nitrogen peroxide)は化学式 N2O4で表される窒素酸化物の一種である。窒素の酸化数は+4。強い酸化剤で高い毒性と腐食性を有する。四酸化二窒素はロケットエンジンの推進剤酸化剤として注目されてきた。また化学合成においても有用な試薬である。固体では無色であるが、液体、気体では平衡副生成物の為、呈色している場合が多い(構造と特性に詳しい)。

構造と特性[編集]

分子構造は平面的でありN-N結合距離は1.78 Å、N-O 結合距離は1.19 Åである。不対電子を持たないため、二酸化窒素 (NO2) と異なり反磁性を示す[2] 。四酸化二窒素自体は無色であるが、次の化学平衡の存在により二酸化窒素に由来する色、すなわち気体では赤褐色、液体では黄色に呈色している。

2\mathrm{NO}_2 \ \rightleftarrows\ \mathrm{N}_2\mathrm{O}_4+(57.5\mathrm{kJ})

また、加熱は平衡を二酸化窒素側に寄せる。それゆえ必然的に、無色である四酸化二窒素は二酸化窒素の褐色の煙を含んでいる。

製造方法[編集]

アンモニア触媒的酸化する反応により製造される。このとき希釈により反応温度を下げる目的で水蒸気が注入される。水の大部分を凝縮により除去し、さらに冷却すると、反応ガス中の一酸化窒素は酸化されて二酸化窒素となる。残った水は反応して硝酸となり除去される。最後に、冷媒液化装置で処理するとほぼ純粋な四酸化二窒素が得られる。

ロケット推進剤としての利用[編集]

四酸化二窒素はこれまでに開発されたロケット推進剤のうち主要なものの1つである。1950年代よりアメリカ合衆国ソビエト社会主義共和国連邦のロケットに貯蔵可能な酸化剤として使われている。四酸化二窒素はヒドラジン系ロケット燃料(非対称ジメチルヒドラジン (UDMH) やモノメチルヒドラジン (MMH))と組み合わせて自己着火性推進剤を構成する。

四酸化二窒素のロケット推進剤の一つとして初期においては空軍の大陸間弾道ミサイルを起原に持ち、多くの衛星発射を行なったタイタンロケットに使用されている。合衆国のジェミニ宇宙船アポロ宇宙船にも使用され、スペースシャトル、多くの静止衛星深宇宙探査機にも使われ続けている。四酸化二窒素の酸化剤は NASA がシャトルの後継としている次世代往還機においても使われ続けると見られている。そして、ロシアプロトンロケット中国長征ロケットでは主要酸化剤としても利用されている。

推進剤の用途では四酸化二窒素は単に「四酸化窒素」 (Nitrogen Tetroxide) と表示され、'NTO' と表された略号が頻繁に使われる。付け加えるとチタン合金の応力腐食欠陥を防止する目的でNTOは数パーセントの一酸化窒素が添加されている場合が多く、そのように製造された推進剤等級の NTO は Mixed Oxides of Nitrogen (en:Mixed Oxides of Nitrogen, MON) と呼び表される。今日の多くの人工衛星は NTO の代わりに MON が使用される。例えばスペースシャトルの姿勢制御システムには MON3(3wt% の一酸化窒素を含有する NTO)が使用されている[2]

動力源に使用される四酸化二窒素[編集]

四酸化二窒素が可逆的に NO2 に解裂する性質が研究され解離気体 (dissociating gas) と呼ばれる先進動力発生システムに利用されている。冷却された四酸化二窒素は圧縮し加熱されると分子量が半分の二酸化窒素に解離する。この熱い二酸化窒素は管内で膨張させると圧力が低下し冷却される。この冷却効果がヒートシンクとして働き、元の分子量の四酸化二窒素が再生する。この解離気体のブレイトンサイクルは動力変換装置の効率向上に役立つと考えられている。

化学反応[編集]

四酸化二窒素には多様な化学が知られている[3]

硝酸製造の中間原料[編集]

硝酸は四酸化二窒素から大量合成されている。この化学種は水と反応として硝酸亜硝酸とを生じる。

\rm N_2O_4 + H_2O \longrightarrow  HNO_2  +  HNO_3

副生成物の亜硝酸は加熱により不均化を起こし、 硝酸の収量を増やすと共に一酸化窒素を副成する。

金属硝酸塩の合成[編集]

四酸化二窒素は硝酸ニトロシル [NO+][NO3] 塩として振る舞い、強い酸化剤を形成する。

\rm 2N_2O_4 + M \longrightarrow 2 NO + M(NO_3)_2
\rm (M = Cu, Zn, Sn)

テトラフルオロホウ酸ニトロシル NOBF4 (en:Nitrosyl fluoroborate) を参照のこと。

出典[編集]

[ヘルプ]
  1. ^ [1]
  2. ^ Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN 0-12-352651-5.
  3. ^ Addison, C. C. (1980). “Dinitrogen Tetroxide, Nitric Acid, and Their Mixtures as Media for Inorganic Reactions”. Chemical Reviews 80: 21-39. doi:10.1021/cr60323a002. 

外部リンク[編集]

関連項目[編集]