プロキシマ・ケンタウリ

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索

座標: 星図 14h 29m 53s, −62° 41′ 00″

プロキシマ・ケンタウリ
Proxima Centauri
ハッブル宇宙望遠鏡で撮影されたプロキシマ・ケンタウリ
ハッブル宇宙望遠鏡で撮影されたプロキシマ・ケンタウリ
仮符号・別名 ケンタウルス座α星C[1]
星座 ケンタウルス座
視等級 (V) 11.13[1]
変光星型 閃光星 (UV)[2]
分類 赤色矮星
発見
発見年 1915年
発見者 ロバート・イネス
発見方法 直接観測
位置
元期:J2000.0[1]
赤経 (RA, α) 14h 29m 42.94853s[1]
赤緯 (Dec, δ) -62° 40′ 46.1631″[1]
赤方偏移 -0.000075[1]
視線速度 (Rv) -22.40 ± 0.5 km/s[1]
固有運動 (μ) 赤経: -3775.75 ミリ秒/年[1]
赤緯: 765.54 ミリ秒/年[1]
年周視差 (π) 768.13 ± 1.04 ミリ秒[1]
距離 4.25 ± 0.01光年[注 1]
(1.3 ± 0パーセク[注 1]
絶対等級 (MV) 15.557[注 2]
物理的性質
半径 0.141 ± 0.007 R[3]
質量 0.123 ± 0.006 M[4]
表面重力 (log g) 5.20 ± 0.03[4]
自転周期 83.5 [5]
スペクトル分類 M5.5Ve[1]
表面温度 3,042 ± 117 K[4]
明るさ(可視光 0.000056 L
明るさ(全波長 0.0017 L[6]
色指数 (B-V) 1.82[1]
色指数 (U-B) 1.26[1]
金属量[Fe/H] 0.21[7]
年齢 48.5億年[8]
別名称
別名称
ケンタウルス座V645星[1]
CCDM J14396-6050C
GCTP 3278.00
HIP 70890[1]
GJ 551
LTT 5721[1]
■Project ■Template

プロキシマ・ケンタウリ英語: Proxima Centauri)は、ケンタウルス座の方向に4.25光年[注 1]離れた位置にある赤色矮星である。太陽系最も近い恒星として知られている[9][10]

概要[編集]

1915年南アフリカ共和国ユニオン天文台で観測を行ったスコットランド生まれの天文学者、ロバート・イネスによって発見された[8]。視等級は約11等で、地球からの肉眼での観測は不可能である。

この星はケンタウルス座α星系でα星A、α星Bに次いで3番目に大きな構成員であり、α星Aから15,000±700 au[11]も離れた距離を、50万年以上の周期で公転していると考えられている。

プロキシマ・ケンタウリは地球に近いことから、地球から角直径を直接測定することができる。その直径は太陽の約7分の1である。質量は太陽の8分の1ほどあるため、平均密度は太陽の40倍にもなる[注 3]

プロキシマ・ケンタウリは非常に暗いが、くじら座UV型閃光星であるため、磁気活動によって不規則に明るさが変化する[12]磁場は恒星内部の対流によって生じており、フレア活動によって太陽とほぼ同じ程度のX線が生じている[13]。対流による恒星核の核融合燃料の混合と、エネルギー産生の相対的な低さの結果として、今後プロキシマ・ケンタウリは現在の宇宙の年齢の約300倍に及ぶ4兆年もの間、主系列星の状態を続けるものと考えられている[14][15]

2016年8月24日ヨーロッパ南天天文台 (ESO) は、プロキシマ・ケンタウリを公転する惑星プロキシマ・ケンタウリbを発見したと発表した[16][17][18][19]。プロキシマ・ケンタウリから0.05 au(約750万 km)の距離を11.2日で公転しており、推定される下限質量は地球の1.3倍とされている。また、プロキシマ・ケンタウリbはプロキシマ・ケンタウリのハビタブルゾーン内を公転していて、表面上に液体を有する可能性がある[16][20][21]

以前、プロキシマ・ケンタウリを公転している褐色矮星や巨大惑星が存在するかを確かめるために、何度も探査が行われてきたが失敗に終わっている[22][23]。精密なドップラー分光法による観測でもハビタブルゾーン内にスーパー・アースサイズの惑星が存在する可能性は除外されている[24][注 4]。さらに小型の天体を見つけるためにはさらに精密な観測機器が必要であり、2018年打ち上げ予定のジェイムズ・ウェッブ宇宙望遠鏡で観測を行う事を予定している[25][要高次出典]。しかし、プロキシマ・ケンタウリは閃光星であるため、惑星があってもその表面に生命が存在できるかについては議論が続いている[26][27]。それにも関わらず、地球から近いということもあって、しばしば恒星間航行の目的地として挙げられる[28]。実際にプロキシマ・ケンタウリまでスターチップ英語版を使って航行するというスターショット計画の構想も練られている[20]

観測[編集]

1915年イギリスの天文学者ロバート・イネス南アフリカ共和国ヨハネスブルクにあるユニオン天文台でケンタウルス座α星と同じ固有運動を持つ恒星を発見した[29][30][31][32]1917年喜望峰王立天文台英語版で、オランダの天文学者Joan Voûte英語版はプロキシマ・ケンタウリの年周視差を 0.755 ± 0.028 秒と計測し、プロキシマ・ケンタウリの太陽からの距離がケンタウルス座α星とほぼ同じであるとした。また同時に、その当時発見されていた恒星の中で最も暗いことがわかった[33]1928年アメリカの天文学者ハロルド・オルデン英語版はさらに正確にプロキシマ・ケンタウリの年周視差を計測した。その結果、Joanとほぼ同じ、0.783 ± 0.005秒という結果が得られた[30][34]

プロキシマ・ケンタウリを含めた、太陽に近い恒星の位置(2014年4月25日時点)[35]

1951年、アメリカの天文学者、ハーロー・シャプレーはプロキシマ・ケンタウリが閃光星である事を発表した。過去に撮影されたプロキシマ・ケンタウリの画像のうち、約8%の画像に写されたプロキシマ・ケンタウリに検出可能な増光が確認され、プロキシマ・ケンタウリは当時知られていた閃光星の中で、最も活動が活発である事が分かった[36][37]1980年アインシュタイン天文台はプロキシマ・ケンタウリの恒星フレアの詳細なX線エネルギー曲線を作成した。プロキシマ・ケンタウリの恒星活動は観測衛星EXOSATROSATでも観測され、1995年には日本のX線観測衛星あすかの観測対象にも選ばれた[38]

プロキシマ・ケンタウリは南半球で観測できるが、北緯27度以北では見る事ができない[注 5]。プロキシマ・ケンタウリは暗い赤色矮星である為、肉眼では観測できない。仮にケンタウルス座α星ABから見るとプロキシマ・ケンタウリは5等級の恒星として見えるとされている[39][40]。視等級が11等級のため、観測するには極めて暗い夜空で口径8cm以上の望遠鏡を用意する必要がある[41]

特徴[編集]

大きさの比較
太陽 プロキシマ・ケンタウリ
太陽 Exoplanet

プロキシマ・ケンタウリはヘルツシュプルング・ラッセル図(HR図)上では赤色矮星であるM6Veに属する。M6Veは同じM型星の中でも、低質量の方であることを表す[8]。地球から10パーセク(32.6光年)離れた位置にあると想定した場合の明るさを表す絶対等級は15.5である[42]。全波長での光度は太陽の0.17%である[6]。しかし、その85%以上は赤外線であり[43]、目に見える可視光での明るさは太陽の0.0056%しかない[44]

プロキシマ・ケンタウリ(右上)とケンタウルス座α星A(左上)、B(右下)、太陽(左下)との大きさの比較
ケンタウルス座の2つの1等星の写真。左の恒星がα星、右はβ星。α星の右下にある赤円にプロキシマ・ケンタウリがある。

2002年VLTIが光干渉法を用いてプロキシマ・ケンタウリの角直径を計測したところ、プロキシマ・ケンタウリの角直径は1.02±0.08ミリ秒角であることが判明した。地球からの距離が正確に知られているので、実際の直径は太陽の約7分の1、木星の1.5倍と計算できる。質量は太陽質量の12.3%、木星質量の約129倍である[45]。恒星は質量が減少すると、密度が上がる傾向がある[46]。プロキシマ・ケンタウリも例外ではなく、太陽の1.411g/cm3と比べて、約40倍の56.8 g/cm3の密度を持つ[注 3]。プロキシマ・ケンタウリは、1回自転するのに83.5日かかる[5]。 プロキシマ・ケンタウリの彩層は活動が活発で、プロキシマ・ケンタウリのスペクトルには波長の長さ280nmのイオンマグネシウムスペクトル線が見られる[47]。プロキシマ・ケンタウリの表面の約88%が太陽よりも活発である可能性があり、太陽活動周期と同じように、恒星活動の強弱が繰り返されると考えられている。しかし、活動極小期でもコロナの温度は、200万Kである太陽と比べて、350万Kにもなる[48]。しかし、プロキシマ・ケンタウリの恒星活動は他の赤色矮星と比較すると小規模である[13]。赤色矮星は時間が経つにつれて、自転速度が低下して活動が衰えるとされているため[49]、誕生から約48億5000万年が経過したプロキシマ・ケンタウリは自転周期が83.5日まで遅くなったとされている[8]。太陽は11年周期で活動の強弱を繰り返しているが、プロキシマ・ケンタウリは約442日周期で活動の強弱を繰り返している[50]

プロキシマ・ケンタウリは、太陽よりも約20%少ない恒星風を放出しているが、プロキシマ・ケンタウリが太陽より小さいので、相対的に計算すると太陽の8倍の量の恒星風を放出している事になる[51]

プロキシマ・ケンタウリ程度の質量を持つ恒星は、前述のとおり、核融合反応の反応が非常に遅いため、約4兆年輝き続ける。反応が続くにつれて、晩期には赤から青く見える青色矮星になり、その後、赤色巨星へとはならずに、そのまま白色矮星になるとされている[14]

距離と運動[編集]

位置天文衛星ヒッパルコスで計測されたプロキシマ・ケンタウリの年周視差768.7 ± 0.3ミリ秒という観測結果を基づいて[52]ハッブル宇宙望遠鏡ファイン・ガイダンズ・センサー英語版が観測を行った結果、プロキシマ・ケンタウリは太陽から約4.24光年離れた位置にあると計測された[53]。またRECONSの観測結果では、年周視差768.13ミリ秒、距離4.25光年、地球から見たケンタウルス座α星からの角距離は2.18度とされた[54]。これは、満月4個分に相当する角距離である[55]。プロキシマ・ケンタウリは年間3.85秒角移動しており[56]視線速度は-22.4km/sである。

過去2万年から今後8万年までの、推測される近隣の恒星との距離の変化を表したグラフ。唯一、水平になっている黄色線が現在のプロキシマ・ケンタウリとの距離である。

現在、知られている恒星の中で、プロキシマ・ケンタウリは約25,000年前から約32,000年後までは太陽に最も近い恒星である。それ以降はケンタウルス座α星A・α星Bの方が太陽に近くなる。2001年、J. García-Sánchezらは観測結果から、約26,700年後には、プロキシマ・ケンタウリは太陽から3.11光年まで接近するだろうと予測した[57]。また、2010年には、V. V. Bobylevが約27,400年後に最接近して、約2.9光年まで近づく可能性を示した[58]。一方で、2014年にC. A. L. Bailer-Jonesらは、プロキシマ・ケンタウリが太陽に最接近するのは26,710年後で、その時の距離は3.07光年であると発表した[59]。プロキシマ・ケンタウリは銀河核軌道離心率0.07で公転しており、銀河核からの距離は8.3キロパーセクから9.5キロパーセクと変化する[60]

プロキシマ・ケンタウリは、地球との近さから、しばしば恒星間航行の目的地として挙げられる。宇宙船に重力加速度と同等の等加速度運動が恒常的に可能であれば、速度だけならば減速を考慮しても約6年、10分の1の0.1Gでも減速込で約14年で到達可能となる。 しかし、ボイジャー1号 (17.3km/s) のような等速度運動では数万年単位(ボイジャー1号の場合は7.3万年以上)の年月を要する距離であり、21世紀初頭の技術で到達するには人間個人の時間スケールで考えれば膨大な時間が必要となる。

プロキシマ・ケンタウリは発見後、本当にケンタウルス座α星系を周回する恒星なのかについて議論が繰り返されてきていた。α星A・α星Bからの距離は0.21光年 (15,000 ± 700 au)[11]しかなく、公転周期が50万年以上なら、ケンタウルス座α星系の伴星である可能性も残されていた。現在では、プロキシマ・ケンタウリとα星A・α星Bが水平に動いて見えるのは単なる偶然だとする確率は100万分の1とされている[61]。観測衛星ヒッパルコスと地上からの観測結果を組み合わせたところ、プロキシマ・ケンタウリはケンタウルス座α星系を公転している事を示唆する結果が得られた。仮にそうだとした場合、プロキシマ・ケンタウリは現在、α星A・α星Bから最も離れた遠星点付近にある事になる。

プロキシマ・ケンタウリのケンタウルス座α星系のような三重連星系は、形成時は太陽質量の1.5倍から2倍を持つ恒星が低質量の恒星を捕獲する事で形成される場合がある[62]

プロキシマ・ケンタウリがケンタウルス座α星系に取り込まれた時、互いの恒星の組成物質が共有された可能性がある。また、プロキシマ・ケンタウリの重力の影響で、当時、ケンタウルス座α星系にあったとされる原始惑星系円盤にも影響が生じ、円盤内側にあった水などの揮発性物質がなくなってしまうが、円盤ガスの密度が上昇して地球型惑星を形成させた可能性がある[11]

プロキシマ・ケンタウリは現時点で、太陽に最も近い恒星だが、さらに近くに未知の褐色矮星などが潜んでいる可能性も残されている[63]

惑星系[編集]

プロキシマ・ケンタウリの惑星[64]
名称
(恒星に近い順)
質量 軌道長半径
天文単位
公転周期
()
軌道離心率 軌道傾斜角 半径
b 1.27+0.19
−0.17
 M
0.0485+0.0041
−0.0051
11.186 <0.35

1996年に木星の10倍程度の大きさの伴星か惑星が存在するかもしれないという観測結果が得られたが、その後確認はされていない[65]

なお、2014年2016年には重力マイクロレンズ効果による観測が可能になることから、その時に惑星が発見される可能性があると言われていた[66]

2016年1月、ヨーロッパ南天天文台 (ESO) はプロキシマ・ケンタウリの周りにある太陽系外惑星を探査するプロジェクト「Pale Red Dot[注 6]」を立ち上げた[67]。その後、ドイツ有力誌シュピーゲル電子版は2016年8月12日、宇宙物理学者らがこの恒星を公転する地球に似た惑星を発見したと報じた。ドイツ南部ガーヒング・バイ・ミュンヘンヨーロッパ南天天文台 (ESO) が2016年8月末にもこの惑星の発見を公表する予定と発表した[68]。そして2016年8月24日ロンドン大学クイーン・メアリーカレッジのGuillem Anglada-Escudéらの研究チームにより惑星プロキシマ・ケンタウリbが存在すると発表された[69][19]。発見はドップラー分光法で行われた事がネイチャーに報告された[64][70]。観測はラ・シヤ天文台の3.6メートル望遠鏡に搭載されている高精度視線速度系外惑星探査装置 (HARPS) とパラナル天文台超大型望遠鏡VLTで行われた[64]

プロキシマ・ケンタウリbはプロキシマ・ケンタウリから0.05 au(約750万km)の距離を約11.2日の公転周期で公転している惑星である。その推定下限質量は地球の1.3倍である。ハビタブルゾーン内を公転しているとされており、平衡温度英語版液体として水が存在できる範囲にあると推定されている[16][20][21][71]

公転周期60日から500日の範囲内に第2の信号も検出されたが、それが恒星の活動によるものかは不明である[64]

RV-derived upper mass limits of potential companions[24]
公転周期
(日)
軌道長半径
(AU)
最大質量[注 7]
(M)
3.6-13.8 0.022-0.054 2-3
<100 <0.21 8.5
<1000 <1 16

名称[編集]

固有名のプロキシマ・ケンタウリは、ラテン語で「ケンタウルス座で最も近い星」という意味を持つ[72]。1917年に、発見者のイネスが「プロキシマ・ケンタウリ」(実際には Proxima Centaurus)と呼ぶことを提案し[34][73]、以後この通称で呼ばれていた。

2016年国際天文学連合は、恒星の固有名についてカタログを作り標準化するワーキンググループ、WGSN英語版 (Working Group on Star Names) を組織した[74]。2016年8月21日、WGSNは「プロキシマ・ケンタウリ (Proxima Centauri) 」という呼び名を固有名として承認し、現在この呼び名が国際天文学連合の恒星名カタログに登録されている[75]

脚注[編集]

注釈[編集]

  1. ^ a b c パーセクは1 ÷ 年周視差(秒)より計算(誤差も同様)、光年はパーセク×3.26156377716743より計算。各有効桁小数第2位
  2. ^ 視等級 + 5 + 5×log(年周視差(秒))より計算。有効桁小数第3位
  3. ^ a b 密度(ρ)は質量と体積より求める事ができる。 Relative to the Sun, therefore, the density is:
    =
    = 0.123 · 0.145ー3 · (1.41×103 kg/m3)
    = 40.3 · (1.41×103 kg/m3)
    = 5.68×104 kg/m3

    は太陽の密度を表す。以下も参照。

    • Munsell, Kirk (2008年6月11日). “Sun: facts & figures”. Solar system exploration. NASA. 2016年8月26日閲覧。
    • Bergman, Marcel W.; Clark, T. Alan; Wilson, William J. F. (2007). Observing projects using Starry Night Enthusiast (8th ed.). Macmillan. pp. 220–221. ISBN 1-4292-0074-X. 
  4. ^ This is actually an upper limit on the quantity m sin i, where i is the angle between the orbit normal and the line of sight, in a circular orbit. If the planetary orbits are close to face-on as observed from Earth, or in an eccentric orbit, more massive planets could have evaded detection by the radial velocity method.
  5. ^ For a star south of the zenith, the angle to the zenith is equal to the Latitude minus the Declination. The star is hidden from sight when the zenith angle is 90° or more, i.e. below the horizon. Thus, for Proxima Centauri:
    Highest latitude = 90° + −62.68° = 27.32°.
    以下も参照。
  6. ^ この名称の元となったペイル・ブルー・ドットボイジャー1号が太陽から約60億km離れた位置で撮影された、青い点にしか見えない地球の写真の事である。
  7. ^ This is actually an upper limit on the quantity m sin i, where i is the angle between the orbit normal and the line of sight, in a circular orbit. If the planetary orbits are close to face-on as observed from Earth, or in an eccentric orbit, more massive planets could have evaded detection by the radial velocity method.

出典[編集]

  1. ^ a b c d e f g h i j k l m n o p SIMBAD Astronomical Database”. Results for V* V645 Cen. 2016年8月27日閲覧。
  2. ^ GCVS”. Results for V645 Cen. 2016年8月27日閲覧。
  3. ^ Demory, B.-O. et al. (October 2009), “Mass-radius relation of low and very low-mass stars revisited with the VLTI”, Astronomy and Astrophysics 505 (1): 205–215, arXiv:0906.0602, Bibcode 2009A&A...505..205D, doi:10.1051/0004-6361/200911976 
  4. ^ a b c Ségransan, D. et al. (2003), “First radius measurements of very low mass stars with the VLTI”, Astronomy and Astrophysics 397 (3): L5–L8, arXiv:astro-ph/0211647, Bibcode 2003A&A...397L...5S, doi:10.1051/0004-6361:20021714 
  5. ^ a b Benedict, G. F.; McArthur, B. et al. (1998). “Photometry of Proxima Centauri and Barnard's Star using Hubble Space Telescope fine guidance sensor 3: a search for periodic variations”. The Astronomical Journal 116 (1): 429–439. arXiv:astro-ph/9806276. Bibcode 1998AJ....116..429B. doi:10.1086/300420. 
  6. ^ a b See Table 1, Doyle, J. G.; Butler, C. J. (1990). “Optical and infrared photometry of dwarf M and K stars”. Astronomy and Astrophysics 235: 335–339. Bibcode 1990A&A...235..335D.  and p. 57, Peebles, P. J. E. (1993). Principles of physical cosmology. Princeton, New Jersey: Princeton University Press. ISBN 0-691-01933-9. 
  7. ^ Schlaufman, K. C.; Laughlin, G. (September 2010), “A physically-motivated photometric calibration of M dwarf metallicity”, Astronomy and Astrophysics 519: A105, arXiv:1006.2850, Bibcode 2010A&A...519A.105S, doi:10.1051/0004-6361/201015016 
  8. ^ a b c d A family portrait of the Alpha Centauri system: VLT interferometer studies the nearest stars ESO
  9. ^ Our local galactic neighborhood”. NASA (2000年2月8日). 2016年8月26日閲覧。
  10. ^ Glister, Paul (2010年9月1日). “Into the interstellar void”. Centauri Dreams. 2016年8月26日閲覧。
  11. ^ a b c Wertheimer, Jeremy G.; Laughlin, Gregory (2006). “Are Proxima and α Centauri gravitationally bound?”. The Astronomical Journal 132 (5): 1995-1997. arXiv:astro-ph/0607401. Bibcode 2006astro.ph..7401W. doi:10.1086/507771. 
  12. ^ Christian, D. J.; Mathioudakis, M.; Bloomfield, D. S.; Dupuis, J.; Keenan, F. P. (2004). “A detailed study of opacity in the upper atmosphere of Proxima Centauri”. The Astrophysical Journal 612 (2): 1140–1146. Bibcode 2004ApJ...612.1140C. doi:10.1086/422803. 
  13. ^ a b Wood, B. E.; Linsky, J. L.; Müller, H.-R.; Zank, G. P. (2001). “Observational estimates for the mass-loss rates of α Centauri and Proxima Centauri using Hubble Space Telescope Lyα spectra”. The Astrophysical Journal 547 (1): L49–L52. arXiv:astro-ph/0011153. Bibcode 2001ApJ...547L..49W. doi:10.1086/318888. http://iopscience.iop.org/1538-4357/547/1/L49/pdf/1538-4357_547_1_L49.pdf 2016年8月26日閲覧。. 
  14. ^ a b Adams, Fred C.; Laughlin, Gregory; Graves, Genevieve J. M. “Red dwarfs and the end of the main sequence”. Revista Mexicana de Astronomía y Astrofísica. pp. 46–49. http://www.astroscu.unam.mx/rmaa/RMxAC..22/PDF/RMxAC..22_adams.pdf 
  15. ^ Dunkley, J. et al. (2009). “Five-year Wilkinson microwave anisotropy probe (WMAP) observations: data processing, sky maps, and basic results”. The Astrophysical Journal Supplement Series 180 (2): 306–329. arXiv:0803.0586. Bibcode 2009ApJS..180..306D. doi:10.1088/0067-0049/180/2/306. 
  16. ^ a b c Anglada-Escudé, Guillem et al. (2016-08-25). “A terrestrial planet candidate in a temperate orbit around Proxima Centauri”. Nature 536: 437–440. doi:10.1038/nature19106. http://www.eso.org/public/archives/releases/sciencepapers/eso1629/eso1629a.pdf 2016年8月26日閲覧。. 
  17. ^ Planet found in habitable zone around nearest star”. ヨーロッパ南天天文台 (2016年8月24日). 2016年8月26日閲覧。
  18. ^ A terrestrial planet candidate in a temperate orbit around Proxima Centauri”. Nature (2016年8月24日). 2016年8月26日閲覧。
  19. ^ a b Found! Potentially Earth-like planet at Proxima Centauri is closest ever”. Space.com (2016年8月24日). 2016年8月26日閲覧。
  20. ^ a b c Chang, Kenneth (2016年8月24日). “One star over, a planet that might be another Earth”. ニューヨーク・タイムズ. http://www.nytimes.com/2016/08/25/science/earth-planet-proxima-centauri.html 2016年8月26日閲覧。 
  21. ^ a b Proxima b: Alien life could exist on 'second Earth' found orbiting our nearest star in Alpha Centauri system”. Telegraph Media Group (2016年8月24日). 2016年8月26日閲覧。
  22. ^ Kürster, M. et al. (1999). “Precise radial velocities of Proxima Centauri. Strong constraints on a substellar companion”. Astronomy & Astrophysics Letters 344: L5–L8. arXiv:astro-ph/9903010. Bibcode 1999A&A...344L...5K. 
  23. ^ Schroeder, Daniel J.; Golimowski, David A.; Brukardt, Ryan A.; Burrows, Christopher J.; Caldwell, John J.; Fastie, William G.; Ford, Holland C.; Hesman, Brigette et al. (2000). “A Search for Faint Companions to Nearby Stars Using the Wide Field Planetary Camera 2”. The Astronomical Journal 119 (2): 906–922. Bibcode 2000AJ....119..906S. doi:10.1086/301227. 
  24. ^ a b Endl, M.; Kürster, M. (2008). “Toward detection of terrestrial planets in the habitable zone of our closest neighbor: Proxima Centauri”. Astronomy and Astrophysics 488 (3): 1149–1153. arXiv:0807.1452. Bibcode 2008A&A...488.1149E. doi:10.1051/0004-6361:200810058. 
  25. ^ Watanabe, Susan (2016年10月18日). “Planet-Finding by Numbers”. ジェット推進研究所. 2016年8月26日閲覧。
  26. ^ Tarter; Jill C. et al. (2007). “A reappraisal of the habitability of planets around M dwarf stars”. Astrobiology 7 (1): 30–65. arXiv:astro-ph/0609799. Bibcode 2007AsBio...7...30T. doi:10.1089/ast.2006.0124. PMID 17407403. 
  27. ^ Khodachenko; Maxim L. (2007). “Coronal Mass Ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of earth-like exoplanets in close-in habitable zones”. Astrobiology 7 (1): 167–184. Bibcode 2007AsBio...7..167K. doi:10.1089/ast.2006.0127. PMID 17407406. 
  28. ^ Gilster, Paul (2004). Centauri dreams: imagining and planning. Springer. ISBN 0-387-00436-X. 
  29. ^ Circular No. 30, 1915, October 12, of the Union Observatory (Proxima Centauri discovery paper).)
  30. ^ a b Glass, I. S. (July 2007). “The discovery of the nearest star”. African Skies 11: 39. Bibcode 2007AfrSk..11...39G. 
  31. ^ Glass, I.S. (2008). Proxima, the nearest star (other than the Sun). Cape Town: Mons Mensa. http://www.saao.ac.za/~isg/proxima.html. 
  32. ^ Go to WayBackMachine INTERNET ARCHIVE. Enter http://www.eso.org/outreach/press-rel/pr-2002/pr-22-02.html. Choose 20 August 2006 for ESO Press Release: "How Small are Small Stars Really?".
  33. ^ Voûte, J. (1917). “A 13th magnitude star in Centaurus with the same parallax as α Centauri”. Monthly Notices of the Royal Astronomical Society 77: 650–651. Bibcode 1917MNRAS..77..650V. doi:10.1093/mnras/77.9.650. 
  34. ^ a b Alden, Harold L. (1928). “Alpha and Proxima Centauri”. Astronomical Journal 39 (913): 20–23. Bibcode 1928AJ.....39...20A. doi:10.1086/104871. 
  35. ^ NASA's Spitzer and WISE telescopes find close, cold neighbor of Sun”. NASA (2014年4月25日). 2014年4月25日時点のオリジナルよりアーカイブ。2016年8月26日閲覧。
  36. ^ Shapley, Harlow (1951). “Proxima Centauri as a flare star”. Proceedings of the National Academy of Sciences of the United States of America 37 (1): 15–18. Bibcode 1951PNAS...37...15S. doi:10.1073/pnas.37.1.15. PMC 1063292. PMID 16588985. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1063292. 
  37. ^ Kroupa, Pavel; Burman, R. R.; Blair, D. G. (1989). “Photometric observations of flares on Proxima Centauri”. PASA 8 (2): 119–122. Bibcode 1989PASAu...8..119K. 
  38. ^ Haisch, Bernhard; Antunes, A.; Schmitt, J. H. M. M. (1995). “Solar-like M-class X-ray flares on Proxima Centauri observed by the ASCA satellite”. Science 268 (5215): 1327–1329. Bibcode 1995Sci...268.1327H. doi:10.1126/science.268.5215.1327. PMID 17778978. 
  39. ^ Proxima Centauri UV flux distribution”. ESA/Laboratory for Space Astrophysics and Theoretical Physics. 2016年8月26日閲覧。
  40. ^ Kaler, Jim. “Rigil Kentaurus”. University of Illinois. 2016年8月26日閲覧。
  41. ^ Sherrod, P. Clay; Koed, Thomas L. (2003). A complete manual of amateur astronomy: tools and techniques for astronomical observations. Courier Dover Publications. ISBN 0-486-42820-6. 
  42. ^ Kamper, K. W.; Wesselink, A. J. (1978). “Alpha and Proxima Centauri”. Astronomical Journal 83: 1653–1659. Bibcode 1978AJ.....83.1653K. doi:10.1086/112378. 
  43. ^ Leggett, S. K. (1992). “Infrared colors of low-mass stars”. Astrophysical Journal Supplement Series 82 (1): 351–394, 357. Bibcode 1992ApJS...82..351L. doi:10.1086/191720. 
  44. ^ Binney, James; Scott Tremaine (1987). Galactic dynamics. Princeton, New Jersey: Princeton University Press. p. 8. ISBN 0-691-08445-9. 
  45. ^ Go to WayBackMachine INTERNET ARCHIVE. Enter http://www.eso.org/outreach/press-rel/pr-2002/pr-22-02.html. Choose 20 August 2006 for ESO Press Release: "How Small are Small Stars Really?"
  46. ^ Zombeck, Martin V. (2007). Handbook of space astronomy and astrophysics (Third ed.). Cambridge, UK: Cambridge University Press. pp. 109. ISBN 0-521-78242-2. 
  47. ^ E. F., Guinan; Morgan, N. D. (1996). “Proxima Centauri: rotation, chromospheric activity, and flares”. Bulletin of the American Astronomical Society 28: 942. Bibcode 1996BAAS...28S.942G. 
  48. ^ Wargelin, Bradford J.; Drake, Jeremy J. (2002). “Stringent X-ray constraints on mass loss from Proxima Centauri”. The Astrophysical Journal 578 (1): 503–514. Bibcode 2002ApJ...578..503W. doi:10.1086/342270. 
  49. ^ Stauffer, J. R.; Hartmann, L. W. (1986). “Chromospheric activity, kinematics, and metallicities of nearby M dwarfs”. Astrophysical Journal Supplement Series 61 (2): 531–568. Bibcode 1986ApJS...61..531S. doi:10.1086/191123. 
  50. ^ Cincunegui, C.; Díaz, R. F.; Mauas, P. J. D. (2007). “A possible activity cycle in Proxima Centauri”. Astronomy and Astrophysics 461 (3): 1107–1113. arXiv:astro-ph/0703514. Bibcode 2007A&A...461.1107C. doi:10.1051/0004-6361:20066027. 
  51. ^ Wood, B. E.; Linsky, J. L.; Muller, H.-R.; Zank, G. P. (2000). “Observational estimates for the mass-loss rates of Alpha Centauri and Proxima Centauri using Hubble Space Telescope Lyman-alpha spectra”. Astrophysical Journal 537 (2): L49–L52. arXiv:astro-ph/0011153. Bibcode 2000ApJ...537..304W. doi:10.1086/309026. 
  52. ^ Perryman, M. A. C.; Lindegren, L.; Kovalevsky, J. (July 1997), “The Hipparcos catalogue”, Astronomy and Astrophysics 323: L49–L52, Bibcode 1997A&A...323L..49P 
  53. ^ Benedict; G. Fritz et al. (1999). “Interferometric astrometry of Proxima Centauri and Barnard's Star using Hubble Space Telescope fine guidance sensor 3: detection limits for substellar companions”. The Astronomical Journal 118 (2): 1086–1100. arXiv:astro-ph/9905318. Bibcode 1999astro.ph..5318B. doi:10.1086/300975. 
  54. ^ Kirkpatrick; J. Davy et al. (1999). “Brown dwarf companions to G-type stars. I: Gliese 417B and Gliese 584C”. The Astronomical Journal 121 (6): 3235–3253. arXiv:astro-ph/0103218. Bibcode 2001AJ....121.3235K. doi:10.1086/321085. 
  55. ^ Williams, D. R. (2006年2月10日). “Moon fact sheet”. NASA. 2016年8月28日閲覧。
  56. ^ Benedict, G. F.. “Astrometric stability and precision of fine guidance sensor #3: the parallax and proper motion of Proxima Centauri” (PDF). pp. 380–384. http://clyde.as.utexas.edu/SpAstNEW/Papers_in_pdf/%7BBen93%7DEarlyProx.pdf 2016年8月28日閲覧。 
  57. ^ García-Sánchez, J.; Weissman, P. R.; Preston, R. A.; Jones, D. L.; Lestrade, J.-F.; Latham, D. W.; Stefanik, R. P.; Paredes, J. M (2001). “Stellar encounters with the solar system”. Astronomy and Astrophysics 379 (2): 634–659. Bibcode 2001A&A...379..634G. doi:10.1051/0004-6361:20011330. 
  58. ^ Bobylev, V. V. (March 2010). “Searching for stars closely encountering with the solar system”. Astronomy Letters 36 (3): 220–226. arXiv:1003.2160. Bibcode 2010AstL...36..220B. doi:10.1134/S1063773710030060. 
  59. ^ Bailer-Jones, C. A. L. (March 2015). “Close encounters of the stellar kind”. Astronomy & Astrophysics 575: 13. arXiv:1412.3648. Bibcode 2015A&A...575A..35B. doi:10.1051/0004-6361/201425221. A35. 
  60. ^ Allen, C.; Herrera, M. A. (1998). “The galactic orbits of nearby UV Ceti stars”. Revista Mexicana de Astronomia y Astrofisical 34: 37–46. Bibcode 1998RMxAA..34...37A. 
  61. ^ Matthews, Robert; Gilmore, Gerard (1993). “Is Proxima really in orbit about Alpha CEN A/B?”. MNRAS 261: L5. Bibcode 1993MNRAS.261L...5M. doi:10.1093/mnras/261.1.l5. 
  62. ^ Kroupa, Pavel (1995). “The dynamical properties of stellar systems in the Galactic disc”. MNRAS 277 (4): 1507–1521. arXiv:astro-ph/9508084. Bibcode 1995MNRAS.277.1507K. doi:10.1093/mnras/277.4.1507. 
  63. ^ WISE satellite set to map the infrared universe”. Scientific American (2009年9月9日). 2016年8月28日閲覧。
  64. ^ a b c d Anglada-Escudé, Guillem; Amado, Pedro J.; Barnes, John; Berdiñas, Zaira M.; Butler, R. Paul; Coleman, Gavin A. L.; de la Cueva, Ignacio; Dreizler, Stefan et al. (25 August 2016). “A terrestrial planet candidate in a temperate orbit around Proxima Centauri” (英語). Nature 536 (7617): 437–440. doi:10.1038/nature19106. ISSN 0028-0836. http://www.nature.com/nature/journal/v536/n7617/full/nature19106.html. 
  65. ^ プロキシマ・ケンタウリに伴星か惑星 AstroArts
  66. ^ Kailash C. Sahu (2014年). “Microlensing Events by Proxima Centauri in 2014 and 2016: Opportunities for Mass Determination and Possible Planet Detection”. arXiv:1401.0239v1 [astro-ph.EP]. 
  67. ^ Follow a Live Planet Hunt!”. ヨーロッパ南天天文台 (2016年1月15日). 2016年9月2日閲覧。
  68. ^ 地球に似た惑星発見か 4.24光年離れた恒星近く、地表に水が存在する可能性も産経ニュース
  69. ^ 水が液体のまま存在できる惑星発見 今後の探査に注目NHKニュース
  70. ^ Witze, Alexandra (2016-0824). “Earth-sized planet around nearby star is astronomy dream come true”. Nature: pp. 381–382. doi:10.1038/nature.2016.20445. http://www.nature.com/news/earth-sized-planet-around-nearby-star-is-astronomy-dream-come-true-1.20445 2016年8月24日閲覧。 
  71. ^ Planet Found in Habitable Zone Around Nearest Star ヨーロッパ南天天文台
  72. ^ Proxima Centauri”. Dictionary.com. 2016年8月26日閲覧。
  73. ^ Circular No. 40, 1917, September 3, of the Union Observatory
  74. ^ IAU working group on star names (WGSN)”. IAU. 2016年8月26日閲覧。
  75. ^ IAU catalog of star names”. 2016年8月26日閲覧。

関連項目[編集]

外部リンク[編集]