ハッブル宇宙望遠鏡

出典: フリー百科事典『ウィキペディア(Wikipedia)』
ハッブル望遠鏡から転送)
移動: 案内検索
ハッブル宇宙望遠鏡
ハッブル宇宙望遠鏡
スペースシャトル ディスカバリー号から見たハッブル宇宙望遠鏡(1997年2月サービスミッションSTS-82での画像)
基本情報
NSSDC ID 1990-037B
所属 NASA/ESA/STScI
打上げ日時 1990年4月24日午前8:33:51 EDT
打上げ機 ディスカバリー(STS-31)
ミッション期間 24年3か月と8日経過
落下時期 2013–2021年予定[1][2]
質量 11,110 kg (24,500 lb)
軌道 円に近い地球低軌道
軌道高度 559 km (347 mi)
軌道周期 96–97分
周回速度 7,500 m/s (25,000 ft/s)
重力による加速 8.169 m/s2 (26.80 ft/s2)
所在地 地球低軌道
形式 リッチー・クレティエン式反射望遠鏡
観測波長 可視光、紫外、近赤外
口径 2.4 m (7 ft 10 in)
開口面積 4.5 m² (48 ft²)[3]
焦点距離 57.6 m (189 ft)
観測装置
NICMOS 赤外線カメラ/分光計(窒素冷媒がなくなり一時停止したが2002年に冷却機が付けられ観測を再開)
ACS 掃天用高性能カメラ
(部分的に失敗)
WFC3 広域カメラ
COS 宇宙起源分光器
STIS 画像分光器
FGS 3つのファイン・ガイダンス・センサー
公式サイト hubble.nasa.gov
hubblesite.org
www.spacetelescope.org

ハッブル宇宙望遠鏡(ハッブルうちゅうぼうえんきょう、英語:Hubble Space Telescope、略称:HST)とは地上約600km上空の軌道上を周回する宇宙望遠鏡であり、グレートオブザバトリー計画の一環として打ち上げられた。名称は、宇宙の膨張を発見した天文学者エドウィン・ハッブルに因む。長さ13.1メートル、重さ11トンの筒型で、内側に反射望遠鏡を収めており、主鏡の直径2.4メートルのいわば宇宙の天文台である。大気や天候による影響を受けないため、地上からでは困難な高い精度での天体観測が可能。

概要[編集]

ハッブル宇宙望遠鏡は、地球の周回軌道にのせられた望遠鏡の中では、一番成功をおさめたものだろうと言われている。

ハッブル宇宙望遠鏡が行う観測のほとんどは、目で見える光の波長を使う。そのため、望遠鏡を地球の大気の上に置く最も大きな利点は、シーイングによる歪みを受けないことである。また、観測する天体を細かなところでまで明らかにすると同時に、光を狭い範囲へ集めることで暗い天体まで観測することができる。

望遠鏡の大きさは、バスほどもある。また、これまでにスペースシャトルが何度かこの望遠鏡を訪れ、宇宙飛行士が観測装置を補修したり、新しいカメラや分光器を取り付けるなどしてきた。[4]

成果[編集]

  • シューメーカー・レヴィ第9彗星木星に衝突する様子を克明に捉えた(1994年)。
  • 太陽系外の恒星の周りに惑星が存在する証拠を初めて得た。
  • 銀河系を取巻くダークマターの存在を明らかにした。
  • 宇宙の膨張速度が加速しているという現在の宇宙モデルはハッブル宇宙望遠鏡の観測結果によって得られた。
  • 多くの銀河の中心部にブラックホールがあるという理論は、ハッブル宇宙望遠鏡の多くの観測結果によって裏付けられている。
  • 1995年12月18日~28日、おおぐま座付近の肉眼でほとんど星のない領域について十日間に亘り観測を行い、「ハッブル・ディープ・フィールド」と呼ばれる千五百~二千個にも及ぶ遠方の銀河を撮影した。これに続き、南天のきょしちょう座付近において「南天のハッブル・ディープ・フィールド」 (Hubble Deep Field - South) 観測を行った。 双方の観測結果は非常に似かよっており、宇宙は大きなスケールに渉り均一であること、地球は宇宙の中で典型的な場所を占めていることを明らかにした。
  • 2011年12月、科学誌に投稿された論文が21年間で10,000件に到達[5]
より詳細なハッブル宇宙望遠鏡の成果(英文)
ハッブル宇宙望遠鏡が捉えた宇宙: 左上:おたまじゃくし銀河 Arp188、右上:コーン星雲 NGC2264、左下:オメガ星雲 M17 での恒星の誕生、右下:融合銀河 NGC4676

光学系の不具合・修理[編集]

1990年スペースシャトルディスカバリー号によって幾度の打ち上げ延期を乗り越え、満を持して打ち上げられた。しかし打ち上げ直後の調整で天体の光を集める鏡の端が設計より0.002mm平たく歪んでいることが発覚。この誤差により分解能は予定の5%になってしまった(ただし5%でも地上の望遠鏡より遥かに高い分解能を有していた)。

この歪みは、主鏡を製造したパーキンエルマー社(現レイセオン・ダンバリー社)の工場において鏡面の歪みを検出するヌル補正装置が正しく取り付けられていないことが原因だった。本来小型の鏡の歪みを検出する用途に使われていたこの装置を、2.4mの大型鏡の補正に用いるために無理に取り付けたことが歪みを生む結果につながったのである。

この問題を修正するために、焦点に入ってくる15%の光を最大限に利用するソフトウェアが開発された。これで性能は58%まで回復。これ以上の修復は直接宇宙へ行き、ハッブルを修理するしかなかった。

元々ハッブルは運用期間15年(当初の予定)の間に数回スペースシャトルから修理などを受ける予定だったので、NASAはこの修理に鏡の誤差を修正する光学系の装置を入れる事を急遽決定。この修理に伴う船外活動のため、宇宙飛行士たちは一年以上、延べ400時間に及ぶ訓練を受けることとなる。この訓練のおかげで、この大修理は無事成功。結果、ハッブルは当初の予定を遥かに超える性能を手にし、天文学史に残る数々の貴重な天体写真を捉えている。また、非常に美しい芸術的な天体写真も多数公開されている。なお、これらの写真は必ずしも本物の色ではないことがある。肉眼では見えない領域の光(赤外線紫外線など)を撮影した場合は、擬似カラーと呼ばれ、わかりやすいように波長ごとに色付けするためである。

光学系改修により可能となった、ハッブルウルトラディープフィールド

歴史[編集]

  • 1990年4月24日スペースシャトル ディスカバリー号によって打ち上げられる (STS-31) 。
  • 1993年12月:初のサービスミッション (SM1) (STS-61) 。球面収差修正用の光学系であるCOSTAR(Corrective Optics Space Telescope Axial Replacement)を設置。これにより鮮明な画像が得られるようになった。WF/PCの代わりに、WFPC2(Wide Field Planetary Camera 2)を設置。また、太陽電池パネルの交換も行なった。
  • 1997年2月:2度目のサービスミッション (SM2) (STS-82) 。FOS(Faint Object Spectrograph)の代わりにNICMOS(近赤外カメラ及び多天体分光器:Near Infrared Camera and Multi-Object Spectrometer)や、GHRS(Goddard High Resolution Spectrometer)の代わりにSTIS(宇宙望遠鏡撮像分光器:Space Telescope Imaging Spectrograph)の設置などを行った。
  • 1999年11月:6台ある姿勢制御用ジャイロスコープのうち4台目が故障し、観測不能に陥る。
  • 1999年12月:3度目のサービスミッション (SM3A) (STS-103) 。ジャイロスコープ6台全てを交換、主コンピュータの交換など。
  • 2002年3月:4度目のサービスミッション (SM3B) (STS-109) 。新型メインカメラACS (掃天用高性能カメラ:Advanced Camera for Surveys) の取り付け(FOC(Faint Object Camera)と交換)、太陽電池パネルを新型のものに交換、NICMOSの冷却装置の設置など。
  • 2004年1月16日アメリカ航空宇宙局 (NASA) は今後、ハッブル宇宙望遠鏡の修理を行なわないと発表。予定されていた5度目のサービスミッション (SM4) は中止された。
  • 2006年6月25日:新型メインカメラACSが故障。同年6月30日に復旧。
  • 2006年9月23日:ACSが再度故障。同年10月6日に復旧。
  • 2006年10月31日:方針を転換し、5度目のサービスミッションを行い、2013年まで利用を続けるための修理を行うことがNASAより発表された。
  • 2007年1月23日:ACSが再度故障。同年2月19日になって一部機能の復旧に成功したものの、主要機能の復旧は絶望的である。WFPC2などの旧型機器は動作し続けているため、機能は劣るものの代用が可能。
  • 2009年5月11日:最後のサービスミッション (SM4) (STS-125)。WFPC2をWFC3(Wide Field Camera 3)へ交換、故障したACSとSTISの修理、COS(Cosmic Origins Spectrograph)の設置、ジャイロとバッテリーの交換など大幅な修理を行う。ハッブルは「今までで最高の性能」(NASA)になり、少なくとも2014年まで寿命が延びる。ミッションは無事完了し、4ヶ月間のテスト期間を経て活動を再開する。
このSTS-125ミッションで地上に回収されたWFPC2とCOSTARは、2014年4月からスミソニアン博物館で展示を始めた。[6]
  • 2009年7月24日:本格稼動前であるが、木星への天体衝突跡が発見された為に新しく取り付けられたWFC3で衝突跡を撮影・SM4終了後の画像を初公開した。

ギャラリー[編集]

新たな宇宙望遠鏡計画[編集]

ハッブル宇宙望遠鏡の後継機としてジェイムズ・ウェッブ宇宙望遠鏡 (JWST) の打ち上げが2018年に予定されている。主鏡の直径は約6.5mであり、ハッブル宇宙望遠鏡よりもさらに高性能化が図られている。ただし観測波長域は近赤外線・赤外線のみであり、近紫外線・可視光の観測能力は持たない。地球と太陽のラグランジュ点 (L2) に位置することで、地球近傍のチリの影響を避け、より高精度の観測を可能としている。元は2011年の打ち上げ予定であったが、延期されたものである。

JWST以外の新たな宇宙望遠鏡計画[編集]

2012年6月4日、NRO(National Reconnaissance Office)のKH-11と推測される偵察衛星の地上予備機2機をNASAに供与することが米国メディアで報じられた[7]。この偵察衛星の主鏡の口径は2.4mあり、ハッブル宇宙望遠鏡と同じであるがよりハイテクで軽量である。視野はハッブル宇宙望遠鏡よりも100倍広く、焦点距離は短くなる。この地上撮影用の望遠鏡を宇宙観測用望遠鏡に改造し、2023年以降に打ち上げる計画。

NASAのマネージャと大学の天文学者がこの光学系を点検した結果、ハッブル宇宙望遠鏡のものよりも優れていることが確認された。これにより、太陽系外の惑星の撮影や、ダークエネルギーの存在確認に役立てることができると考えられる。この望遠鏡の2次鏡は、地上からの制御あるいは搭載機器の制御で可動させることができる。この2次鏡は6本の支柱で固定されており、各支柱の下部にサーボモータが装備されており、これで焦点の微調節ができる。この供与されるNROの衛星には、太陽電池アレイ、コンピュータ、姿勢制御システム、観測機器といった主要な部分は含まれていない。

NASAは$1.5 billion かけて口径1.5mのWide Field Infrared Survey Telescope (WFIRST)を開発する予定であったが、この望遠鏡の開発に使うことになり、口径も2.4mに変更された。[8][9]

関連文献[編集]

CD-ROM[編集]

VHSビデオ[編集]

  • 『天文学研究の最先端』第2回 ハッブル望遠鏡でみた深宇宙、放送大学学園制作・著、放送大学教育振興会〈放送大学ビデオ教材 Maruzen audiovisual library〉、1998年 - 発売は丸善出版事業部。

DVD[編集]

  • 『最新報告 ハッブル望遠鏡/宇宙の果てを求めて』 ジェネオン・エンタテインメント/ジーパラドットコム〈NHKビデオ 宇宙デジタル図鑑(12)〉、2001年3月。
  • 『ハッブル宇宙望遠鏡――宇宙の神秘に迫る――』 角川書店〈Kadokawa DVD Discovery channel〉、2007年2月。

脚注[編集]

[ヘルプ]
  1. ^ HST Program Office (2003) (.PDF). Hubble Facts: HST Orbit Decay and Shuttle Re-boost. Goddard Space Flight Center. http://hubble.nasa.gov/a_pdf/news/facts/sm3b/fact_sheet_reboost.pdf 2009年5月12日閲覧。. 
  2. ^ Amiko Kauderer (2009年3月26日). “Space Shuttle Mission Overview - STS-125: The Final Visit”. NASA. 2009年5月2日閲覧。
  3. ^ SYNPHOT User's Guide, version 5.0, Space Telescope Science Institute, p. 27
  4. ^ 最新天文百科 宇宙・惑星・生命をつなぐサイエンス HORIZONS Exploring the Universe p104 ISBN978-4-621-08278-2
  5. ^ “NHubble Space Telescope Passes Major Science Milestone”. Space.com. (2011年12月7日). http://www.space.com/13858-hubble-space-telescope-10000-science-papers.html 2012年6月10日閲覧。 
  6. ^ “Hubble Space Telescope instruments star in new Smithsonian exhibit”. collectSPACE.com. (2014年4月24日). http://www.collectspace.com/news/news-042414a-repairing-hubble-smithsonian-exhibit.html 2014年4月26日閲覧。 
  7. ^ “NASA gets two military spy telescopes for astronomy”. The Washington Post. (2012年6月4日). http://www.washingtonpost.com/national/health-science/nasa-gets-two-military-spy-telescopes-for-astronomy/2012/06/04/gJQAsT6UDV_story.html?hpid=z6 2012年6月10日閲覧。 
  8. ^ “Top Secret KH-11 Spysat Design Revealed By NRO’s Twin Telescope Gift to NASA”. America Space. (2012年6月5日). http://www.americaspace.org/?p=20825 2012年6月10日閲覧。 
  9. ^ “WFIRST HP”. NASA GSFC. http://wfirst.gsfc.nasa.gov/ 2014年5月6日閲覧。 

関連項目[編集]

  • Hubble Origins Probe- 中止が発表されていた5度目のサービスミッション (SM4) 用に開発された機材を利用して開発し、新規にハッブル宇宙望遠鏡と同等の宇宙望遠鏡を低コストで打ち上げる計画だったが、SM4の実施決定に伴い計画終了。

外部リンク[編集]