電磁テンソル

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索
電磁気学
VFPt Solenoid correct2.svg


電気 · 磁性

電磁テンソルとは、電磁場相対性理論にもとづいた形式で記述したものである。以後、相対論と言えば、特に断りがなければ特殊相対性理論を指す。

定義[編集]

電磁場の強度(field strength) F は二階のテンソル

と定義される[1]。 A は相対論的な4元ベクトル電磁ポテンシャル

である[註 1]。 微分も相対論的な4元ベクトル

である。

定義から電磁場テンソルは明らかに反対称テンソルである。従って独立成分は6つある。 これは3次元空間のベクトル場である電場の強度 E磁束密度 B の各成分に対応する。 電場の強度と磁束密度は3次元空間の電磁ポテンシャルによって

と表される。 あるいは各成分毎に

と書くことが出来る。 具体的には

である。上付きの

となる[註 1]。それぞれ行列の形で表せば

となる。

媒質中の電磁場[編集]

媒質中での電磁場を表す電束密度 D磁場の強度 H は二階のテンソル Gμν によって相対論的な形式で記述される。 それぞれの成分は具体的には

である[2]。Gμν はサブ電磁テンソルとも呼ばれる。 サブ電磁テンソル G と電磁場の強度 F は

と関係付けられる。ここで Mμν は磁化テンソルである。 その成分は誘電分極 P磁化 M である。

行列の形で表せば

である。

双対テンソル[編集]

完全反対称テンソル ε を用いれば、電磁場の強度 F に双対なテンソル

が定義される。 具体的には

であり、行列の形で表せば

となる。

マクスウェルの方程式[編集]

電磁場テンソルによって、相対論的な形でマクスウェルの方程式を記述することができる。 定義からBianch恒等式

が成り立つ。 完全反対称テンソルを用いれば

と表すことも出来る。 この式は添え字 σ=0,1,2,3 についての4つの方程式であり、それぞれ

である。

真空中の電磁場の運動方程式は

と表される。 ここで j は4元電流密度である。 この式は添え字 ν=0,1,2,3 についての4つの方程式であり、それぞれ

である。

媒質中の運動方程式[編集]

媒質中の運動方程式は

と表される。 成分ごとにそれぞれ

である。

ローレンツ力[編集]

電磁テンソルは、荷電粒子に作用するローレンツ力を相対論的に記述した式の中に現れる。 電荷 q を持ち、相対論的な位置 z=(ct,r) を運動する荷電粒子に作用する相対論的なローレンツ力は以下のようになる。

p は相対論的な運動量である。ドットは運動のパラメータによる微分である。

脚注[編集]

  1. ^ a b ここではミンコフスキー計量の符号を η=diag(+1,-1,-1,-1) に選んでいる。
  1. ^ ランダウ, リフシッツ 68頁
  2. ^ ジャクソン 820頁

参考文献[編集]

関連項目[編集]