理想気体

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索
理想気体分子が分子同士または容器壁と完全弾性衝突を繰り返す様子。分子同士が衝突するためには分子は有限の大きさを持たなければならない。

理想気体(りそうきたい、英語: ideal gas)または完全気体(かんぜんきたい、perfect gas)は、圧力温度密度に比例し、内部エネルギーが密度に依らない気体である[1]。気体の最も基本的な理論モデルであり、より現実的な他の気体の理論モデルはすべて、低密度で理想気体に漸近する。統計力学および気体分子運動論においては、気体を構成する個々の粒子[注 1]の体積が無視できるほど小さく、構成粒子間には引力が働かない系である[2]

実際にはどんな気体分子[注 2]にも体積があり、分子間力も働いているので理想気体とは若干異なる性質を持つ。そのような理想気体でない気体は実在気体または不完全気体と呼ばれる[3]。実在気体も、低圧で高温の状態では理想気体に近い振る舞いをする。常温・常圧では実在気体を理想気体とみなせる場合が多い。

状態方程式[編集]

理想気体の状態方程式には2ないし3種のバリエーションがある。大きな違いは、気体を粒子の集まりとみなすか否かである。式の上での形式的な違いは、平衡状態における理想気体の圧力 p

である。

質量密度を変数とする状態方程式[編集]

温度 T、体積 V質量 m の平衡状態における、理想気体の圧力 p

で表され、質量密度 m/V と温度 T に比例する。気体の種類 M によって異なる比例係数 RM比気体定数[注 3]と呼ばれる[5]RM は、[エネルギー]×[温度]−1×[質量]−1次元を持つ定数で、例えば空気の比気体定数は Rair = 287 J kg−1K−1 である[6]。この状態方程式は、気体の構成粒子の存在を前提としない場合でも意味を持つ式である。

数密度を変数とする状態方程式[編集]

統計力学によると、体積 V の容器の中に古典力学に従う N 個の自由粒子が閉じ込められているとき、温度 T の平衡状態におけるこの気体の圧力 p

で与えられ、数密度 N/V と温度 T に比例する。比例係数 kB は気体の種類によらない普遍定数で、ボルツマン定数と呼ばれる。 kB の次元は [エネルギー]×[温度]−1 である。粒子数 N が式中に現れていることから明らかなように、この状態方程式は、気体の構成粒子の存在を前提としなければ意味を持たない。

モル体積を変数とする状態方程式[編集]

温度 T、体積 V物質量 n の平衡状態における、理想気体の圧力 p

で表され、モル体積 V/n に反比例し、温度 T に比例する。比例係数 R は気体の種類によらない普遍定数で、モル気体定数[注 4]と呼ばれる。R は [エネルギー]×[温度]−1×[物質量]−1 の次元を持ち、その値はボルツマン定数 kBアボガドロ定数 NA を掛けたものに等しい。また、比気体定数 RM に気体のモル質量 M を掛けたものにも等しい。この状態方程式は、通常は、気体の構成粒子の存在を前提としている。なぜならSI単位系では、気体の物質量 n は構成粒子数 NNA で割ったものとして定義されるからである。ただしSIの定義にこだわらなければ、気体の構成粒子の存在を前提しなくても、純粋に巨視的な物理学の範囲内でこの状態方程式に意味を持たせることができる[7][8]

内部エネルギー[編集]

理想気体のエネルギーの表式にも2ないし3種のバリエーションがある。大きな違いは、気体の熱容量が温度に依存するか否かである。理想気体の状態方程式と熱力学的状態方程式から、内部エネルギーが体積に依存しないことが示される。しかし、内部エネルギーが温度に比例すること、すなわち定積熱容量が温度に依存しないことまでは示されない。理想気体の状態方程式を満足する気体は半理想気体、あるいは半完全気体と呼ばれる[9]。半理想気体のうち、内部エネルギーが温度に比例する気体を狭義の理想気体という。狭義の理想気体のうち、構成粒子が内部自由度[注 5]を持たない気体を単原子理想気体という[10]

単原子理想気体[編集]

温度 T、物質量 n の平衡状態における、単原子理想気体の内部エネルギー U

で表される。この式から単原子理想気体の定積モル熱容量 CV, m

と与えられる。単原子理想気体の CV, m は、温度にも気体の種類にも依らない定数である。

狭義の理想気体[編集]

温度 T、物質量 n の平衡状態における、狭義の理想気体の内部エネルギー U

で表される。

構成粒子を剛体とみなせる場合、比例係数 c は粒子1個当たりの自由度の 1/2 に相当する。内部自由度のない単原子理想気体であれば c = 3/2 である。剛体回転子とみなせる直線分子なら内部自由度が 2 なので c = 5/2、剛体回転子とみなせる非直線分子なら内部自由度が 3 なので c = 3 である。実在の分子で剛体回転子とみなせる分子は少ない。例えば一酸化炭素 CO は c = 2.50 だが、二酸化炭素 CO2c = 3.46 である。水蒸気 H2O は c = 3.04 だが、二酸化硫黄 SO2c = 3.80 である。二原子分子に限っても塩素 Cl2c = 3.08 であって、5/2 よりもむしろ 3 に近い[11]希ガス酸素窒素水蒸気などの少数の例外を除けば、比例係数 c分子式から手計算で求められる数値ではない。ファンデルワールス定数 a, b と同様に、比例係数 c は実際の気体の熱力学的性質を再現するように定められるパラメータである。また、剛体回転子とはみなせない分子の標準定積熱容量は、温度により少なからず変化する。それにも関わらず狭義の理想気体という気体の理論モデルをあえて考えるのは、エントロピーなどの表式がきわめて簡単になるからである[12]。また、内部エネルギーを表す近似式としてそれで十分な場面も多い。とくに空気の主成分である酸素、窒素、水蒸気は(結露しない限り)比較的広い温度・圧力範囲で狭義の理想気体とみなせる。

温度 T、質量 m の平衡状態における、狭義の理想気体の内部エネルギー U

で表される。狭義の理想気体の定積比熱容量 cV は、温度に依らない気体に固有の定数である。

半理想気体[編集]

温度 T、物質量 n、質量 m の平衡状態における、半理想気体の内部エネルギー U

で表される。ここで U0 は、温度 T0 における物質量 n、質量 m の半理想気体の内部エネルギーである。半理想気体の CV, mcV は、圧力と密度には依らない温度 T の関数である。関数の形は気体の種類により異なる。関数が定数関数 CV, m(T) = cR であるとき、その気体は狭義の理想気体である。構成粒子の並進運動の自由度のため、半理想気体の定積モル熱容量について任意の温度で

が成り立つ。

性質[編集]

理想気体に成立する法則として代表的なものには次のものがあげられる。

ボイルの法則[編集]

理想気体の等温圧縮率 κT は気体の種類に依らない。

シャルルの法則[編集]

理想気体の熱膨張率 α は気体の種類に依らない。

アボガドロの法則[編集]

この法則は、気体の構成粒子の存在を前提としなければ意味を持たない。

ドルトンの分圧の法則[編集]

この法則が成り立つ条件は、気体の構成粒子の存在を前提するか否かで異なる。

構成粒子の存在を前提する場合
気体の混合前後あるいは分離前後で構成粒子の総数が変化しない。
構成粒子の存在を前提しない場合
準静的等温操作で混合あるいは分離のための仕事 Wmix が無視できる[13]

エンタルピー[編集]

半理想気体のエンタルピー H

で表される。

狭義の理想気体のエンタルピー H

で表される。

Tn が同じであれば、理想気体のエンタルピー HV にも p にも依らずに同じ値になる(ジュールの法則)。理想気体は等エンタルピー膨張で温度が変化しない。

モル熱容量[編集]

半理想気体のモル熱容量は圧力にも気体の密度にも依らない。

狭義の理想気体の定積モル熱容量 CV, m

で表され、定圧モル熱容量 Cp, m

で表される。

理想気体の二つのモル熱容量の差は

となる。この関係はマイヤーの関係式と呼ばれる。この関係式は半理想気体についても成り立つ。また、理想気体の二つのモル熱容量の比 γ比熱比と呼ばれ

となる。半理想気体の比熱比 γ は一般には温度に依存する。狭義の理想気体の場合は、熱容量が温度に依存しないので

となり、比熱比 γ も温度に依存しない。

エントロピー[編集]

狭義の理想気体のエントロピー S

となる。ここで α は物質固有の定数である。狭義の理想気体のエントロピーの形は、熱力学第三法則を満たさない。

半理想気体のエントロピー S

となる。ここで α0 は物質固有の定数[注 6]である。半理想気体の CV, m3R/2 を下回ることはないので、半理想気体のエントロピーの形もまた、熱力学第三法則を満たさない。

準静的断熱過程においては、エントロピーが一定となる。このとき

の関係がある。これらはポアソンの法則と呼ばれる。狭義の理想気体では、ポアソンの法則が厳密に成り立つ。半理想気体では、ポアソンの法則が近似的に成り立つ。

統計力学による再現[編集]

理想気体の手短な解説[14]において

  • 理想気体の体積中では気体分子の占める体積は存在しない(分子の体積がゼロ)。
  • 理想気体では分子間力がいっさい作用しない(相互作用がゼロ)。
  • 理想気体は分子同士[15]や容器内壁と衝突してもその衝突前と衝突後で運動エネルギーの和は変わらない(完全弾性衝突)。

という説明がなされることがある。しかし、分子の体積と相互作用の両方が厳密にゼロだったなら、分子同士が衝突することはありえない。そのため気体が熱平衡に達するには、容器内壁を介して間接的に分子がエネルギーを互いにやり取りしなければならない。ところが容器内壁と分子の衝突が完全弾性衝突だったなら、それも不可能である。したがって、分子の体積がゼロ、相互作用がゼロ、完全弾性衝突だったなら、どれだけ時間が経っても気体が熱平衡に達することはない。

上の3条件のいずれかを適当に緩めると、気体を熱平衡状態にすることができる。例えば、容器内壁と分子の間にエネルギーのやり取りを許せばよい。そうすると壁を温度 T の熱浴とみなせるので、カノニカル分布の方法が使える[16]

あるいは、完全弾性衝突の条件をそのままにして

  • 理想気体の体積中で構成粒子の占める体積はきわめて小さいがゼロではない(微小剛体球)。
  • 理想気体では粒子間に引力が働かない(引力がゼロ)。
  • 理想気体は粒子同士や容器内壁と衝突してもその衝突前と衝突後で運動エネルギーの和は変わらない(完全弾性衝突)。

としてもよい[17]。ここで微小剛体球の半径は、実際の分子の大きさよりもずっと小さい値、例えば 1 fm核子くらいの大きさ)を仮定する。剛体球なので、粒子間距離が球の直径より小さくなろうとしたときには強い斥力が働いて粒子同士の衝突は完全弾性衝突となるが、粒子間距離が球の直径より少しでも大きいときには粒子間に相互作用が働かない。理想気体の体積中で構成粒子の占める体積が十分に小さければ、この系はほとんど独立な粒子の集まりとなるので理想系[注 7][18][19]である。容器内壁との衝突が完全弾性衝突ということは、この壁が断熱壁であるということなので、体積 V と 粒子数 N が一定であれば、この系は孤立系である。よってボルツマンの公式によりエントロピーを求めることができる(ミクロカノニカルアンサンブル)。

内部自由度のない粒子からなる理想気体[編集]

単原子理想気体の性質は、粒子の並進運動の分配関数から計算できる。すなわち、容器内壁以外でポテンシャルがゼロであるようなハミルトニアンを用いることで、単原子理想気体の性質が統計力学により再現される。

剛体回転子からなる理想気体[編集]

狭義の理想気体の性質は、分子の並進と回転の分配関数から計算できる。分子を古典力学に従う剛体回転子とみなすと、理想気体の熱容量が温度に依存しないことが統計力学により再現される。

振動する分子からなる理想気体[編集]

半理想気体の性質は、分子の並進と回転と振動の分配関数から計算できる。必要であれば分子の電子状態の分配関数も考える。調和振動子のハミルトニアンを用いることで、理想気体の熱容量が温度に依存することが統計力学により再現される。窒素 N2、酸素 O2、水蒸気 H2O の熱容量が比較的広い温度範囲で一定とみなせるのは、これらの分子の分子振動を励起するのに必要なエネルギーが kBT よりもずっと大きいためである。

相転移[編集]

理想気体はどんな条件下でも相転移しない。これは理想気体が以下の性質を持つと仮定しているためである。

  • 理想気体の体積中で気体分子の占める体積は無視できるほど小さい。
    実在気体では、圧力を一定に保ったまま温度を下げていくと、液体か固体に相転移する。あるいは、温度を一定に保ったまま圧力を上げても、液体か固体に相転移する。それに対して理想気体では、圧力を一定に保ったまま温度を下げていくと、気体の体積が際限なく小さくなる。温度を一定に保ったまま圧力を上げても同様である。理論上は、絶対零度または圧力無限大の極限で理想気体の体積は 0 になる。理想気体では実在気体の相転移現象を再現できない。
    理想気体を拡張したモデルに剛体球モデル英語版がある。このモデルでは、気体分子は、分子と同程度の大きさの剛体球で表される。剛体球モデルでは、適度な低温または適度な高圧で、気体が固体に相転移する(アルダー転移)[20]。このことから、理想気体で相転移が起こらないのは気体の分子の体積を無視したためであることが分かる。剛体球モデルでは平均自由行程を求めることができるので、粘度などの輸送係数について議論することができる。また、密度が低くて連続体とみなすことができない希薄気体を扱うこともできる[21]
  • 理想気体には気体分子間の引力が作用しない。
    剛体球モデルでは、気体から液体への相転移が起きない。それに対して理想気体の別の拡張モデルであるファンデルワールス気体では、気液相転移が起こる[注 8]。ファンデルワールス気体は、気体分子間の引力を考慮した理論モデルである。このことから、理想気体や剛体球モデルで気液相転移が起こらないのは気体分子間の引力を無視したためであることが分かる。

極限法則としての理想気体[編集]

理想気体は気体の理論モデルである。理想気体は想像上の存在である、といってもよい。ボイル=シャルルの法則が厳密に成り立つ気体は、現実には存在しない。理想気体の法則は、低圧の状態に近づくにつれて実在気体でも厳密に成り立つようになる極限法則[22][注 9]である。

実在気体が理想気体と若干異なる性質を持つのは、気体分子に体積があり、分子間力が働いているためである。温度 T と分子数 N が一定の場合、気体が低圧の状態に近づくということは、気体分子の数密度が減るということだから、気体分子の体積と分子間力について次のことが言える。

  • 実在気体の体積中で気体分子の占める体積の割合は、温度が同じなら低圧ほど小さくなり、圧力ゼロの極限でゼロになる。
    分子が集まってできた固体の圧縮率熱膨張率は、常温・常圧の気体と比べてはるかに小さい。このことから、分子自体の大きさは、温度や圧力によってさほど変化しないと考えられる。よって分子の数密度が減れば、気体分子の占める体積の割合は小さくなる。
  • 実在気体の気体分子間に働く分子間力は、温度が同じなら低圧ほど弱くなり、圧力ゼロの極限でゼロになる。
    低密度になるほど、分子間の平均距離が長くなる。分子同士が離れているほど、分子間力は弱くなる。個々の分子がほかの分子の影響を受けずに過ごす時間は低密度になるほど長くなる、といってもよい[23]

どんな気体でも温度を一定に保ったまま低圧にすると、気体分子の体積と分子間力が無視できるようになるので、ボイル=シャルルの法則が成り立つようになる。実在気体の状態方程式はすべて、低密度で理想気体に漸近する形になっている。例えばファンデルワールスの状態方程式

あるいはビリアル方程式

はどちらも、温度 T 一定、モル体積 Vm → ∞ の極限で理想気体の状態方程式となる。

同じ理由で、どんな気体でも圧力を一定に保ったまま高温にすると、密度が減少して気体分子の体積と分子間力が無視できるようになるので、ボイル=シャルルの法則が成り立つようになる。ただしある程度の高温になると、どんな気体でも分子の解離電離プラズマ化)が起こるため、分子数 N が温度や圧力によって変化するようになる。そのような高温領域では、アボガドロの法則ドルトンの法則は成り立っても、ボイル=シャルルの法則は成り立たなくなる。それゆえ「理想気体の法則は高温の状態に近づくにつれて実在気体でも厳密に成り立つようになる極限法則である」ということはできない。

理想気体の応用[編集]

理想気体は、気体が関係する物理化学現象を解析する際に、気体のモデルとして多用される。例として

が挙げられる。

脚注[編集]

出典[編集]

  1. ^ 理化学辞典』「理想気体」.
  2. ^ アトキンス物理化学』 p. 9.
  3. ^ 伏見 1942, p. 9.
  4. ^ グリーンブック』 p. 167.
  5. ^ 理化学辞典』「気体定数」.
  6. ^ 松尾 1994, p. 9.
  7. ^ キャレン 1999, p. 12.
  8. ^ 田崎 2000, p. 52.
  9. ^ 松尾 1994, p. 15.
  10. ^ キャレン 1998, p. 87.
  11. ^ これらの c の値は『アトキンス物理化学』 表2・7 より算出した。
  12. ^ 松尾 1994, p. 14.
  13. ^ 田崎 2000, p. 175.
  14. ^ 石川 2016, p. 76; 卜部 2005, p. 116など。
  15. ^ 石川 2016, pp. 76-84. には理想気体の分子同士の衝突に関する記述はない。
  16. ^ 香取 2007, pp. 10,20.
  17. ^ 松尾 1994, p. 10.
  18. ^ 中村 1993, p. 92.
  19. ^ 阿部 1992, p. 3.
  20. ^ 香取 2007, p. 13.
  21. ^ 松尾 1994, p. 21.
  22. ^ アトキンス物理化学要論』 p. 12.
  23. ^ アトキンス物理化学』 p. 14.

注釈[編集]

  1. ^ 分子原子など。
  2. ^ 気体を構成する個々の粒子のこと。気体分子運動論では、構成粒子が原子であってもこれを分子と呼ぶことが多い。
  3. ^ specific gas constant。単に気体定数と呼ぶことが多い。
  4. ^ molar gas constant。単に気体定数と呼ぶことが多い。
  5. ^ 粒子の回転や変形などの自由度のこと。
  6. ^ 基準とする温度 T0 には依存する。
  7. ^ わずかな相互作用により粒子が互いにエネルギーを交換するが、相互作用エネルギーの全系のエネルギーへの寄与は無視できるほど小さく、全系のエネルギーが個々の粒子のエネルギーの和として与えられる系のこと。
  8. ^ ただしファンデルワールス気体では、固体への相転移は起こらない。
  9. ^ ある極限状態に近づくにつれて近似が良くなり、極限状態では厳密に成り立つ法則のこと。

参考文献[編集]

関連項目[編集]