ボース=アインシュタイン凝縮

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索
ルビジウム原子の気体の速度分布データ:物質の新しいであるボース=アインシュタイン凝縮の発見を確証した。
左:ボースアインシュタイン凝縮が現れる直前。中央:凝縮が現れた直後。右:さらに蒸発させても、ほぼ純粋な凝縮が残る。

ボース=アインシュタイン凝縮(ボース=アインシュタインぎょうしゅく、: Bose-Einstein condensation[注 1])、または略してBECとは、ある転移温度以下で巨視的な数のボース粒子が最低エネルギー状態に落ち込む相転移現象[1][2][3][4]。量子力学的なボース粒子の満たす統計性であるボース=アインシュタイン統計の性質から導かれる。BECの存在はアルベルト・アインシュタインの1925年の論文の中で予言された[5] 。粒子間の相互作用による他の相転移現象とは異なり、純粋に量子統計性から引き起こされる相転移であり、アインシュタインは「引力なしの凝縮」と呼んだ[5]。粒子間相互作用が無視できる理想ボース気体に近い中性原子気体のBECは、アインシュタインの予言から70年経った1995年に実現された。1995年にコロラド大学JILA英語版の研究グループはルビジウム8787Rb)、マサチューセッツ工科大学(MIT)の研究グループはナトリウム2323Na)の希薄な中性アルカリ原子気体でのBECを実現させた[6][7]。中性アルカリ原子気体でBECが起こる数マイクロKから数百ナノKという極低温状態の実現には、レーザー冷却などの冷却技術や磁気光学トラップ英語版などの捕獲技術の確立が不可欠であった[8][9]。2001年のノーベル物理学賞は、中性アルカリ原子気体でのBEC実現の実験的成果に対し、授与された。

概要[編集]

ボース気体の温度とBECの関係

量子力学的な粒子はスピン整数値をとるボース粒子と半整数値をとるフェルミ粒子に分けられる。ボース粒子が従うボース統計では、同種粒子は区別できず、任意個の粒子が同じエネルギー状態をとることができる。ボース気体でボース=アインシュタイン凝縮(BEC)が生じる機構は次のように説明される[1][2][4]。室温でマクスウェル=ボルツマン分布に従う古典粒子として振る舞う気体原子も極低温状態では量子性が顕著となる。極低温状態で原子の量子力学的な広がりの度合いを表す熱的ド・ブロイ波長が平均原子間距離に近づくと、各原子の波動関数が互いに重なり始める。その結果、ボーズ気体では同種粒子が識別できない量子統計性が現れる。このとき、系のボーズ粒子は交換に対して波動関数を対称にしようと相空間の同じ場所に凝縮する。そのような条件下では、巨視的な個数のボース粒子が最低エネルギーの量子状態を取り、BECが発現する。凝縮体は多数の原子が一つの波動関数で表される巨視的な量子状態であり、コヒーレントに振る舞う。

1925年、インドの物理学者サティエンドラ・ボースからの手紙をきっかけとして、アルベルト・アインシュタインがBECの存在を予言した[5]。これは固体、液体、気体、プラズマなどと同様に物質の相の一つと捉えられる。

BECを示す系としては、従来、液体ヘリウム酸化銅半導体(Cu2O)の励起子が知られていたが、これらの系は粒子間相互作用が強く、理想ボース気体からはかけ離れていた[2]。理想ボース気体に近い、中性アルカリ原子気体によるBECは1995年に実現された[7][6]

理想ボース気体[編集]

理想的なボース気体においては、ボース=アインシュタイン凝縮(BEC)の転移温度 TBEC は、体積 V が一定であるとして、

となる。ここで、hプランク定数kBボルツマン定数m は粒子の質量、N は粒子数 である。

ここで、ζ(z)リーマンのゼータ関数であり

である。

また、BEC状態になった粒子の数 NBEC は、

となる(T は温度)。上式で温度が転移温度以下になると、ボース=アインシュタイン凝縮した粒子の数が増えていき、 T = 0 K で全ての粒子が凝縮状態となる(ヘリウム4による超流動では、どんなに低温にしても凝縮状態にあるのは一割程度である)。理想ボース気体での凝縮では、定積比熱の微分にとびがあり、これは三次の相転移である。

中性原子気体での実現[編集]

原子はスピン1/2の核子とスピン1/2の電子からなる複合粒子であり、原子のスピンは核子数 A と電子数 Z の総和から (Z + A)/2 で与えられる。Z + A が偶数であれば、原子のスピンは整数値をとり、ボース粒子となる。例えば、中性アルカリ原子において、電子数 Z は奇数であり、核子数 A が奇数の同位体がボース粒子である。このボース原子から成る中性原子気体をマイクロK以下の極低温に冷却するとボース=アインシュタイン凝縮 (BEC) し、ボース原子は、1つの最低エネルギー状態を占有するようになる。

こうした極低温では、原子と容器の壁との接触や原子間の3体衝突の過程により、気体は液体や固体の相に相転移してしまう[2]。従って、BECは最終的に化学平衡状態である液体や固体の相に相転移する準安定状態である。液体や固体への相転移が生じる前にBECを実現するためには、気体原子の液体や固体への凝集を抑制する必要がある。気体原子と容器の接触と避けるために、気体原子は真空中に捕獲される。一方、3つの原子が衝突する3体衝突では、束縛エネルギーが放出され、分子やクラスター状態が形成され、凝集が生じる。3体衝突の発生率は原子数密度の2乗に比例するため、その抑制に希薄な気体を用いる必要がある。典型的なBECの実験では、密度は1014 cm−3から1015 cm−3であり、BEC発生の温度は500 nKから2 µKである[9]

中性原子気体の実験では、一般にレーザー冷却による予備冷却、磁気光学トラップ英語版による捕獲、蒸発冷却英語版の過程を経て、BECが実現される[2]。レーザー冷却では、気体原子の共鳴周波数よりわずかに低い周波数のレーザーをx軸、y軸、z軸の正負の両方向から照射する。このとき、気体原子は輻射圧により、減速される。レーザー冷却では気体原子にとって、レーザーはあたかも粘性をもった糖蜜のように振る舞うので、光糖蜜状態英語版と呼ばれる。レーザー冷却された気体原子は、円偏光レーザーと4重極磁場で構成される磁気光学トラップに捕獲される。一定の条件が満たされる原子[注 2]については、磁気光学トラップ中で偏光勾配冷却が働き、さらに冷却される。冷却の最終段階では、磁気トラップ中で運動エネルギーの大きい原子を選択的に蒸発させる蒸発冷却により、BECが起きる転移温度以下に到達する。

1995年コロラド大学エリック・コーネルカール・ワイマンらは、ルビジウム原子 (87Rb) を冷却することで初めてBECを実現し[6]、同年マサチューセッツ工科大学ヴォルフガング・ケターレらは、ナトリウム原子 (23Na) でBECを実現した[7]。この成果により、コーネル、ワイマン、ケターレの3名は2001年度ノーベル物理学賞を受賞した。

超流動[編集]

ボース粒子であるヘリウム4による超流動現象において、超流体部分はボース=アインシュタイン凝縮していると考えられている。

超伝導[編集]

BCS理論で記述できる超伝導現象では、電子の対であるクーパー対をボース粒子として、厳密な言い方ではないがボース=アインシュタイン凝縮が起きているとみなすことができる。クーパー対は電子対なので、電子対凝縮(単に対凝縮とも)と言うことがある。

その他の類似現象[編集]

フェルミ粒子であるヘリウム3の超流動は、超伝導の場合のようにヘリウム3原子の対が凝縮対を作って、凝縮状態となっている(超流動参照)。また、フェルミ粒子である中性子が対をなすため、同様なことが中性子星の内部でも起こっている可能性が指摘されている。その他にも、光子フォノンでも凝縮現象を考えることができる。

宇宙での実験[編集]

ボース=アインシュタイン凝縮を研究するためには、温度は絶対零度よりほんの少し高いだけの温度にまで冷却する必要がある。絶対零度まで冷やすと原子はエネルギーが最小となり、ほぼ動きを止める。科学者たちは重力のある環境下と、重力のない環境下での原子の挙動の違いを比較するため、国際宇宙ステーション(ISS)を使って研究を行うことにした。このCold Atom Laboratory (CAL) と呼ぶ装置は2017年8月にISSへ打ち上げることを目指している。地上試験では200ナノケルビンを達成しており、ISSでの実験では、温度は1ピコケルビンにまで達する予定。これは自然現象でも到達できないため、これまで宇宙で観測された中でも一番低い温度になる予定。ここまで冷やすと、新たな量子現象の観察や、物理学の最も基本となる法則の試験が行える可能性がある。この実験を提案したチームの中には、3人のノーベル賞受賞者が含まれている[10]

脚注[編集]

[編集]

  1. ^ 英語では、凝縮する過程を condensation、凝縮した状態を condensate と言い分ける場合もある。
  2. ^ 遷移する2準位の上側準位の全角運動量が下側準位よりも大きく、下側準位が縮退していないことが必要である。

出典[編集]

  1. ^ a b 上田 (1998)
  2. ^ a b c d e E.A. Cornel et al. (1999)
  3. ^ F. Dalfavo et al. (1999)
  4. ^ a b W. Kettelrle et al. (1999)
  5. ^ a b c Einstein, A. (1925). “Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung”. Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl. Bericht 1: 3. https://web.physik.rwth-aachen.de/~meden/boseeinstein/einstein1925.pdf. 
  6. ^ a b c Anderson, M. H.; Ensher, J. R.; Matthews, M. R.; Wieman, C. E.; Cornel, E. A. (1995). “Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor”. Science 269: 198. doi:10.1126/science.269.5221.198. 
  7. ^ a b c Davis, K. B.; Mewes, M.-O.; Andrews, M. R.; Druten, N. J. van; Durfee, D. S.; Kurn, D. M.; Ketterle, W. (1999). “Bose-Einstein Condensation in a Gas of Sodium Atoms”. Phys. Rev. Lett. 75: 3969. doi:0.1103/PhysRevLett.75.3969. 
  8. ^ Cornel, E. A.; Wieman, C. E. (2002). “Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments”. Rev. Mod. Phys. 74: 875. doi:10.1103/RevModPhys.74.875.  (free access)
  9. ^ a b Wolfgang, Ketterle (2002). “Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser”. Rev. Mod. Phys. 74: 1131. doi:10.1103/RevModPhys.74.1131.  (free access)
  10. ^ “Cold Atom Laboratory Creates Atomic Dance”. NASA. (2014年9月26日). http://www.nasa.gov/mission_pages/station/research/news/cold_atom_lab/ 2015年5月5日閲覧。 

参考文献[編集]

関連項目[編集]

外部リンク[編集]