「同化 (生物学)」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
→‎出典: +temp: {{代謝}} (記事に着目できるようテンプレート登録を重複させた)
タグ: サイズの大幅な増減 ビジュアルエディター
1行目: 1行目:
'''同化'''(どうか、Anabolism)とは、小さな部品から[[分子]]を構成する[[代謝]]過程である<ref>{{cite web |url=http://www.chem.qmul.ac.uk/iupac/bioinorg/AB.html#20 |title=Glossary of Terms Used in Bioinorganic Chemistry: Anabolism |accessdate=2007-10-30 |last=de Bolster |first=M.W.G. |year=1997 |publisher=International Union of Pure and Applied Chemistry}}</ref>。これらの反応には[[エネルギー]]が必要である。代謝過程を分類する1つの方法として細胞、組織のレベルにおいて「同化作用」か「異化作用」かというのがある。同化は、大きな分子を小さな部分に分解して[[細胞呼]]に用いる[[異化 (生物学)|異化]]から得られるギーによって起こる。このエネルギー供給は、多くの場合は[[アデノシ三リン酸]]を通じ起こる<ref>Nicholls D.G. and Ferguson S.J. (2002) ''Bioenergetics'' Academic press 3<sup>rd</sup> edition ISBN 0-125-18121-3</ref>。
'''同化'''(どうか、{{Lang-en-short|anabolism}})、'''同化作用'''(どうかさよう)とも呼ばれ、小さな部品から[[分子]]を構成する一連の[[代謝経路]]である<ref>{{cite web|url=http://www.chem.qmul.ac.uk/iupac/bioinorg/AB.html#20|title=Glossary of Terms Used in Bioinorganic Chemistry: Anabolism | vauthors = de Bolster MW |year=1997 |publisher=International Union of Pure and Applied Chemistry |archive-url= https://web.archive.org/web/20071030105041/http://www.chem.qmul.ac.uk/iupac/bioinorg/AB.html |archive-date=30 October 2007 |url-status=dead |access-date=2007-10-30}}</ref>。これらの反応には[[エネルギー]]が必要であ、[[吸エル過程]]とも呼ばれる<ref>{{cite book | first1 = Connie | last1 = Rye | first2 = Robert | last2 = Wise | first3 = Vladimir | last3 = Jurukovski | first4 = Jung | last4 = Choi | first5 = Yael | last5 = Avissar | name-list-style = vanc |url= https://cnx.org/contents/GFy_h8cu@11.6:rZudN6XP@2/Introduction |title=Biology|year=2013 | publisher = OpenStax |location= Rice University, Houston Texas | isbn = 978-1-938168-09-3 }}</ref>。同化作用は[[代謝]]における構築の側面で、これに対して[[異化作用]](異化とも呼ぶ)は分解の側面である。通常、同化作用は[[生合成]]と[[類義語|同義]]である


== 経路 ==
同化過程は、器官や組織を「組み立てる」方向に働く。このような過程で細胞は成長、分化し、複雑な分子が成され、個体は大きくなる。同化の例としては、骨の成長や石化、筋肉量の増加がある。
[[核酸]]、タンパク質、[[多糖類]]などの高分子を構築するための同化経路である[[重合反応]]は、モノマーを結合するために[[縮合反応]]を利用する<ref name="MBC_2002">{{cite book |url= https://www.ncbi.nlm.nih.gov/books/NBK21054/ |title=Molecular Biology of the Cell |last=Alberts |first=Bruce |last2=Johnson |first2=Alexander |last3=Julian |first3=Lewis |last4=Raff |first4=Martin |last5=Roberts |first5=Keith |last6=Walter |first6=Peter | name-list-style = vanc |publisher=CRC Press |year=2002 |isbn=978-0-8153-3218-3|edition= 5th |access-date=2018-11-01 |archive-url= https://web.archive.org/web/20170927035510/https://www.ncbi.nlm.nih.gov/books/NBK21054/ |archive-date=27 September 2017}} [https://archive.org/details/MolecularBiologyOfTheCell5th Alt URL]</ref>。酵素や[[補因子]]を使用して、[[高分子]]はより小さな分子から作られる。


[[File:Catabolism, energy carriers and anabolism.png|thumb|生物は[[熱力学的平衡|平衡状態]]になく、その秩序を維持するために[[自由エネルギー#ギブズの自由エネルギー|自由エネルギー]](''ΔG'')の継続的な流入が必要である。食物の分解(左上から左下への矢印)は、エネルギーを発生する[[発エルゴン反応]])である。また、生物が生命状態を維持するための分子を構築する同化作用(右下から右上への矢印)は、エネルギーを必要とする[[吸エルゴン反応]])である。生物は両者を結びつけることによって、非平衡状態を維持している。[[アデノシン三リン酸|ATP]]と[[ニコチンアミドアデニンジヌクレオチド|NADH]]は、食物の分解と細胞内化合物の生合成をつなぐ{{Ill2|エネルギー担体|en|Energy carrier}}として作用する。|alt=|495x495px]]
[[内分泌学]]者は伝統的にホルモンを同化と異化を促進するもので分類してきた。古典的な同化ホルモンとしては、[[タンパク質合成]]を促進し、筋肉の成長を促す[[アナボリックステロイド]]がある。同化作用と異化作用のバランスは[[概日リズム]]によって調整されることもあり、たとえば[[グルコース代謝]]などの過程は、日中の活動的な時間帯に最大になる<ref>{{cite journal |author=Ramsey KM, Marcheva B, Kohsaka A, Bass J |title=The clockwork of metabolism |journal=Annu. Rev. Nutr. |volume=27 |issue= |pages=219–40 |year=2007 |pmid=17430084 |doi=10.1146/annurev.nutr.27.061406.093546}}</ref>。


=== エネルギー源 ===
==古典的な同化ホルモンの例==
同化作用は、大きな分子を小さな部分に分解して[[細胞呼吸]]に用いる[[異化作用]]から得られる[[エネルギー]]によって起こる。多くの同化過程は、[[アデノシン三リン酸]](ATP)の{{Ill2|ATP加水分解|en|ATP hydrolysis|label=切断}}を通じて起こる<ref>{{cite book | vauthors = Nicholls DG, Ferguson SJ |title=Bioenergetics | edition = 3rd |publisher=Academic Press | date = 2002 |isbn=978-0-12-518121-1}}</ref>。通常、同化作用は[[還元]]を伴い、[[エントロピー]]減少させるため、エネルギー投入がないと不利となる<ref name=":0">{{Cite book|url=https://biochem.science.oregonstate.edu/files/biochem/ahern/BiochemistryFreeandEasy3.pdf|title=Biochemistry Free and Easy|last=Ahern|first=Kevin|last2=Rajagopal|first2=Indira | name-list-style = vanc |publisher=Oregon State University|year=2013|edition= 2nd}}</ref>。前駆体分子と呼ばれる出発物質は、ATPの加水分解、補因子[[ニコチンアミドアデニンジヌクレオチド|NAD<sup>+</sup>]]、[[ニコチンアミドアデニンジヌクレオチドリン酸|NADP<sup>+</sup>]]、[[フラビンアデニンジヌクレオチド|FAD]]の還元、あるいは他の有利な副反応を行って生み出された[[化学エネルギー]]を使用して結合される<ref>{{Cite book | first1 = Donald | last1 = Voet | first2 = Judith G | last2 = Voet | first3 = Charlotte W | last3 = Pratt | name-list-style = vanc |title=Fundamentals of biochemistry : life at the molecular level |date=2013|publisher=Wiley |isbn=978-0-470-54784-7|edition= Fourth |location=Hoboken, NJ |oclc=738349533}}</ref>。ときには、細胞の[[リン脂質二重層]]の形成のように、疎水性相互作用によって分子が凝集する場合、エネルギーの投入なしでエントロピーによって結合が行われることもある<ref>{{Cite book | first1 = Israel | last1 = Hanin | first2 = Giancarlo | last2 = Pepeu | name-list-style = vanc |title=Phospholipids: biochemical, pharmaceutical, and analytical considerations |isbn=978-1-4757-1364-0 |location=New York |oclc=885405600| date = 2013-11-11 }}</ref>。
*[[成長ホルモン]]
*[[インスリン様成長因子]]
*[[インスリン]]
*[[テストステロン]]
*[[エストラジオール]]


=== 補因子 ===
近年になって発見された、同化及び異化作用のバランスを調整するホルモンには以下のようなものがある。
還元剤である[[ニコチンアミドアデニンジヌクレオチド|NADH]]、[[ニコチンアミドアデニンジヌクレオチドリン酸|NADPH]]、[[フラビンアデニンジヌクレオチド|FADH<sub>2</sub>]]<ref name=":1" />、ならびに金属イオンは<ref name="MBC_2002" />、同化経路のさまざまな段階で[[補因子]]として機能する。NADH、NADPH、およびFADH<sub>2</sub>は[[電子伝達系|電子伝達体]]として作用し、酵素内の荷電金属イオンは[[基質 (化学)|基質]]上の荷電[[官能基]]を安定化させる。
*[[オレキシン]]と[[ヒポクレチン]]
*[[メラトニン]]


==関連項目==
=== 基質 ===
同化のための基質のほとんどは、細胞内の{{Ill2|アデニル酸エネルギーチャージ|en|Energy charge|label=エネルギー充足}}が高い期間に異化経路から取り出された中間体である<ref name=":2" />。
*[[アナボリックステロイド]]
*[[異化 (生物学)]]
*[[代謝]]
*[[筋肉肥大]]


==出典==
== 機能 ==
同化過程は、[[器官]][[組織 (生物学)|組織]]を「組み立てる」方向に働く。このような過程で細胞は成長、分化し、複雑な[[分子]][[化学合成|合]]され、個体は大きくなる。同化の例としては、骨の[[骨化|成長]][[]][[筋肉]]量の増加があげられる。
{{reflist}}

=== タンパク同化ホルモン ===
[[内分泌学|内分泌学者]]は慣例的に、代謝のどの部分を刺激するかに基づいて、[[ホルモン]]を同化型と異化型に分類してきた。古典的なタンパク同化ホルモン<!-- anabolic hormones -->は、[[タンパク質生合成|タンパク質の合成]]と筋肉の成長を促す[[蛋白同化ステロイド|タンパク同化ステロイド]](アナボリックステロイド)<!-- anabolic steroids -->、およびタンパク質・[[炭水化物]]・[[脂肪]]の代謝を調節する[[インスリン]]である。

=== 光合成による糖合成 ===
植物やある種のバクテリアの[[光合成|光合成による糖質合成]]<!-- photosynthetic carbohydrate synthesis -->は、CO<sub>2</sub>から[[グルコース]]、[[セルロース]]、[[デンプン]]、[[脂質]]、および[[タンパク質]]などを生成する同化過程である<ref name=":0" />。これは、光合成の光駆動反応から生成されたエネルギーを利用し、光合成炭素還元サイクル(別名: [[カルビン回路]])による[[炭素同化]](炭素固定とも)を介して、これらの大きな分子への前駆体を生成する<ref name=":2" />。[[File:Amino acid biosynthesis overview.png|thumb|[[解糖]]および[[クエン酸サイクル]]の中間体による[[アミノ酸合成|アミノ酸生合成]]の概要。|alt=|407x407px]]

=== アミノ酸生合成 ===
すべてのアミノ酸は、[[解糖系]]、[[クエン酸回路]]、または[[ペントースリン酸経路]]の異化過程の中間体から形成される。解糖系からは、[[グルコース-6-リン酸]]が[[ヒスチジン]]の前駆体として、[[3-ホスホグリセリン酸]]がグリシンおよび[[システイン]]の前駆体として、[[ホスホエノールピルビン酸]]が3-ホスホグリセリン酸誘導体の[[エリトロース-4-リン酸|エリスロース-4-リン酸]]と結合して[[トリプトファン]]、[[フェニルアラニン]]および[[チロシン]]として、[[ピルビン酸]]が[[アラニン]]、[[バリン]]、[[ロイシン]]および[[イソロイシン]]の前駆体としてそれぞれ生成される。クエン酸回路からは、[[α-ケトグルタル酸]]が[[グルタミン酸]]に、次いで[[グルタミン]]、[[プロリン]]、[[アルギニン]]に変換され、また[[オキサロ酢酸]]が[[アスパラギン酸]]に、次いで[[アスパラギン]]、[[メチオニン]]、[[スレオニン]]、[[リジン]]に変換される<ref name=":2" />。

=== グリコーゲン貯蔵 ===
高血糖の時には、解糖による[[グルコース-6-リン酸]]は、グリコーゲン貯蔵経路に転換される。それは、{{Ill2|ホスホグルコムターゼ|en|Phosphoglucomutase}}によって[[グルコース-1-リン酸]]に変換され、次いで{{Ill2|UTP--グルコース-1-リン酸ウリジルトランスフェラーゼ|en|UTP—glucose-1-phosphate uridylyltransferase}}によって[[UDP-グルコース]]に変換される。[[グリコーゲンシンターゼ|グリコーゲン合成酵素]]は、このUDP-グルコースをグリコーゲン鎖に付加する<ref name=":2" />。

=== 糖新生 ===
[[グルカゴン]]は慣例上は異化ホルモンであるが、飢餓時に肝臓による[[糖新生]]の同化過程を刺激し、さらに[[低血糖症|低血糖]]を防ぐために腎皮質と腸を刺激する<ref name=":1">{{cite book | chapter-url = https://bio.libretexts.org/TextMaps/Biochemistry/Book%3A_Biochemistry_Online_(Jakubowski)/10%3A_Metabolic_Pathways/B._MP2%3A_An_Overview_of_Metabolic_Pathways_-_Anabolism | chapter = An Overview of Metabolic Pathways - Anabolism |title=Biochemistry Online |last=Jakubowski |first=Henry | name-list-style = vanc |publisher=LibreTexts | location = College of St. Benedict, St. John's University|year=2002 }}</ref>。これは、ピルビン酸をグルコースに変換する過程である。ピルビン酸は、グルコース、[[乳酸]]、アミノ酸、または[[グリセロール]]の分解により生成される<ref name=":3">{{cite book | first1 = Jeremy M | last1 = Berg | first2 = John L | last2 = Tymoczko | first3 = Lubert | last3 = Stryer | name-list-style = vanc | url = https://archive.org/details/biochemistrychap00jere | title = Biochemistry | date = 2002 | publisher = W.H. Freeman | isbn = 978-0-7167-3051-4 | edition = 5th | location = New York | oclc = 48055706 | url-access = registration }}</ref>。糖新生経路には、解糖と共通する可逆的な酵素過程が多くあるが、解糖を逆行する過程ではない。これは、さまざまな不可逆的な酵素を使用して、経路全体が一方向にしか進まないようにするものである<ref name=":3" />。

== 調節 ==
同化作用は、触媒作用とは別の酵素で行われ、その経路のどこかで不可逆的な段階を経る。これにより、細胞は生産速度を調節し、異化作用で無限ループ([[無益回路|無益サイクル]]として知られる)が形成されるのを防ぐことができる<ref name=":2">{{cite book | title=Principles of Biochemistry | first1 = David L | last1 = Nelson | first2 = Albert L | last2 = Lehninger | first3 = Michael M | last3 = Cox | name-list-style = vanc |year= 2013 |isbn=978-1-4292-3414-6|location= New York |publisher=W.H. Freeman }}</ref>。

同化と異化のバランスは、[[アデノシン二リン酸|ADP]]とATP、すなわち細胞の{{Ill2|エネルギー充足|en|Energy charge}}に敏感である。細胞は、ATPが多いと同化経路を有利にして異化活動を遅らせ、ADPが多いと同化を遅らせて異化を有利にする<ref name=":2" />。これらの経路は[[概日リズム]]によっても調節されており、[[解糖]]などの過程は一日を通して、動物の通常の活動期間に合わせて変動する<ref>{{cite journal | vauthors = Ramsey KM, Marcheva B, Kohsaka A, Bass J | title = The clockwork of metabolism | journal = Annual Review of Nutrition | volume = 27 | pages = 219–40 | year = 2007 | pmid = 17430084 | doi = 10.1146/annurev.nutr.27.061406.093546 }}</ref>。

== 語源 ==
<u>''anabolism''</u>という言葉は[[新ラテン語]]に由来し、[[ギリシャ語]]の{{lang|grc|ἁνά}}(上向き)と{{lang|grc|βάλλειν}}(投げる)を語源とする。

== 脚注 ==
{{Reflist}}


{{代謝}}{{代謝}}
{{代謝}}{{代謝}}

2022年9月10日 (土) 21:27時点における版

同化(どうか、: anabolism)は、同化作用(どうかさよう)とも呼ばれ、小さな部品から分子を構成する一連の代謝経路である[1]。これらの反応にはエネルギーが必要であり、吸エルゴン過程とも呼ばれている[2]。同化作用は代謝における構築の側面で、これに対して異化作用(異化とも呼ぶ)は分解の側面である。通常、同化作用は生合成同義である。

経路

核酸、タンパク質、多糖類などの高分子を構築するための同化経路である重合反応は、モノマーを結合するために縮合反応を利用する[3]。酵素や補因子を使用して、高分子はより小さな分子から作られる。

生物は平衡状態になく、その秩序を維持するために自由エネルギー(ΔG)の継続的な流入が必要である。食物の分解(左上から左下への矢印)は、エネルギーを発生する発エルゴン反応)である。また、生物が生命状態を維持するための分子を構築する同化作用(右下から右上への矢印)は、エネルギーを必要とする吸エルゴン反応)である。生物は両者を結びつけることによって、非平衡状態を維持している。ATPNADHは、食物の分解と細胞内化合物の生合成をつなぐエネルギー担体として作用する。

エネルギー源

同化作用は、大きな分子を小さな部分に分解して細胞呼吸に用いる異化作用から得られるエネルギーによって起こる。多くの同化過程は、アデノシン三リン酸(ATP)の切断英語版を通じて起こる[4]。通常、同化作用は還元を伴い、エントロピー減少させるため、エネルギー投入がないと不利となる[5]。前駆体分子と呼ばれる出発物質は、ATPの加水分解、補因子NAD+NADP+FADの還元、あるいは他の有利な副反応を行って生み出された化学エネルギーを使用して結合される[6]。ときには、細胞のリン脂質二重層の形成のように、疎水性相互作用によって分子が凝集する場合、エネルギーの投入なしでエントロピーによって結合が行われることもある[7]

補因子

還元剤であるNADHNADPHFADH2[8]、ならびに金属イオンは[3]、同化経路のさまざまな段階で補因子として機能する。NADH、NADPH、およびFADH2電子伝達体として作用し、酵素内の荷電金属イオンは基質上の荷電官能基を安定化させる。

基質

同化のための基質のほとんどは、細胞内のエネルギー充足英語版が高い期間に異化経路から取り出された中間体である[9]

機能

同化過程は、器官組織を「組み立てる」方向に働く。このような過程で細胞は成長、分化し、複雑な分子合成され、個体は大きくなる。同化の例としては、骨の成長石灰化筋肉量の増加があげられる。

タンパク同化ホルモン

内分泌学者は慣例的に、代謝のどの部分を刺激するかに基づいて、ホルモンを同化型と異化型に分類してきた。古典的なタンパク同化ホルモンは、タンパク質の合成と筋肉の成長を促すタンパク同化ステロイド(アナボリックステロイド)、およびタンパク質・炭水化物脂肪の代謝を調節するインスリンである。

光合成による糖合成

植物やある種のバクテリアの光合成による糖質合成は、CO2からグルコースセルロースデンプン脂質、およびタンパク質などを生成する同化過程である[5]。これは、光合成の光駆動反応から生成されたエネルギーを利用し、光合成炭素還元サイクル(別名: カルビン回路)による炭素同化(炭素固定とも)を介して、これらの大きな分子への前駆体を生成する[9]

解糖およびクエン酸サイクルの中間体によるアミノ酸生合成の概要。

アミノ酸生合成

すべてのアミノ酸は、解糖系クエン酸回路、またはペントースリン酸経路の異化過程の中間体から形成される。解糖系からは、グルコース-6-リン酸ヒスチジンの前駆体として、3-ホスホグリセリン酸がグリシンおよびシステインの前駆体として、ホスホエノールピルビン酸が3-ホスホグリセリン酸誘導体のエリスロース-4-リン酸と結合してトリプトファンフェニルアラニンおよびチロシンとして、ピルビン酸アラニンバリンロイシンおよびイソロイシンの前駆体としてそれぞれ生成される。クエン酸回路からは、α-ケトグルタル酸グルタミン酸に、次いでグルタミンプロリンアルギニンに変換され、またオキサロ酢酸アスパラギン酸に、次いでアスパラギンメチオニンスレオニンリジンに変換される[9]

グリコーゲン貯蔵

高血糖の時には、解糖によるグルコース-6-リン酸は、グリコーゲン貯蔵経路に転換される。それは、ホスホグルコムターゼ英語版によってグルコース-1-リン酸に変換され、次いでUTP--グルコース-1-リン酸ウリジルトランスフェラーゼ英語版によってUDP-グルコースに変換される。グリコーゲン合成酵素は、このUDP-グルコースをグリコーゲン鎖に付加する[9]

糖新生

グルカゴンは慣例上は異化ホルモンであるが、飢餓時に肝臓による糖新生の同化過程を刺激し、さらに低血糖を防ぐために腎皮質と腸を刺激する[8]。これは、ピルビン酸をグルコースに変換する過程である。ピルビン酸は、グルコース、乳酸、アミノ酸、またはグリセロールの分解により生成される[10]。糖新生経路には、解糖と共通する可逆的な酵素過程が多くあるが、解糖を逆行する過程ではない。これは、さまざまな不可逆的な酵素を使用して、経路全体が一方向にしか進まないようにするものである[10]

調節

同化作用は、触媒作用とは別の酵素で行われ、その経路のどこかで不可逆的な段階を経る。これにより、細胞は生産速度を調節し、異化作用で無限ループ(無益サイクルとして知られる)が形成されるのを防ぐことができる[9]

同化と異化のバランスは、ADPとATP、すなわち細胞のエネルギー充足英語版に敏感である。細胞は、ATPが多いと同化経路を有利にして異化活動を遅らせ、ADPが多いと同化を遅らせて異化を有利にする[9]。これらの経路は概日リズムによっても調節されており、解糖などの過程は一日を通して、動物の通常の活動期間に合わせて変動する[11]

語源

anabolismという言葉は新ラテン語に由来し、ギリシャ語ἁνά(上向き)とβάλλειν(投げる)を語源とする。

脚注

  1. ^ Glossary of Terms Used in Bioinorganic Chemistry: Anabolism”. International Union of Pure and Applied Chemistry (1997年). 2007年10月30日時点のオリジナルよりアーカイブ。2007年10月30日閲覧。
  2. ^ Rye, Connie; Wise, Robert; Jurukovski, Vladimir; Choi, Jung; Avissar, Yael (2013). Biology. Rice University, Houston Texas: OpenStax. ISBN 978-1-938168-09-3. https://cnx.org/contents/GFy_h8cu@11.6:rZudN6XP@2/Introduction 
  3. ^ a b Alberts, Bruce; Johnson, Alexander; Julian, Lewis; Raff, Martin; Roberts, Keith; Walter, Peter (2002). Molecular Biology of the Cell (5th ed.). CRC Press. ISBN 978-0-8153-3218-3. オリジナルの27 September 2017時点におけるアーカイブ。. https://web.archive.org/web/20170927035510/https://www.ncbi.nlm.nih.gov/books/NBK21054/ 2018年11月1日閲覧。  Alt URL
  4. ^ Bioenergetics (3rd ed.). Academic Press. (2002). ISBN 978-0-12-518121-1 
  5. ^ a b Ahern, Kevin; Rajagopal, Indira (2013). Biochemistry Free and Easy (2nd ed.). Oregon State University. https://biochem.science.oregonstate.edu/files/biochem/ahern/BiochemistryFreeandEasy3.pdf 
  6. ^ Voet, Donald; Voet, Judith G; Pratt, Charlotte W (2013). Fundamentals of biochemistry : life at the molecular level (Fourth ed.). Hoboken, NJ: Wiley. ISBN 978-0-470-54784-7. OCLC 738349533 
  7. ^ Hanin, Israel; Pepeu, Giancarlo (2013-11-11). Phospholipids: biochemical, pharmaceutical, and analytical considerations. New York. ISBN 978-1-4757-1364-0. OCLC 885405600 
  8. ^ a b Jakubowski, Henry (2002). “An Overview of Metabolic Pathways - Anabolism”. Biochemistry Online. College of St. Benedict, St. John's University: LibreTexts. https://bio.libretexts.org/TextMaps/Biochemistry/Book%3A_Biochemistry_Online_(Jakubowski)/10%3A_Metabolic_Pathways/B._MP2%3A_An_Overview_of_Metabolic_Pathways_-_Anabolism 
  9. ^ a b c d e f Nelson, David L; Lehninger, Albert L; Cox, Michael M (2013). Principles of Biochemistry. New York: W.H. Freeman. ISBN 978-1-4292-3414-6 
  10. ^ a b Berg, Jeremy M; Tymoczko, John L; Stryer, Lubert (2002). Biochemistry (5th ed.). New York: W.H. Freeman. ISBN 978-0-7167-3051-4. OCLC 48055706. https://archive.org/details/biochemistrychap00jere 
  11. ^ “The clockwork of metabolism”. Annual Review of Nutrition 27: 219–40. (2007). doi:10.1146/annurev.nutr.27.061406.093546. PMID 17430084.