Z-行列

出典: フリー百科事典『ウィキペディア(Wikipedia)』
ナビゲーションに移動 検索に移動

Z-行列(Z-ぎょうれつ、: Z-matrix)とは、数学の分野において、すべての非対角成分が0以下である行列のことを言う。すなわち、

を満たすような行列Zのことを、Z-行列と言う。

概要[編集]

競争的な力学系ヤコビ行列は、その定義に従い、Z-行列となる。協力的な力学系のヤコビ行列をJとするならば、−JZ-行列となる。

これと関係する行列としてはL-行列英語版M-行列P-行列フルビッツ行列メッツラー行列などが挙げられる。L-行列とは、すべての対角成分が0より大きいZ-行列のことを言う。M-行列の定義にはいくつか同値なものがあるが、その中の一つとして、正則でありその逆行列が非負であるようなZ-行列、というものがある。Z-行列でありまたP-行列でもあるすべての行列は、正則なM-行列である。

参考文献[編集]

  • Huan T.; Cheng G., Cheng X. (2006). “Modified SOR-type iterative method for Z-matrices”. Applied Mathematics and Computation 175 (1): 258–268. doi:10.1016/j.amc.2005.07.050. 
  • Saad, Y.. Iterative methods for sparse linear systems (2nd ed.). Philadelphia, PA.: Society for Industrial and Applied Mathematics. p. 28. ISBN 053494776X. http://www-users.cs.umn.edu/~saad/books.html. 

関連項目[編集]