スラッシュ分布

出典: フリー百科事典『ウィキペディア(Wikipedia)』
ナビゲーションに移動 検索に移動
スラッシュ
確率密度関数
Slashpdf.svg
累積分布関数
Slashcdf.svg
確率密度関数
累積分布関数
期待値 存在しない
中央値 0
最頻値 0
分散 存在しない
歪度 存在しない
尖度 存在しない
モーメント母関数 存在しない
特性関数
テンプレートを表示

確率論におけるスラッシュ分布(スラッシュぶんぷ、: slash distribution)は、標準正規分布に従う確率変数を、それとは独立一様分布に従う確率変数で割った商が従う確率分布である[1]。言い換えると、確率変数 Z が平均0、分散1の正規分布に従い、確率変数 U が [0,1] 上の一様分布に従い、ZU が独立であるとき、XZ / U はスラッシュ分布に従う。スラッシュ分布は ratio distribution英語版(比分布)の一例である。この分布はウィリアム・H・ロジャースとジョン・テューキーの1972年の論文において命名された[2]

確率密度関数

ここで φ(x) は標準正規分布の確率密度関数である[3]。この式は x = 0 で定義されていないが、この不連続点は除去可能である:

スラッシュ分布の最もありふれた使途はシミュレーションの研究におけるものである。この分布は正規分布よりは裾が重くコーシー分布ほどは病的でないという点で便利である[3]

脚注[編集]

  1. ^ Davison, Anthony Christopher; Hinkley, D. V. (1997). Bootstrap methods and their application. Cambridge University Press. p. 484. ISBN 978-0-521-57471-6. http://www.cambridge.org/us/knowledge/isbn/item1154176/?site_locale=en_US 2012年9月24日閲覧。. 
  2. ^ Rogers, W. H.; Tukey, J. W. (1972). “Understanding some long-tailed symmetrical distributions”. Statistica Neerlandica 26 (3): 211–226. doi:10.1111/j.1467-9574.1972.tb00191.x. 
  3. ^ a b SLAPDF”. Statistical Engineering Division, National Institute of Science and Technology. 2009年7月2日閲覧。

 この記事にはアメリカ国立標準技術研究所が作成したアメリカ合衆国政府の著作物である次のウェブサイトhttp://www.nist.gov本文を含む。