病的な (数学)

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索
ワイエルシュトラス関数は至る所で連続であるが微分可能ではない。

数学における病的な(びょうてきな、英語: pathological)事象とは、その性質が変則的に悪質であったり、直感に反すると見なされるようなもののことを言う。対義語には行儀の良い英語版 (well-behaved) というものがある。反例によってある定理の有用性が脅かされた時に、その有用性を主張する立場の者が、そのような例は病的である、と述べることがしばしばある。有名な反例に、アレクサンダーの角付き球面英語版と呼ばれるものがある。それは、『空間 R3 への球面 S2 の位相的埋め込みは、「行儀の悪い」挙動が生じる可能性を防ぐための追加条件が課されない限り、空間を「きれいに」分割するとは限らない』、という例である(ジョルダン-シェーンフリースの定理英語版を参照されたい)。

病的な事象を探す研究者は、特に解析学集合論の分野においては、広く応用可能な一般的な定理を見つけることよりも、既存の定理の不完全さを指摘することに興味を覚えるような実験主義者英語版であると言うことが出来るかも知れない。それらのいずれの活動も、数学の発展上重要な役割を担っている。

病的な関数[ソースを編集]

「病的な関数」の古典的な例の一つに、至る所で連続であるが至る所微分不可能な、ワイエルシュトラス関数と呼ばれるものがある。微分可能な関数とワイエルシュトラス関数の和は、ふたたび至る所で連続であるが至る所微分不可能な関数となるため、そのような病的な関数は少なくとも微分可能な関数と同じだけ存在することが分かる。実は、ベールのカテゴリー定理により、「ほとんどすべての」連続関数は至る所で微分不可能であるということが示される。

平たく言えば、これは考え得る関数が非常にたくさん存在することが原因である。大部分は至る所微分不可能であり、描いたり研究したりできる関数は比較的稀で、そのうち興味があったり有用であるものは「行儀が良い」関数でもあることが分かる。

関連項目[ソースを編集]

参考文献[ソースを編集]

外部リンク[ソースを編集]