コリオリの力

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動先: 案内検索
古典力学

運動の第2法則
歴史英語版
物理学
ウィキポータル 物理学
執筆依頼加筆依頼
物理学
カテゴリ
物理学 - (画像
ウィキプロジェクト 物理学
左回りに回転する円盤の中心から等速度運動をする玉(上図)は、円盤上からは進行方向に対し右向きの力で曲げられたように見える(下図)。

コリオリの力(コリオリのちから、: force de Coriolis)とは、回転座標系上で移動した際に移動方向と垂直な方向に移動速度に比例した大きさで受ける慣性力(見かけ上の力)の一種であり、コリオリ力、転向力(てんこうりょく)ともいう。1835年にフランスの科学者ガスパール=ギュスターヴ・コリオリが導いた。

回転座標系における慣性力には、他に、角速度変化に伴うオイラー力と回転の中心から外に向かって働く遠心力がある。

コリオリの力の方向

コリオリの力を例を使い説明する。慣性系で静止している質点を等速で回転する座標系から観測する場合を考える。そのとき、その質点は等速円運動をしている。回転座標系では、見かけの力である遠心力が円運動の中心から離れる方向に働くことが知られている。また、等速円運動では質点の加速度の向きは常に円の中心向きである。ところが回転座標系でニュートンの運動方程式が成り立つと仮定するとみかけの力の遠心力を考えただけではこの加速度を得ることができない。回転座標系で等速円運動を続けるためには物体に中心向きの見かけの力が働いている必要がある。この力がコリオリの力である。

コリオリの力を実感するには、フィギュアスケーターのように回転しながら、重り(500 g程度でよい)を持った手を「前にならえ」の要領で前に突き出したり胸元にしまったりを繰り返すと分かりやすい。左回りに回転している場合、腕を前方に突き出す時には重りが右方向に引っ張られるように感じ、腕を胸元にしまうときには左方向に吸い込まれるように感じる。この、重りの進行方向からみて右にずれる方向に働いている見かけ上の力が、コリオリの力である。

コリオリの力を利用したものとして、角速度を測るジャイロ(角速度計)や流量計などがある。

導出[編集]

2次元の場合[編集]

図1 慣性系と回転座標系の関係性
図2 軸を重ねたみた時の慣性系と回転座標系の関係性

慣性系に対して原点のまわりを一定の角速度で回転する座標系で質点Pに力が働く場合を考える。 あるベクトルの成分が

慣性系では

回転座標系では

と表されるとき図1,2よりを原点Oのまわりにだけ回転したものになるので

と表される。

と定義する。

すると質点Pの位置ベクトルと回転座標系でみたベクトルの関係は

と表される。

両辺を時刻で微分して

さらにで微分して

……(1)


を用いた。

ベクトルと回転座標系でみたベクトルの関係は

……(2)

と表される。

運動方程式に(1),(2)を代入して

両辺にをかけて

式変形して

すなわち回転座標系から物体を見た場合実際の力のほかにの力が働いているように見える。

このは、見かけの力でコリオリの力という。コリオリの力は速度の方向と回転軸の方向の両方に垂直である。

は、質点を回転軸に垂直に引き離そうとする見かけの力で遠心力という。

3次元の場合[編集]

以下では、地球の公転は無視し、地球は半径の球形とする。 静止座標系として、地球の中心を原点とし、地軸の北極方向を軸、赤道面を平面とする座標系を考える。

次に、地球表面の点で、地球の自転とともに動くを観測点を考える。

ただし、は地球の半径、は観測点の緯度、は地球の自転の角速度は時刻、は時刻におけるの位置を表すパラメータだが、以下コリオリの力に関係ないのでとする。

回転座標系として、を原点とし、次の3つの単位ベクトルで張られる座標系を考える。

地軸方向。北極星の方向。

自転方向。東の方向。

点から地軸に下ろした垂線の足と、を結ぶ直線上の方向で、地軸から離れる方向。天頂から真南へ角度だけ傾けた方向。

この座標系で、時刻における質点の位置が、成分成分成分で表記されたとする。(以下は省略する。)

静止系で表すとである。

以下時間での微分をで表す。

静止系では運動方程式が成り立つため、質点の質量を、掛かる力をとすると、

ここで、

は、この回転座標系での加速度であり、

が、この座標系での「みかけの力」即ち慣性力になる。

上で示した を使えば、

この部分は、広義のコリオリの力に対応する部分であり、

方向の速度に対し方向に「みかけの力」が働き、

方向の速度に対し方向に「みかけの力」が働くことを示している。

これは、で張られた平面(観測点を通り地軸に直交する平面)での2次元のコリオリの力に一致する。

なお、

は、 質点から地軸に下ろした垂線の足から、質点までの方向ベクトルがであることを考えれば、質点にかかる「みかけの力」遠心力である。

次に、上記の回転座標系では、北極星の方向、天頂から真南へ角度だけ傾けた方向を座標軸とするので不便だから、別の座標系を考える。

を原点とし、次の3つの単位ベクトルで張られる座標系とする。

、観測点で地球に接する平面上の真北の方角

、観測点で地球に接する平面上の真東の方角

、観測点での天頂方向

基底変換は行列で表すと、

座標系の座標が、座標系の座標と同じ点を表すには、

のため でなければならない。

は時間に対し定数のため、

運動方程式を書き換えれば、

について、

これは加速度の項

これは広義のコリオリの力の項

これは遠心力の項

ここで、広義のコリオリの力の項を見ると、

方向(北方向)の速度に対し方向(東方向)に「みかけの力」が働く

方向(東方向)の速度に対し方向(南方向)に「みかけの力」が働き、 方向(天頂方向)に「みかけの力」が働く

方向(天頂方向)の速度に対し方向(西方向)に「みかけの力」が働くことが分かる。

このうち、天頂方向の速度と力を捨象した、

方向(北方向)の速度に対し方向(東方向)に「みかけの力」が働く

方向(東方向)の速度に対し方向(南方向)に「みかけの力」が働くと言える。これがコリオリの力である。接平面内であれば、どの方向の速度ベクトルでも北方向と東方向の速度ベクトルの合成で作れるため、「×速度」だけの接平面内の「みかけの力」がかかることが分かる。

3次元の場合のまとめ[編集]

3次元の場合のコリオリの力をまとめると、次の3ステップで導出されていることが分かる。

(1)観測点での地球の接平面内の速度ベクトルを、観測点を通り地軸と直交する平面(赤道面と平行な平面)に射影する。

(2)平面内で2次元のコリオリの力を求める。

(3)得られた平面内のコリオリの力を接平面に射影し、接平面内のコリオリの力を求める。

ここで、接平面内の東向き(自転方向の向き)の大きさの速度ベクトルについて考えれば、それを平面に射影しても変わらずに大きさであり、平面内のコリオリの力は、大きさ、方向は東と直交し地軸から遠ざかる方向であり、それを接平面に射影すると、コリオリの力(の接平面内の成分)は、大きさ、方向は南となる。

接平面内の北向きの大きさの速度ベクトルについて考えれば、それを平面に射影すると大きさはとなり、平面内のコリオリの力は、大きさ、方向は東であり、それを接平面に射影すると、コリオリの力は変わらず、大きさ、方向は東となる。

接平面内の大きさの任意の方向の速度ベクトルは、東方向と北方向の速度ベクトルの一次結合で表せるため、その接平面内のコリオリの力は、大きさ、方向は北極側から見て速度ベクトルの方向から90度時計回りに回転した方向となることが分かる。

地球の回転によるコリオリの力[編集]

緯度φでの角速度

地球の角速度をとすると緯度φの地平面での角速度は、[1]となるため地球の回転によるコリオリの力の大きさはで表される。

  1. ^ 緯度の水平面は地軸に対して角度で地軸周りを角速度で回転している。 A点から地軸に垂線をおろし、垂線の長さをとすると単位時間にだけ地軸を中心に移動する。またA点の地平面が地軸を通過するまでの距離はとなる。 回転速度=移動距離/回転半径より 緯度の地点での角速度は となる。

地球の回転によるコリオリの力の影響[編集]

コリオリの力を一番強く受ける北極において時速100 kmのボールをピッチャープレートとホームベースの距離18.4 mの間でを投げたとするときコリオリの力が与える影響を考える。 地球の角速度 rad/s

よってコリオリの力による加速度の大きさは m/s^2

通過するのにかかる時間tは sであるから等加速度運動とみなすとずれの距離xは mm つまり1 mmにも満たない。また北極より緯度の小さい地域ではコリオリの力の影響はさらに小さくなる。 日常生活の中で地球の回転によって生じるコリオリの力は非常に小さなものなのである。

次に北極において秒速1000 mの砲弾を距離10 km先まで飛ばすときのコリオリの力による影響を考える。 地球の角速度 rad/s よってコリオリの力による加速度の大きさは m/s^2 通過するのにかかる時間tは sであるから等加速度運動とみなすとずれの距離xは m 7 mものずれが生じる。 このように大規模な運動では地球の回転によって生じるコリオリの力は大きな影響を及ぼすのである。

コリオリの力が作用する具体例[編集]

地球は東向きに自転している。そのため、北半球から赤道に向かって運動している物体には西向き、逆に、赤道から北半球に向かって運動している物体には東向きの力が働く。北半球では進行方向に対し右向き、南半球では左向きの力が働くとも言える。例としては、以下のものがある。

地衡風
地衡風
上空で気圧の差があれば気圧の高いほうから低いほうに向かって空気塊を動かそうとする力が働く。この力を気圧傾度力という。等圧線が平行かつ気圧傾度力が一定ならば空気塊は等圧線に対して直角に気圧の高いほうから低いほうへ加速される。北半球ではその進行方向右向きコリオリの力が働く。コリオリの力は速度に比例して大きくなるため空気塊は右に曲がりながら速度を上げ最終的には気圧傾度力とコリオリの力は正反対の向きにつりあう。すると空気塊は加速されない向きも変えない安定した風になる。この風を地衡風という。 :
台風
台風が北半球で反時計回りのを巻くのは、風が低気圧中心に向かって進む際にコリオリの力を受け、進行方向に対し中心から右にずれた地点に到達するためである[1]
極軌道人工衛星
北極点上空から日本上空へ向かおうとする人工衛星は直進するが、地球は自転しているため、地上にいる観測者には、衛星がアジア大陸方面へ逸れていくように見える。
海流
大気だけでなく、海流の運動もコリオリの力の影響を受けている(エクマン輸送)。
砲弾
北半球で真北に撃った砲弾が、標的よりもわずかに東(右)にずれることは昔から知られていることである。このように、大砲ロケット、1000m近い長距離での狙撃などの軌道計算はコリオリの力を考慮した補正が必要である。

出典[編集]

  1. ^ 朝永振一郎 『物理学読本』 (第2版) みすず書房、1981年、30頁。ISBN 4-622-02503-5 

関連項目[編集]