可変バルブ機構

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索

可変バルブ機構(かへんバルブきこう)は、4サイクルレシプロエンジンにおいて、通常は固定されている吸排気バルブ開閉タイミング(バルブタイミング)やリフト量を可変とする機構。バルブを全て閉じて、特定の気筒の動きを休止させるものも含まれる。

概要[編集]

4サイクルレシプロエンジンにおいて効率の良い吸排気を行うには、ピストンの移動速度(エンジンの回転速度)と吸排気の流速に合わせて、バルブの開閉動作を制御する必要がある。

  • 通常、吸気行程ではピストンが下降を始める少し前に吸気バルブを開き始めるが、その際、最も効率の良い吸気流速を得るためのバルブタイミングは、ピストン速度に応じて変化する。さらに、ピストンによる吸気行程が終わり圧縮行程に入っても、吸気流速が十分に高い場合は吸気の重量により慣性力が働くため、吸気バルブを遅く閉じた方が充填効率が上がる領域も存在する。
  • 排気行程についてもピストンが下降しきる少し前に排気バルブを開き始めるが、特に高回転域では燃焼圧力によってピストンが押し下げられている途中の段階で排気バルブを開き始めた方が、排気行程のピストン上昇や次行程の吸気を阻害せず効率が良くなる。また、排気行程が終わりピストンが降下し始めて吸気行程に移っても、排気の流速に応じて排気バルブを開いていた方が効率が良い領域もある。

従来は、上記のように回転数や負荷によって最適なバルブタイミングおよびリフト量が変化するのに対して、それらをある一定の負荷領域で最適となるように固定し、それ以外の領域での効率を犠牲とせざるを得なかった。それを、バルブタイミングおよびリフト量を可変とすることによって、負荷領域に応じて常にバルブ動作が最適となるように変化させて行くのが可変バルブタイミング機構である。

実際の機構には、カムの回転角に位相を与えるもの、形状の異なるカムを複数用意して切り替えるもの、これら2つを組み合わせたものなどが存在する。

エンジン特性を変える別の方法としては、吸排気の気体流速を変える可変インテークマニホールドなどがあり、これに可変バルブ機構を使って吸気バルブ・排気バルブのそれぞれの片側を閉じ(吸気、排気バルブが2個ずつの4バルブエンジンの場合)、気体流速を変化させる。

吸排気バルブを全て閉じ、稼動するシリンダーの数を変化させる気筒休止エンジンにも可変バルブ機構が用いられている。

バリエーション[編集]

1カム・タイプ(カム形状固定型)[編集]

日産・CVTC、eVTC(位相変化型)
位相変化型(タイミング可変・リフト固定)
現在最も普及している可変バルブ機構。クランクシャフトに対してカムシャフトを進角・遅角させることで、バルブタイミングを変化させる。リフト量・作用角は変化しない。主にバルブオーバーラップを最適にコントロールするために使用される事が多かったが、現在では遅閉じミラーサイクルエンジンにおける吸気閉弁時期の調整という役割も担っており、一般的なエンジンでも遅閉じによる燃費向上はオーバーラップの調整とともに重要となっている。作動方式には潤滑系のオイル圧力を使用するものと電力(磁力)によるものがある。初期の油圧式はヘリカルスプライン方式のものでコスト・耐久性・サイズの関係で一部の車両のみに採用されるに留まったが、シンプルな構造で低コストなベーン方式が開発された事で一気に普及した。現在の油圧式は基本的にこのベーン方式となる。当初は吸気側のみを可変としたものが主流であったが、2000年代中盤からは日本車の中~大排気量エンジンを中心に排気側にも普及し、2010年代以降は安価な小排気量車でも吸排気の双方に装備されるものが多くなっている。
  • 長所 - 回転数や負荷に合わせて好ましいバルブタイミングにすることで、出力や燃費の向上などが得られる。初期は段階的に切り替えるのみだったが、連続可変型が登場したことで、状況にあわせてより柔軟な対応が可能となった。カムシャフトの位相を変化させるだけなのでカムシャフトを除く動弁系の変更が不要で導入がしやすい。ロッカーアームが無い直押し式でも使える。
  • 短所 - カム作用角(バルブ開角度)は一定なので、オーバーラップを少なくするために吸気カムシャフトを遅角させると、吸気バルブの閉じも遅くなり、吸気を押し戻してしまう。つまり遅閉じミラーサイクルとなり、パワーという面ではデメリットとなるが、熱効率という点ではメリットとなる。SOHCでは吸気、排気ともに変化してしまいオーバーラップが変わらないためDOHCに比べ得られるメリットが少なくなる(オーバーラップが変わらない場合でも吸気弁早開きによるメリットはあるが、排気弁も早開きとなるため膨張する燃焼ガスを早期に開放してしまいエネルギーの回収ロスが生じる)。
  • 採用例 - 数多くのメーカーが採用している。
バルブ片閉じ型(タイミング固定・リフト可変(2バルブのうち片側のみ))
吸気2個、排気2個のマルチバルブエンジンにおいて、吸気側、排気側のそれぞれの片側を閉じるか、もしくはほとんど開かない状態とする。
  • 長所 - 低回転時に吸気流速を高め、充填効率を上げられる。シリンダー内にスワールを発生させる。
  • 短所 - バルブタイミングは変化しないので、効果も少ない。
  • 採用例 - ホンダREV、HYPER-VTECVTEC-EL型エンジンにおけるi-VTECなど、主にホンダ車を中心に採用されている。
気筒休止型(タイミング固定・リフト固定)
気筒停止に用いられる。カム切り替えによって吸排気バルブ(もしくは吸気バルブのみ)を閉じ、実質的に稼働するシリンダーの数を減らす。気筒停止時はエンジンの出力が落ちるため、相対的にスロットル開度が大きくなり、ポンピングロスが低減される。低速での巡航など、低負荷時の熱効率を高める目的で使用される。
  • 長所 - 排気量を変化させることができ、出力を抑えることで、必要とされる出力が小さい時には燃費的に有利である。
  • 短所 - 停止中の振動や、停止時の出力変化などが問題とされる。
  • 採用例 - キャディラックへの採用が初とされる。日本初は初代ランサーフィオーレなどに採用されたMDエンジン(G12B)である。

複数カム切り替えタイプ(カム形状可変型)[編集]

スバル・i-AVLS(カム切り替え型)
カム切り替え型(タイミング可変・リフト可変)
低回転、高回転で2種類のカムを使い分ける。
  • 長所 - カムの開角度の違う2種類のカムを使い分けるので、高回転時などはより効果が大きい。
  • 短所 - 切り替えポイント付近に出力の谷間ができてしまう。
  • 採用例 - ホンダのVTEC(現在ではi-VTEC)、三菱MIVECなどに採用されている。
カム切り替え・位相変化型(タイミング可変・リフト可変)
位相変化型とカム切り替え型の複合タイプである。
  • 長所 - カム切り替え式の短所である、切り替えポイントにおける出力変化を緩やかにできる。
  • 短所 - 位相変化機構とカム切り替え機構を備えるため、他の方式に比べて複雑かつ高コストとなる。
  • 採用例 - トヨタVVTL-i、ホンダのi-VTECポルシェバリオカム・プラス、富士重工業のAVCS+ダイレクト可変バルブリフト機構など。
カム切り替え・バルブ片閉じ型(タイミング可変・リフト可変)
低回転時に4バルブエンジンにおける片側のバルブを閉じ、高回転では両バルブを開き、さらに2種類のカムを使い分ける。
カム切り替え・気筒休止型(タイミング可変・リフト可変)
低負荷時に気筒停止し、高回転ではカムを切り替える。
  • 長所 - 気筒停止することにより燃費を改善させられるほか、ハイブリッドカーではエネルギー回生効率が上がる。さらにカムを切り替えることにより、高回転での出力特性にも優れる。
  • 短所 - 2種類のカムを切り替えるだけなので、出力に段差が出る。
  • 採用例 - 三菱のMIVEC-MD、ホンダのシビックハイブリッド用VTECなどに採用。

1カム・タイプ(レバー比・カム形状可変型)[編集]

三菱・次世代MIVEC
バルブリフト連続可変・位相可変型(タイミング可変・リフト可変)
ロッカーアームのレバー比を変化させることで、バルブリフト・作用角を連続的に変化させる。リフトを変えると自動的に位相(中心角)が変化するタイプ(三菱MIVEC)と、可変バルブリフト機構とは別に可変バルブタイミング機構を組み合わせることで最適なバルブタイミングを実現するタイプとがある。
  • 長所 - スロットルバルブの代わりに吸気量制御を行うことで、ポンピングロスの低減に伴う燃費向上を実現できる。リフト量を小さくするとカム作用角(バルブ開角度)も小さくなる。可変バルブタイミング機構を持つものは、バルブリフトと共にバルブタイミングも自由に変化させることができる。
  • 短所 - 構造が複雑で、動弁系の重量が大きくなる。BMWの直列6気筒ガソリン直噴ツインターボエンジンでは、インジェクターが邪魔になり採用されなかった。
  • 採用例 - BMW・バルブトロニック、日産VVEL、トヨタ・バルブマチック、三菱・新型MIVEC(現時点では日本市場向け専用となる4J1型エンジンに採用)

カム+油圧+電子制御・操作[編集]

フィアット、アルファロメオは「マルチエア(Mulutair)」「ツインエア(Twinair)」、部品供給元のシェフラーグループは「ユニエアー(UniAir)」と呼ぶ[1]可変バルブ機構である。
これは、カムから油圧を使ってバルブを開くようにした可変バルブタイミング機構である。カムで駆動する油圧ポンプと、バルブを押す油圧アクチュエーターの間に電磁式のリリーフバルブを設けることでバルブを開く圧力を調整し、バルブ作動を制御する。バルブを開く油圧が供給されていないときは、バルブはバルブスプリングによって閉じる構造になっている。

  • 長所 - 油圧を発生させるカムは最大リフト形状にしておくが、エンジンの負荷状況に合わせ不要な油圧を逃がすことでバルブの開度を制御をする。このことにより、最大必要以上にバルブは開くことがないため、電子制御が不能になってもピストンとバルブがぶつかる危険がない。また、バルブを開くときに、一旦油圧を逃がすことで一行程中に2回バルブを開くことができる。それにより、吸気速度を上げ、燃焼効率あげることができる(と、フィアットのエンジンにて解説)。
  • 短所 - 一般的なバルブシステムの場合、バルブが閉じるときにはバルブスプリングがカムを押すことで、エンジン回転を手助けすることになる。しかし、このシステムの場合、バルブスプリングはバルブを閉じるだけでカムに力は伝わらず、エンジン回転には寄与しない。

歴史[編集]

最初の可変バルブタイミング機構(Variable Valve Timing、略称VVT)の実験はGMによって行われた。排気ガスを減少させるために吸気バルブによってスロットル制御を行うことが目的で、これは低負荷時にバルブリフトを減少させて吸気速度を高く保ち、それによる混合気の細分化を狙っていた。しかし低バルブリフトにおける制御には課題も多く、最終的にGMはプロジェクトを放棄した。

最初の実用的なバルブリフトを変化させる可変バルブタイミング機構はフィアットによって開発された。Giovanni Torazzaにより1970年代に開発されたシステムは、カムフォロワーの支点を油圧で変えるものだった。油圧はエンジンの回転数と吸気圧によって変えられた。

各社の名称[編集]

出典[編集]

  1. ^ Schaeffler Japan Co., Ltd. |分野/主要産業 |UniAir シェフラージャパン UniAir紹介ページ
  2. ^ Honda Technology VTEC より

関連項目[編集]