コンテンツにスキップ

「格子ゲージ理論」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
編集の要約なし
編集の要約なし
タグ: Refタグつき記述の除去
 
21行目: 21行目:


==理論の基礎==
==理論の基礎==
通常の[[場の量子論]]は、[[時間]]と[[空間]]が区別された[[ミンコフスキー空間]]の上で扱われるが、ミンコフスキー空間の時間成分を[[ウィック回転]]し[[ユークリッド空間]]へ移ることで、時間と空間は区別なく扱えるようになる。この上で、連続的な時空を「[[格子 (数学)|格子]]」という形式に離散化して表現するのが格子上の場の理論である。[[物理量]]の計算は格子上で行われるが、最終的には連続極限(格子間隔をゼロにする極限)をとることで、本来の連続的な理論を得ることができる。
通常の[[場の量子論]]は、[[時間]]と空間が区別された[[ミンコフスキー空間]]の上で扱われるが、ミンコフスキー空間の時間成分を[[ウィック回転]]し[[ユークリッド空間]]へ移ることで、時間と空間は区別なく扱えるようになる。この上で、連続的な時空を「[[格子 (数学)|格子]]」という形式に離散化して表現するのが格子上の場の理論である。[[物理量]]の計算は格子上で行われるが、最終的には連続極限(格子間隔をゼロにする極限)をとることで、本来の連続的な理論を得ることができる。


格子上の場の理論において、[[クォーク]]などの[[フェルミオン]]は格子上の格子点('''サイト''')に置かれる。一方、[[グルーオン]]などの力を媒介する[[ゲージ場]]は隣接するサイト同士を結ぶ線('''リンク''')上に張られる。ゲージ場は時空の方向を持つ[[ベクトル場]]として表され、'''リンク変数'''(link variable)と呼ばれる。
格子上の場の理論において、[[クォーク]]などの[[フェルミオン]]は格子上の格子点('''サイト''')に置かれる。一方、[[グルーオン]]などの力を媒介する[[ゲージ場]]は隣接するサイト同士を結ぶ線('''リンク''')上に張られる。ゲージ場は時空の方向を持つ[[ベクトル場]]として表され、'''リンク変数'''(link variable)と呼ばれる。
29行目: 29行目:
== 脚注 ==
== 脚注 ==
{{脚注ヘルプ}}
{{脚注ヘルプ}}
{{Reflist}}
<references/>


== 参考文献 ==
== 参考文献 ==
* {{Cite journal|和書|author=川合光 |title=格子ゲージ理論 |journal=日本物理学会誌 |ISSN=0029-0181 |publisher=日本物理学会 |year=1983 |volume=38 |issue=1 |pages=10-15 |naid=110002075093 |doi=10.11316/butsuri1946.38.1.10 |url=https://doi.org/10.11316/butsuri1946.38.1.10 |ref=harv}}
* {{Cite journal
|author=川合光
|year=1983
|title=格子ゲージ理論
|journal=日本物理學會誌
|volume=38
|issue=1
|pages=10-15
|url=http://ci.nii.ac.jp/vol_issue/nels/AN00196952/ISS0000138677_ja.html
|publisher=日本物理学会
}}


{{DEFAULTSORT:こうしけえしりろん}}
{{DEFAULTSORT:こうしけえしりろん}}

2021年12月19日 (日) 00:16時点における最新版

場の量子論
(ファインマン・ダイアグラム)
歴史

格子ゲージ理論(こうしゲージりろん、lattice gauge theory)は、格子上に離散化された時空におけるゲージ理論である。

低エネルギー領域での量子色力学はその強結合性のために摂動論的取り扱いができないが、この困難を打開するために生まれたのが格子ゲージ理論である。1974年、クォークの閉じ込めを記述するためにケネス・ウィルソンによって初めて提唱された[1]。1980年にはマイケル・クロイツモンテカルロ法を用いて格子ゲージ理論による数値計算に成功し[2]、以後、”強い相互作用の第一原理計算”として有効活用されている。

格子上で場の理論を扱う場合は格子場の理論格子上の場の理論、格子上で量子色力学を扱う場合は格子QCD格子量子色力学などと呼ばれる。

理論の基礎[編集]

通常の場の量子論は、時間と空間が区別されたミンコフスキー空間の上で扱われるが、ミンコフスキー空間の時間成分をウィック回転ユークリッド空間へ移ることで、時間と空間は区別なく扱えるようになる。この上で、連続的な時空を「格子」という形式に離散化して表現するのが格子上の場の理論である。物理量の計算は格子上で行われるが、最終的には連続極限(格子間隔をゼロにする極限)をとることで、本来の連続的な理論を得ることができる。

格子上の場の理論において、クォークなどのフェルミオンは格子上の格子点(サイト)に置かれる。一方、グルーオンなどの力を媒介するゲージ場は隣接するサイト同士を結ぶ線(リンク)上に張られる。ゲージ場は時空の方向を持つベクトル場として表され、リンク変数(link variable)と呼ばれる。

フェルミオンを単純に格子化する(すなわち、ディラック場の作用を最も単純な形式で離散化する)と、余分な自由度が現れるという不都合が生じる(フェルミオン・ダブリング)。この問題を回避するため、実際の計算では、何種類かの改良された作用が用途に応じて使い分けられている。

脚注[編集]

  1. ^ Kenneth G. Wilson (1974). “Confinement of quarks”. Physical Review D 10 (8): 2445-2459. doi:10.1103/PhysRevD.10.2445. 
  2. ^ Michael Creutz (1980). “Monte Carlo study of quantized SU(2) gauge theory”. Physical Review D 21 (8): 2308-2315. doi:10.1103/PhysRevD.21.2308. 

参考文献[編集]

  • 川合光「格子ゲージ理論」『日本物理学会誌』第38巻第1号、日本物理学会、1983年、10-15頁、doi:10.11316/butsuri1946.38.1.10ISSN 0029-0181NAID 110002075093