特殊関数

出典: フリー百科事典『ウィキペディア(Wikipedia)』
ナビゲーションに移動 検索に移動

特殊関数(とくしゅかんすう、: special functions)は、何らかの名前や記法が定着している関数であり、解析学関数解析学可積分系物理学、その他の応用分野でよく使われる関数であることが多い[1]

何が特殊関数であるかのはっきりした定義は存在しないが[1]、しばしば特殊関数として扱われるものには、ガンマ関数エアリー関数ベッセル関数[2][3]ゼータ関数[4][5]楕円関数[6][7]ルジャンドル関数誤差関数超幾何関数[8][9][10] [11] [12] [13]直交多項式[14][15][16][17] (ラゲール多項式エルミート多項式が有名) などがある。一般には初等関数の対義語ではなく、ある関数が初等関数であって同時に特殊関数とされる場合もある。

特殊関数の一覧[編集]

特殊関数の多くは、微分方程式の解 (つまり可積分系の厳密解[18]) や初等関数積分 (誤差関数楕円積分[6][7]など) として現れる[1]。したがって、積分法の一覧[19]には特殊関数の記述がよく見られ、特殊関数の一覧[20]には最も重要な積分、すなわちその特殊関数の積分形式の表現が含まれていることが多い。

MATLAB[21]Maple[22]Mathematica[23]などの科学技術計算・数値解析のための言語は、多くの特殊関数を認識する。そのようなシステムが常に効率的なアルゴリズムで計算(評価)するとは限らない(特に複素平面の場合)。

特殊関数の記法[編集]

多くの場合、特殊関数には標準的記法があり、関数の名前、添え字(もしあれば)、括弧開き、引数列(コンマで区切る)、括弧閉じの順に記述する。このような記法を使うことで解釈が容易になり、曖昧さを排除できる。国際的に記法が確立している関数としては、sin、cos、exp、erf、erfc などがある[1][24]

場合によっては1つの特殊関数が複数の名前を持つこともある。自然対数には Log、log、ln などの記法があり、文脈によって使い分けられる[1][24]。例えば正接関数は Tan、tan、tg(ロシア語の書籍に多い[25]、例えばロシア語版wikipediaにある三角関数の記事を参照)などの記法がある。逆正接関数は atan、arctg、tan−1 などの記法がある。ベッセル関数Jn(x) と記されることが多いが[1][2][3]、besselj(n,x) や BesselJ[n,x] も同じ関数を意味している。

引数を示すのに添え字がよく使われる(整数が多い。例えば直交多項式[1][14][15][16][17]ベッセル関数[1][2][3]など)。まれにセミコロン (;) やバックスラッシュ (\) を分離文字として使うこともある。このような場合、論理的に解釈する際に曖昧さが生じ、混乱することがある。

肩文字はべき乗を示すだけでなく、関数の修飾を意味することがある。例えば、次のような例がある[1]

  • cos3(x) は (cos(x))3 を意味する。
  • cos2(x) は (cos(x))2 を意味するのが普通で、cos(cos(x)) と解釈することは滅多にない。
  • cos−1(x) は arccos(x) を意味するのが普通で、(cos(x))−1 という意味ではない。この例は上の2つの例とは異なるため、ここで混乱することが多い。

特殊関数の評価[編集]

特殊関数の多くは複素変数の関数と見なされる。それらは解析的であり、特異点カットで記述される[24]微分形式や積分形式が知られており、テイラー級数漸近展開を持つ[26]。さらに、他の特殊関数との関係式が分かっている場合もあり、複雑な特殊関数をもっと単純な関数を使って表現できる。評価にはこれらの様々な表現を使う。最も単純な評価方法は、テイラー級数に展開することである。しかし、級数で表しても収束がゆっくりな場合がある[27]有理数の近似値を使うこともよくあるが、引数が複素数の場合にはそれもうまくいかないことがある。

主な研究者[編集]

日本[編集]

海外[編集]

アメリカ合衆国[編集]

イギリス[編集]

脚注[編集]

  1. ^ a b c d e f g h i 時弘哲治、工学における特殊関数、共立出版
  2. ^ a b c Watson, G. N. (1995). A treatise on the theory of Bessel functions. en:Cambridge university press.
  3. ^ a b c 平野鉄太郎. (1963). ベッセル関数入門, 日新出版.
  4. ^ 松本耕二. (2005). リーマンのゼータ関数. 朝倉書店.
  5. ^ 荒川恒男, 伊吹山知義, & 金子昌信. (2001). ベルヌーイ数とゼータ関数. 牧野書店.
  6. ^ a b 梅村浩. (2000). 楕円関数論: 楕円曲線解析学, 東京大学出版会.
  7. ^ a b 戸田盛和. (2001). 楕円関数入門, 日本評論社.
  8. ^ 原岡喜重. (2002). 超幾何関数. 朝倉書店.
  9. ^ 木村弘信: 超幾何関数入門——特殊関数への統一的視点からのアプローチ——, サイエンス社, 2007年.
  10. ^ Aomoto, K., Kita, M., Kohno, T., & Iohara, K. (2011). Theory of hypergeometric functions. Tokyo: Springer.
  11. ^ a b Exton, Harold (1976), Multiple hypergeometric functions and applications, Mathematics and its applications, Chichester: Ellis Horwood Ltd., ISBN 978-0-470-15190-7, MR0422713, https://books.google.com/books?id=QwqoAAAAIAAJ 
  12. ^ a b Exton, Harold (1978), Handbook of hypergeometric integrals, Mathematics and its Applications, Chichester: Ellis Horwood Ltd., ISBN 978-0-85312-122-0, MR0474684, https://books.google.com/books?id=fUHvAAAAMAAJ 
  13. ^ a b Exton, Harold (1983), q-hypergeometric functions and applications, Ellis Horwood Series: Mathematics and its Applications, Chichester: Ellis Horwood Ltd., ISBN 978-0-85312-491-7, MR708496, https://books.google.com/books?id=3kHvAAAAMAAJ 
  14. ^ a b c Ismail, Mourad E. H. (2005). Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge: en:Cambridge University Press. ISBN 0-521-78201-5. http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=9780521782012. 
  15. ^ a b 青本和彦: 直交多項式入門, 数学書房, 2013 年.
  16. ^ a b c Koekoek, R., & Swarttouw, R. F. (1996). The Askey-scheme of hypergeometric orthogonal polynomials and its -analogue. arXiv preprint math/9602214.
  17. ^ a b c Encyclopedia of Special Functions: The Askey–Bateman Project, Encyclopedia of Special Functions: The Askey–Bateman Project, Volume 1: Univariate Orthogonal Polynomials, Edited by Mourad E. H. Ismail, University of Central Florida, Published by en:Cambridge University Press, March 2020, 9780511979156.
  18. ^ 例えばパンルヴェ方程式の厳密解はパンルヴェ超越関数 (en:Painleve transcendent) という特殊関数になる。
  19. ^ Gradshtein, Israel Solomonovich; Iosif Moiseevich Ryzhik.. Table of integrals, sums, series and products. en:Academic press. 
  20. ^ Abramovitz, Milton; Irene Stegun. Table of mathematical functions. 
  21. ^ MATLABにある特殊関数の一覧
  22. ^ Mapleにある特殊関数の一覧
  23. ^ Mathematicaにある特殊関数の一覧
  24. ^ a b c 神保道夫、複素関数入門、岩波書店
  25. ^ ロシアでの微積分の用語Researchmapより
  26. ^ a b Olver, F. (1997). Asymptotics and special functions. AK Peters/CRC Press.
  27. ^ 収束が遅いときには収束加速法を使う。
  28. ^ a b Gasper and Rahman, Basic Hypergeometric Series 2nd Edition, en:Cambridge University Press.
  29. ^ Ismail, M. E., & Zhang, R. (2017). A review of multivariate orthogonal polynomials. Journal of the Egyptian Mathematical Society, 25(2), 91-110.
  30. ^ a b Andrews, G. E., Askey, R., & Roy, R. (1999). Special functions. en:Cambridge university press.
  31. ^ Askey, Richard; Wilson, James (1985), "Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials", Memoirs of the en:American Mathematical Society, 54 (319): iv+55, doi:10.1090/memo/0319, ISBN 978-0-8218-2321-7, ISSN 0065-9266, MR 0783216
  32. ^ Askey-Bateman project

参考文献[編集]

和文[編集]

和書[編集]

解説記事[編集]

  • 大島利雄述, & 廣惠一希記. (2011). 特殊関数と代数的線型常微分方程式. Lecture Notes in Mathematical Sciences, 11.
  • 岩崎克則. (2011). 特殊関数の問題: パンルヴェ性をめぐって (複素幾何学の諸問題). 京都大学数理解析研究所講究録.
  • 木村弘信. (1995). 一変数特殊関数再訪 (超幾何函数の総合的理解). 京都大学数理解析研究所講究録.

洋書[編集]

  • Andrews, George E.; Askey, Richard; Roy, Ranjan (1999), Special functions, Encyclopedia of Mathematics and its Applications, 71, en:Cambridge University Press, MR1688958 
  • Iwasaki, K., Kimura, H., Shimemura, S., & Yoshida, M. (2013). From Gauss to Painlevé: a modern theory of special functions. en:Springer Science & Business Media.
  • Olver, F. (1997). Asymptotics and special functions. AK Peters/CRC Press.
  • Mathai, A. M., & Haubold, H. J. (2008). Special functions for applied scientists. New York: Springer.

特殊関数と数理物理[編集]

  • Nikiforov, A. F., & Uvarov, V. B. (1988). Special functions of mathematical physics. Basel: Birkhäuser.
  • Magnus, W., Oberhettinger, F., & Soni, R. P. (2013). Formulas and theorems for the special functions of mathematical physics. en:Springer Science & Business Media.

特殊関数と表現論[編集]

数値計算に関する文献[編集]

関連項目[編集]

外部リンク[編集]