関数 (数学)

出典: フリー百科事典『ウィキペディア(Wikipedia)』
ナビゲーションに移動 検索に移動

数学における関数(かんすう、: function: fonction: Funktion: functie: functio函数とも書かれる)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には集合に値をとる写像の一種であると理解される。

表記の歴史[編集]

日本語としての関数はもともと「函数」(旧字体では函數)と書く。函数という語は中国語から輸入されたものであり、中国での初出は1859年に出版された李善蘭の『代微積拾級』といわれる。

微積分について日本語で書かれた最初の本、花井静校・福田半編『筆算微積入門』(1880年) では「函数」が用いられている[1][2]。それに続く長澤龜之助訳『微分学』(1881年)、岡本則録訳『査氏微分積分学』(1883年) のいずれも用語を『代微積拾級』、『微積遡源』(1874年) などによっている[2]。明治初期に東京數學會社で数学用語の日本語訳を検討する譯語會が毎月開催され、その結果が『東京數學會社雑誌』で逐次報告されている。この報告に function の訳語は第62号 (1884年) の「原數」[3]と第64号 (1884年) の「三角法函數」[4]の二種類が登場する。一方、同誌の本文では61号 (1884年) や63号 (1884年) で「函數」が用いられている[5]

「函」が漢字制限による当用漢字に含まれなかったことから、1950年代以降同音の「関」へと書き換えがすすめられた[6]。この他、「干数」案もあった[7]学習指導要領に「関数」が登場するのは中学校で1958年、高等学校で1960年であり、それまでは「函数」が用いられている[注釈 1]。「関数」表記は 1985 年頃までには日本の初等教育の段階でほぼ定着した[8]

「函数」の中国語における発音は(拼音: hánshù) であり、志賀浩二小松勇作によればこれはfunctionの音訳であるという[8][9]。一方、『代微積拾級』には「凡此變數中函彼變數則此為彼之函數」[10]とあり、また変数に天、地などの文字を用いて「天 = 函(地)」という表記もある。片野善一郎によれば、「函」の字義はつつむ、つつみこむであるから、「天 = 函(地)」という表現は「天は地を函む」ようにみえ[1]、従属変数(の表現)に独立変数が容れられている[2]という意味であるという。

入力 x に対して、なんだかよくわからない「ブラックボックス f」が f(x) を出力する

なお、現代の初等教育の場においてはしばしば関数をブラックボックスのたとえで説明することがある[2][11][12]。この説明では、「函」を「はこ」と読むことと関連付けて説明されることもあるが、「函数」の語の初出は1859年なのに対し、「ブラックボックス」の語の初出は1945年ごろとされることに注意を要する。

概要[編集]

素朴な定式化[編集]

二つの変数 xy があり、入力 x に対して、出力 y の値を決定する規則(x に特定の値を代入するごとに y の値が確定する)が与えられているとき、変数 y を「x独立変数 (independent variable) とする関数」或いは簡単に「x の関数」という。対応規則を明示するときは、適当な文字列(特に何か理由がなければ、function の頭文字から f が選ばれることが多い)を使って

のように対応規則に名前を付与する。x の関数 yf(x) と書いて、x = a を代入したときに決まる関数の値を f(a) と表すのである。しかしここで、定数関数の例に示されるように、個々の y の値について対応する x の値が一つに決まるとは限らない事に注意しなければならない。この f(x) という表記法は18世紀数学者オイラーによるものである。オイラー自身は、変数や定数を組み合わせてできた数式の事を関数と定義していたが、コーシーは上に述べたように、 y と言う変数を関数と定義した。

yx の関数であることの別の表現として、変数 y は変数 x従属するとも言い、y従属変数 (dependent variable) と言い表す。独立変数がとりうる値の全体(変域)を、この関数の定義域 (domain) といい、独立変数が定義域のあらゆる値をとるときに、従属変数がとりうる値(変域)を、この関数の値域 (range) という。

関数の終域実数 R複素数 C の部分集合であることが多い。終域が実数の集合となる関数を実数値関数 (real valued function) といい、終域が複素数の集合となる関数を複素数値関数 (complex valued function) という。それぞれ定義域がどのような集合であるかは問わないが、定義域も終域も実数の集合であるような関数を実関数 (real function) といい、定義域も終域も複素数の集合であるような関数を複素関数 (complex function) という。

現代的解釈[編集]

ディリクレは、 xf(x) の対応関係に対して一定の法則性を持たせる必要は無いとした。つまり、個々の独立変数と従属変数の対応そのものが関数であり、その対応は数式などで表す必要はないという、オイラーとは異なる立場をとっている。

集合論的立場に立つ現代数学では、ディリクレのように関数を対応規則 f のことであると解釈する。それは二項関係の特別の場合として関数を定義するということであり、その意味で関数は写像の同義語である[注釈 2]。より細かく、「」の集合への写像に限る場合もある[注釈 3]。写像に用いる言葉、例えば

などはそのまま用いることができる。「数」に値を取る関数に特有の(つまり、一般の写像では成り立つとは限らない)性質もある。たとえば、を用いて値毎の演算と呼ばれる函数同士の演算が定義できる: x を任意として、

  •  (ただしg(x)はゼロでない)

。あるいはまた、実函数(実一変数で実数値の函数)f: グラフと呼ばれる平面上の図表英語版で特徴づけられる。

記法について[編集]

函数を書き表すために標準的な方法がいくつかある。最もよく用いられるのが、函数名と引数を明示する式を用いて函数を定義するいわゆる函数記法で、これは函数の初等的な取り扱いにおいて「「函数」それ自身と、任意の引数における函数の「値」の区別ができない」という微妙な問題点を生じさせる。

函数記法[編集]

一般に、函数をイタリック体(斜体)字形の一文字(大抵は小文字の f, g, h あたり)で表すことはレオンハルト・オイラーが最初(1734年)とされる[15]。いくつか著名な函数の中には複数の文字(大抵は 2,3 文字の、一般的にはその函数の呼称の省略形)をその函数を表す記号とするものもある。このように複数文字を使う場合には、規約として(イタリック)でなくローマン体(立体)にする。

さて、函数記法で (「fx における値が y である」)と書けば、これは順序対 (x, y) が函数を定義する順序対の集合に属することを意味する(より具体的に函数 f定義域X とすれば、函数を定義する順序対の集合とは、集合の内包的記法英語版と書ける)。

しばしば、函数の定義は函数 f が明示された引数 x に対して何をするのかという形で行われる。例えば f を任意の実数 x に対して成り立つ等式 によって定義するものとすれば、これは x平方して 1 を加えその正弦をとるというより単純な複数の手続きの合成として考えることができる。

複数文字の函数記号を用いる函数や誤解の虞のない場合など、函数記法において引数を明示する丸括弧は省略されることがある。例えば sin(x) でなく と書いてもよい。

矢印記法[編集]

函数 f の定義域 X と終域 Y を明示する目的では、矢印記法 (「fX から Y への函数」「fX の元を Y の元に写す」)が用いられる。これに重ねて、元の間の関係を示すため「fxf(x) に写す」ことを意味する xf(x) をしばしば書き加える。

例えば、積の定義された集合 X 上で各元を平方する函数 sqr を紛れ無く定義するには

のように書けばよい。元の対応は xx2 と書いてもよい(この方がむしろ普通)。

しばしば函数記号や定義域および終域については省略される。そのような記法は、函数の任意の引数における値だけが等式で与えられている状況がよくあるので、その際に特別な函数記号を用意しなくてよいため有用である。たとえば、二変数の函数 が与えられていて、第二引数を値 t0 に固定して得られる偏函数英語版 に言及したいとき、この函数に新たに名前を付けなくても、 という元の対応を表す矢印記法を用いれば扱うことができる。

添字記法[編集]

添字記法も函数記法と並んでよく用いられる記法で、函数記法の f(x) は添字記法では のように書かれる。

  • 定義域が自然数の場合(つまり、数列の場合)には添字記法を使うのが典型的で、各値 fn は数列の n 番目の項と呼ばれる。
  • 複数の引数を持つ函数において、それら引数が「真の変数」と助変数(パラメータ)に分けられるとき、真の変数ではないことを区別するために助変数を添字にすることがしばしば行われる(実際にはパラメータというものは、一つの問題を考察している間は何らかの値に固定されているものと見なされるような変数を言うのである)。例えば、先の例でもみた二変数函数の偏函数 xf(x, t) を添字記法で と書けば、定義式 によって一変数函数の族 が定義される。

点記法[編集]

矢印記法 xf(x) において、記号 x は何の値を表すものでもなくむしろ単にプレースホルダとしての意味しか持っていない。つまり、左辺の x を任意の値で置き換えたとき、右辺の x も同じ値で置き換えなければならないことを示すものである。したがって、x の代わりにどんな記号を使ってもよいのであって、そのためによく中黒 "" が用いられる。こうすると、函数自身を f(•) と書いて、任意の点 x における函数の値 f(x) と区別をつけることができる。

たとえば xax2 を表すのに と書いたり、上の限界が変数である定積分 と書いたりもできる。

特殊化された記法[編集]

数学の特定の分野では、その他の特別な記法が使われたりもする。例えば線型代数学函数解析学では線型形式ベクトルに作用させるときに、それらの間に成り立つ双対性を明らかにするために内積の記法が用いられる(量子力学でも同様のブラケット記法が用いられる)。数理論理学計算理論ではラムダ計算の記法が、函数の抽象化適用英語版などの基本概念を明示的に表すために用いられる。圏論ホモロジー代数では、上で見た函数の矢印記法を延長あるいは一般化するように、函数からなる図式およびそれらの合成が可換図式を満たすという意味でどのような可換性を持つかという形で記述される。

函数を特定するには[編集]

函数 f が与えられたとき、定義により、f の定義域の各点 x に対して fx における値 f(x) がただ一つ割り当てられる。xf(x) に(陰に陽に)関係付ける方法を特定あるいは記述するやり方は様々である。場合によっては、(函数が具体的にどのような姿かたちをしているかについては一切言及せずに)適当な性質を持つ函数の存在を定理や公理によって保証することもあるが、大抵は函数 f の定義の一部としてその特定法や記述法は言及される。

値を書き並べる[編集]

有限集合上で定義された函数の場合には、定義域の各点に割り当てられる終域の元をすべて書き並べることで函数を定義することができる。例えば のとき函数 として与えることができる。

式を与える[編集]

四則演算やその他既知の函数を組み合わせた式(ただし手続き的な操作や無限個の組み合わせではない閉じた形の式英語版)によって函数が与えられることも多い。そのような式からは、定義域の任意の元の値から函数の値を計算することができる。例えば、一つ前の例の f とも定義できる。

この方法で函数を定義したとき、その函数がどのような集合上で定義されているかの決定が難しい場合がときどき生じる。例えば定義式が割り算を含む場合には、分母が零になるような変数の値は定義域から除かなければならない。同様に、実函数の定義に平方根が含まれる場合には、平方根の引数が非負となるような変数の値の集合に定義域が収まるようにしなければならない。


関数 具体例
初等関数 代数関数
有理関数
多項式関数
定数関数 f(x) = a
一次関数 f(x) = ax + b
二次関数 ax2 + bx + c
三次関数 ax3 + bx2 + cx + d
分数関数 f(x) = a/x
無理関数
初等超越関数
指数関数 ax, ex, 2x
対数関数 log(x), ln(x), loga(x)
三角関数 sin(x), cos(x), tan(x)
逆三角関数 sin−1(x), cos−1(x), tan−1(x)
双曲線関数 sinh(x), cosh(x), tanh(x)
特殊関数
ガンマ関数 Γ(x)
ベータ関数 Β(x, y)
誤差関数 erf(x)
テータ関数
ゼータ関数 ζ(x)
マチウ関数
* 代表的な関数とその具体例の一覧表を掲げる[11][16]。全てのものを網羅しているわけではないことに注意されたい。

式によって函数を定義する場合、それらの式が持つ性質・特性によって函数を分類することもしばしば行われる

  • 二次函数 の形(ただし a, b, c定数)と書ける函数を言う。
  • より一般に、多項式函数は加法・減法・乗法と非負整数のみを含む式で定義することができる函数である。例えば など。
  • 有理函数は多項式函数と同じ条件からさらに除法を許すようなものである。例えば など。
  • 代数函数はさらに冪根多項式の根をとる操作が許される。
  • 上記をすべて含む初等函数[注釈 4]には、さらに対数函数指数函数などが含まれる。

逆函数や陰伏函数として定める[編集]

函数 全単射とは、Y の各元 y に対し、X の元 x がちょうど一つ(少なくとも一つ、かつ、高々一つ)存在して y = f(x) と書けることであった。この場合、f逆函数 が、任意の yYy = f(x) を満たす xX に写す函数として定まる。例えば自然対数函数は正の実数全体の成す集合から実数全体の成す集合への全単射であるから、逆を持ち、それは指数函数と呼ばれる実数全体から正の実数全体への函数である。

函数 が全単射でなくとも、適当な部分集合 および を選んで、fE への制限E から F への全単射となり、その意味での逆函数を持つということは起こり得る。逆三角函数はこのような仕方で定義される。

より一般に、ふたつの集合 X, Y の間の二項関係 R が与えられ、X の部分集合 E は各元 xE に対して適当な yY が存在して x R y とできるものとする。どの xE に対してそのような yY をひとつ選び出す判定法がわかっているものとすれば、函数 を定義することができ、関係 R から陰伏的に定まるとの意味で陰函数と呼ぶ。[注釈 5]

陰函数定理は点の近傍における陰函数の存在と一意性を保証する緩やかな可微分性条件を提供するものである。

微積分学的な条件によって指定する[編集]

適当な函数の原始函数としてたくさんの函数が定義できる。たとえば自然対数函数は逆数函数 1/x の原始函数で x = 1 における値が 0 となるものとして定義される。誤差函数 erf もこのような方法で定義される函数の例である。

より一般に、ほとんどの特殊函数を含めた多くの函数は微分方程式の解として定義される。もっとも単純な例として、指数函数はその微分が自分自身に等しいような函数のなかで x = 0 における値が 1 となる唯一の函数として定義することができる。

冪級数はその収束域を定義域として函数を定義することに利用できる。例えば指数函数 と定義できる。しかし、冪級数の係数列は極めて任意に決めることができるから、「収束冪級数の和として書ける函数」は大抵既にどこか別の場所で定義されていたり、係数列もその別な定義に基づく何らかの計算できまるなどしているものである。冪級数はそのような函数の定義域を拡大することに利用できる。典型的には、実変数の函数が適当な区間上でテイラー級数の和と等しいとき、その級数を用いて直ちに適当な複素領域(つまり、級数の収束円板)上の複素変数函数に定義域を拡大することができる。これはさらに解析接続を用いて複素数平面上のさらに大きな領域へ拡大できる。この方法は、複素変数の指数函数対数函数および三角函数の定義に一般的に用いられる方法である。

漸化式を与える[編集]

定義域が非負整数であるような函数(つまり数列)はしばしば漸化式によって定義される。

基本的な例として、非負整数にその階乗を対応させる函数 は漸化式 と初期条件 によって決まる。

表示法[編集]

函数のグラフは函数の直観的描像を与えるために広く用いられる。グラフからは、例えば函数がどのように増減するかといった函数の性質を読み取ることができて、函数の理解に役立つ。函数によっては、その表現に棒グラフなども利用できる。

グラフ[編集]

各年のアメリカにおける交通事故死者数を折れ線グラフで示した函数
同上(棒グラフ版)

与えられた函数 のグラフとは、形式的な集合 のことである。

よくある場合として X および Y実数全体(あるいはその特定の部分集合、例えば区間など)の部分集合となっているとき、実数の組 を二次元の座標系(例えばデカルト平面英語版において座標 (x, y) を持つ点と同一視することができる。このような函数(の一部分)の表示法の一環として、プロット図を書くことができる(こういったプロット図もまた「函数のグラフ」として至る所で良く用いられる)。また違った座標系を使って函数の図示をすることもできる。例えば平方函数 xx2 のグラフは座標 (x, x2) (x) を持つ点の全体で、直交座標系に表せばよく知られたように抛物線になる。これをもし極座標系を用いて、極座標 (r, θ) = (x. x2) を持つ点をプロットしたならば、この場合のグラフはフェルマー螺旋英語版になる。

値の表[編集]

引数のとる値と函数のとる値を表の形に書きならべることに依って函数を表現することもできる。定義域が有限ならば、このやり方で函数を完全に特定することができる。例えば、掛け算をする函数 は馴染みの乗積表

xy 1 2 3 4 5
1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15
4 4 8 12 16 20
5 5 10 15 20 25

によって表すことができる。

しかし、定義域が連続的な場合には、定義域の特定の値に対する函数の値しか表には表示することができない。中間の値が必要となったときには、補間を使って函数の値を評価することは可能である。例えば正弦函数の小数第6位までで丸めた値を並べた数表の一部を以下のように与えることができる:

x sin x
1.289 0.960557
1.290 0.960835
1.291 0.961112
1.292 0.961387
1.293 0.961662

計算機や電卓の登場以前には、対数や三角函数などの函数に対するこのような数表がしばしば編纂され出版されていた。

棒グラフ[編集]

有限集合、あるいは自然数または整数全体で定義された函数を表示するのに、棒グラフもまたよく用いられる。この場合、各元 xx-軸上の区間を表しており、函数の値は x の表す区間を底辺とする高さ f(x)長方形として表現できる。

解析学[編集]

17世紀にはじまった函数の概念は、新しい無限小解析の基礎付けとなった(函数概念の歴史英語版を参照)。当時は、実変数実数値函数しか考えられておらず、どの函数も滑らかな函数であることが仮定されていたが、直に多変数函数複素変数函数に定義が拡張されていった。19世紀後半には数学的に厳密な函数の定義が導入され、任意の定義域および終域を持つ函数も扱われ始めた。

いまや函数は数学のあらゆる分野において用いられる。初歩の基礎解析学では単に「函数」といえば一変数の実数値函数の意味である。より一般の定義が導入され厳密な設定のもとで函数を扱うようになるのは実解析複素解析においてであろう。

実函数[編集]

一次函数のグラフ
多項式函数(ここでは二次函数)のグラフ
二つの三角函数(正弦と余弦)のグラフ

実函数とは「実変数」「実数値」の函数、つまり実数全体の成す集合を終域とし実数からなる適当な区間を含む部分集合を定義域とする函数を言う。以下本節では、そのような函数を単に函数と呼ぶことにする。

数学及びその応用分野において最もよく扱われる函数はさらに適当な正則性条件(連続性微分可能性あるいは解析性など)が課せられる。このような正則性があることによって、函数はそのグラフを用いてよく視覚化することができる。以下、適当な区間上で微分可能であるような函数だけを扱う。

函数は点ごとの演算が備わっている。つまり、函数 f, g に対して、それらの和・差・積を

で定義すれば、f, g の定義域の交わりを定義域とする函数が得られる。同様にこれらの商を
と定義することができるが、この場合定義域は f, g の定義域の交わりから g零点を除いたものになる。

多項式からは実数全体で定義された多項式函数が定まる。これには定数函数一次函数二次函数などが含まれる。ふたつの多項式函数の商である有理函数は(零除算が起きないように)有限個の例外を除くすべての実数を定義域とする。もっとも単純な有理函数 x1/x のグラフは双曲線0 を除く実数直線全体を定義域に持つ。

実可微分函数の導函数もまた実函数である。実連続函数の原始函数はもとの函数が連続となる任意の開区間上で可微分な実函数を与える。例えば逆数函数 x ↦ 1/x は正の実数全体の成す集合上で連続(さらに微分可能)であるから、その原始函数で x = 1 において零となるもの(自然対数函数)は正の実数全体の成す集合上で微分可能である。

実函数 f がある区間上で単調となるのは、平均の変化率 の符号が、その区間内の点 x, y の選び方に依らず一定であるときである。その函数がその区間で微分可能ならば、その区間上で微分係数の符号が一定であるときに単調となる。実函数 f が区間 I において単調であるならば、f の逆函数が f(I) から I への函数として定まる。このような方法で、逆三角函数三角函数が単調となる区間上で三角函数の逆函数として与えられる。あるいはまた、自然対数函数は正の実軸上で単調で値域は実数直線全体となるから、その逆函数である指数函数は実数全体から正の実数全体への全単射であることが分かる。

他にも多くの実函数が陰函数定理(逆函数は陰函数の特別の場合)から、あるいは微分方程式の解として、定義される。例えば正弦函数 sin余弦函数 cos線型微分方程式 の解として初期条件

から定まる。

ベクトル値函数[編集]

終域の元がベクトルとなっているような函数はベクトル値函数と呼ばれる。ベクトル値函数は、(例えば物理的性質をモデル化するような)応用において特に有用で、例えば流束の各点においてその点での速度ベクトルを割り当てる函数はベクトル値函数になる。

n(あるいは多様体のように n と似た幾何学的または位相的性質を持つ空間)上で定義されたベクトル値函数を考えることもできて、そのようなベクトル値函数はベクトル場と呼ばれる。

函数空間[編集]

解析学あるいはより具体的に函数解析学において、特定の性質を共有するスカラー値またはベクトル値の函数からなり位相線型空間を成すような集合を函数空間と呼ぶ。例えば、コンパクト台付き(つまり、適当なコンパクト集合の外側では常に零となる)滑らかな実函数全体の成す集合は、シュヴァルツ超函数論の基盤となる函数空間を成す。

函数空間ではその代数的および位相的性質を利用して函数の性質を調べることができるようになるから、より進んだ解析学において函数空間は基本的な役割を果たすことになる。例えば、常微分方程式偏微分方程式における解の存在や一意性を言うすべての定理は函数空間を調べることで得られた結果である。

多変数関数と多価関数[編集]

複数の変数によって値が決定される関数を多変数関数と言う。これは複数の数の集合たちの直積集合から数の集合への写像であると解釈される。ベクトルの集合を定義域とする独立変数をもつ関数と解釈することもある。n 個の変数で決まる関数であれば、n 変数関数とも呼ばれ

のように書かれる。例えば

は二変数関数である。

一つの入力に複数の出力を返すような対応規則を関数の仲間として捉えるとき多価関数 (multi-valued function) と言う。常に n 個の出力を得る関数は n 価であるといい、その n を多価関数の価数と呼ぶ。例えば正の実数にその平方根を与える操作は正と負の二つ値を持つので、二価関数である。多価関数に対し、普通の一つの値しか返さない関数は一価関数といわれる。

多変数関数は独立変数がベクトルに値をとるものと解釈できるということを上に述べたが、逆に従属変数がベクトルの値を持つような写像も考えられ、それをベクトル値関数という。ベクトル値関数が与えられたとき、像のベクトルに対してその各成分をとり出す写像を合成してやることにより、通常の一価関数が複数得られる。つまり、定義域を共有するいくつかの関数を一つのベクトルとしてまとめて扱ったものがベクトル値関数であるということができる。

一つの例として、実数全体 R で定義された二価の関数

はベクトル値関数

として扱うことができる。また、定義域の "コピー" を作って定義域を広げてやることで、その拡張された定義域上の一価の関数

と見なすこともある。複素変数の対数関数 log は素朴には無限多価関数であるが、これを log のリーマン面上の一価関数と見なすなど、定義域を広げて一価にする手法は解析的な関数に対してしばしば用いられる。

陽表式と陰伏式[編集]

多変数方程式がいくつかの関数関係を定義することもある。例えば

のような式が与えられているとき、xy は独立に別々の値をとることはできない。x に勝手な値を与えるならば、yx の値によってとりうる値の制約を受けるからである。このことを以って、独立変数 x と従属変数 y が対応付けられると考えるとき、方程式 F(x, y) = 0 は x の関数 y (implicit) に定めるといい、yx陰伏関数または陰関数 (implicit function) という。これに対して、y = f(x) と表されるような関数関係を、yx陽関数 (explicit function) である、あるいは yx (explicit) に表されているなどと言い表す。

陰伏的な関数関係が F(x, y) = 0 によって与えられていて、陽な関数関係 y = f(x) が適当な集合 D を定義域として F(x, f(x)) = 0 を満たすなら、この陽関数 y = f(x) は D 上で関係式 F(x, y) = 0 から陰伏的に得られるという。関数の概念を広くとらず、一価で連続である場合や一価正則な場合などに考察を限ることはしばしば行われることであるが、そのような仮定のもとでは陰関数から陰伏的に得られる陽関数は一つとは限らず、一般に一つの陰関数は(定義域や値域でより分けることにより)複数の陽関数に分解される。このとき、陰伏的に得られた個々の陽関数をもとの陰関数のという。また、陰関数の複数の枝を総じて扱うならば、陰関数の概念から多価関数の概念を得ることになる。例えば、方程式

が定める陰関数 y は全域で 2 つの一価連続な枝

をもつ二価関数である。

また、媒介変数を導入して関係式を分解し、各変数を媒介変数の陽関数として表すことによって、陰関数を表すこともある。例えば、方程式 2x − 3y = 0 は、媒介変数 t を導入して

と表すことができるが、これによって yx の陰伏的な関数関係が表されていると考えるのである。

特殊化と一般化[編集]

数列[編集]

有限集合からの関数は実質的に数の組あるいは数列と呼ばれるものになる(適当な演算をいれてベクトルと見ることもできる)。それはつまり、集合の各元に序列を与えて {1, 2, ..., n} と並べるとき、k = 1, 2, ..., n に対して xk = x(k) を対応付ける関数 x

のかたちに表すのである。これは有限列であるが、無限列

を考えれば、それは各自然数 n に対して、数 sn を対応させる

という関数を考えていることに他ならない。もっと一般に数のを考慮に入れれば、通常の実関数 f = f(x) を x を添字に持つ実数の族

と読みかえることができる。

汎関数[編集]

関数を変数に取る関数はとくに汎関数 (functional) と呼ばれる。特にある集合上の関数の作るベクトル空間から係数体への線型写像線型汎関数 (linear functional) という。文脈によっては単に汎関数といえば線型汎関数を指すこともある。たとえば積分

は可積分関数 f を変数と見なして様々に取り替えることによって汎関数 F を与える。積分は線型性を持つから、F は線型汎関数である。

有限個の変数の組を考えることも関数の一種であったから、汎関数

はひとつまたは複数のパラメータ添字付けられる一般には無限個の変数をもつ関数の一種

と見なすことができる。また、有限次元ベクトル空間は基底を固定することにより、その座標で表される係数体の有限個の直積同型であるから、そこからの汎関数は多変数関数

と同一視できる。

関数に対して数を対応付けるという汎関数の概念は、さらに関数に関数を対応付ける作用素の概念に一般化される。

超関数[編集]

シュワルツの超関数(分布、: distribution)の理論は、汎関数の一種(コンパクトな台を持つ無限階微分可能関数の作る空間上の連続線型汎関数)として超関数を定義する。通常の局所可積分関数に測度を掛けて積分作用素として見ると、この意味で超関数と見なされる。

この様な連続線型汎関数を用いた定式化の方向で distribution よりも大きいクラスとしては、超分布 (ultradistribution) が知られている。

一方、佐藤の超関数: hyperfunction)は層係数コホモロジー等の代数的手法を用いて定義される。この代数的手法の解析学への導入により、線型微分方程式系の代数化である D 加群の理論等、代数解析学と呼ばれる分野が開かれた。以上の超関数のクラスは局所化可能、言い換えれば層を成すという事が重要である。

[編集]

[ヘルプ]

注釈[編集]

  1. ^ 但し、1958年の中学校学習指導要領では用語として「一次関数(一次函(かん)数)」と併記しており、「関数」のみになるのは1969年の中学校学習指導要領である。
  2. ^ 数学の多くの文脈では函数 (function) と写像 (map) は同じ意味で用いられる。[13]
  3. ^ 例えば Serge Lang[14] などは "function" を終域が数の集合 (すなわち実数R複素数C などのの部分集合) となる写像を指す場合に限り、より一般の場合には "mapping" を用いている
  4. ^ ここでいう「初等的」は必ずしも日常会話的な意味で初等的とは限らない。初等的な数学において遭遇するほとんどの函数は初等函数だが、例えば高次多項式の根を含むなどして日常的な意味で初等的ではないような初等函数も存在する。
  5. ^ 例えば単位円の方程式 は実数全体の成す集合上の二項関係を定める。–1 < x < 1 ならば y として二つの値が可能で、一方は正他方は負である。x = ± 1 のときは二つの値はともに 0 になる。それ以外では y は値を持たない。このことから、この方程式は [–1, 1] を定義域とするふたつの陰函数を定義し、それらの値域はそれぞれ [0, +∞) および (–∞, 0] である。この例では方程式は y について解くことができて と陽に書けるが、より複雑な例ではこのようなことが不可能なものも出てくる。例えば方程式 y超冪根 と呼ばれる x の陰函数としてさだめる(定義域・値域ともに R)。超冪根は四則演算と冪根をとる操作によって表すことができない。

出典[編集]

  1. ^ a b 片野善一郎 (1988)『数学用語の由来』明治図書出版 ISBN 4-18-543002-7
  2. ^ a b c d 片野善一郎 (2003)『数学用語と記号ものがたり』裳華房 ISBN 4-7853-1533-4
  3. ^ 譯語會記事」『東京數學會社雑誌』第62号、數學會社假事務所、 p. 9。
  4. ^ 譯語會記事」『東京數學會社雑誌』第64号、數學會社假事務所、 p. 14。
  5. ^ 菊池大麓「雜録」『東京數學會社雑誌』第61号、數學會社假事務所、 p. 1。菊池大麓「雜録」『東京數學會社雑誌』第63号、數學會社假事務所、 p. 1。
  6. ^ この経緯については、島田茂 (1981)「学校数学での用語と記号」福原満州雄他『数学と日本語』共立出版 ISBN 4-320-01315-8 pp.135-169 に詳しい。
  7. ^ 一松信 (1999)「当用漢字による書き替え」数学セミナー編集部編『数学の言葉づかい100』日本評論社 ISBN 4-535-60613-7 p.5
  8. ^ a b 小松勇作「関数」『数学100の慣用語』数学セミナー1985 年9月増刊、数学セミナー編集部編『数学の言葉づかい100』日本評論社 ISBN 4-535-60613-7 p. 58 に再録
  9. ^ 志賀浩二『数学が生まれる物語/第4週 座標とグラフ』岩波書店、70頁(1992年)
  10. ^ (美国) 羅密士撰『代微積拾級』巻十、(英国) 偉烈亜力口訳、(清) 李善蘭筆述、咸豊9年、1丁裏。東北大学附属図書館林文庫蔵。東北大学和算資料データベースで「代微積拾級」を検索することにより、画像ファイルを見ることができる。
  11. ^ a b 飯島徹穂編著、『数の単語帖』、共立出版、2003年、「関数」より。ISBN 978-4-320-01728-3
  12. ^ 遠山啓、『[1]』、岩波書店、〈岩波現代文庫〉、2011年。ISBN 978-4-00-603215-9
  13. ^ 松坂 1968, p. 28—「A, B が一般の集合である場合にも、A から B への写像を、A から B への関数(中略)ということがある。」
  14. ^ Lang, Serge (1971), Linear Algebra (2nd ed.), Addison-Wesley, p. 83 
  15. ^ Ron Larson, Bruce H. Edwards (2010), Calculus of a Single Variable, Cengage Learning, p. 19, ISBN 978-0-538-73552-0 
  16. ^ 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「特殊関数」より。ISBN 978-4-00-080309-0 C3541

参考文献[編集]

関連項目[編集]

外部リンク[編集]