一般化された超幾何関数

出典: フリー百科事典『ウィキペディア(Wikipedia)』
ナビゲーションに移動 検索に移動

数学において、一般化された超幾何関数(いっぱんかされたちょうきかかんすう、: Generalized hypergeometric function)は、一般に

の形式で表される級数である[1]。但し、

ポッホハマー記号である。古典的にはガウス超幾何関数

を単に超幾何級数という[2][3][4]。なお、厳密にいうと、右辺の級数が超幾何級数であり、左辺の記号は級数の和によって定義される超幾何関数を表すものである。

超幾何級数[編集]

級数 の連続する項の比が n有理関数であるとき、これを超幾何級数(hypergeometric series)という[5]。慣習的にはあらかじめ初項を括り出しておき、定義に t0 = 1 も含め正規化する。定義から

となる n多項式 P(n), Q(n) が存在する。

たとえば指数関数テイラー級数

は超幾何級数で、この場合

ゆえ P(n) = z, Q(n) = n + 1 となる。

分母分子を一次式の積へ分解することで有理関数を

の形に書くことができる。ここで z は分母分子の最高次係数の比である。歴史的な理由により分母の因子 n + 1 を仮定しているが、必要なら分子に同じ因子を掛ければよいので一般性は失わない。以上から級数は

の形に書くことができる。この右辺を通常

と表記する。

収束条件[編集]

超幾何級数は、であれば絶対収束し、であれば発散する。の場合は、であれば絶対収束し、であれば発散する。の場合は、であれば絶対収束し、であれば発散する。但し、又はが正でない整数である場合は、となってで収束、或いはとなってで発散する場合がある。

収束条件の証明[編集]

項をとする:

公比

であるから、であれば絶対収束し、であれば発散する。の場合は、

であるから、

であり、

である。従って、ラーベの判定法 (Raabe's test[6][7])により、であれば絶対収束し、であれば発散する。

超幾何関数[編集]

代数関数指数関数三角関数

正弦積分余弦積分指数積分

脚注[編集]

  1. ^ Weisstein, Eric W. "Hypergeometric Series". MathWorld (英語).
  2. ^ Whittaker & Watson 1927, p. 281.
  3. ^ 原岡喜重. (2002). 超幾何関数. 朝倉書店.
  4. ^ 時弘哲治. (2006). 工学における特殊関数. 共立出版.
  5. ^ この比が定数の場合を幾何級数と呼ぶのだった。
  6. ^ Weisstein, Eric W. "Raabe's Test." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/RaabesTest.html
  7. ^ Huelsman, C. B. (1965). RAABE'S TEST. Pi Mu Epsilon Journal, 4(2), 67-70.

参考文献[編集]

関連項目[編集]