コンテンツにスキップ

ラヨ数

出典: フリー百科事典『ウィキペディア(Wikipedia)』

ラヨ数(ラヨすう、: Rayo's number)とはアグスティン・ラヨスペイン語版にちなんで名付けられた巨大数であり、彼の手掛けた最大の数と主張されている[1][2] 。これは元々2007年1月26日にマサチューセッツ工科大学 (MIT) にて行われたイベント「巨大数決闘(big number duelもしくはLarge Number Championship)」にて定義された[3][4][5][6][注釈 1]

定義

[編集]
[集合論においてグーゴル個以内の記号で表現された任意の有限数よりも大きい最小の数]

[注釈 2]この定義文は、ルール違反[注釈 3]を避けるために以下のように置き換えられた[7]

数の正式の定義は以下の二階論理の式で定義された関数Sat([φ(x1)],s)を利用する。[φ]はゲーデルコード化(ゲーデル数によるナンバリング)された式であり、sは代入変数である[7]

R {

{任意の(コード化された)式 [ψ] と任意の代入変数 t
(R( [ψ],t)
( ([ψ] = `x_i x_j' t(x_1) ∈ t(x_j))
([ψ] = `x_i = x_j' ∧ t(x_1) = t(x_j)) ∨
([ψ] = `(∼θ)' ∧ ∼R([θ],t)) ∨
([ψ] = `(θ∧ξ)' ∧ R([θ],t) ∧ R([ξ],t)) ∨
([ψ] = `∃x_i (θ)' と、いくつかのtのxi変形t', R([θ],t'))
)}

R([φ],s)}

この式Sat([φ(x1)],s)を用いて、ラヨ数は次の様に定義された[7]

以下の性質を持つあらゆる有限数mよりも大きい最小の数。:(Satの定義と同様に)一階の集合論の言語においてグーゴル個未満の記号と唯一の自由変数x1で表現される式 φ(x1)の表す数。但しφ(x1)は以下の条件を満たす。(a)Sat([φ(x1)],s)及びm=x1が成り立つ変数sがある。かつ(b)Sat([φ(x1)],t)及びm=x1が成り立つ変数tがある。

厳密には、公理系が明示的に書かれていないため、定義が不完全である。[要出典]

説明

[編集]

直観的には、ラヨ数は形式言語で次のように定義される:

  • "xi∈xj" と "xi=xj" は原子論理式である。
  • θ が式の際に、 "(~θ)" は式( θ の否定)である。
  • θ と ξ が式の際に、"(θ∧ξ)" は式( θ と ξ の連言)である。
  • θ が式の際に、 "∃xi(θ)" は式( θ の存在量化)である。

括弧を削除することは許可されていないことに注意が必要である。例えば、"∃xi(~θ)" では無く "∃xi((~θ))" と書かなくてはならない。

欠落している論理接続詞英語版をこの言語で表現することは可能である。例えば:

  • 論理和: "(θ∨ξ)" は "(~((~θ)∧(~ξ)))" と同等。
  • 論理包含含意): "(θ⇒ξ)" は "(~(θ∧(~ξ)))" と同等。
  • 二条件英語版: "(θ⇔ξ)" は "((~(θ∧ξ))∧(~((~θ)∧(~ξ))))" と同等。
  • 全称記号: "∀xi(θ)" は "(~∃xi((~θ)))" と同等。

この定義は、この言語の式の 1 つしかない自由変数、 x1 に関するものである。 x1 が有限の フォン・ノイマン順序数英語版 k と 長さ n の式が同値の際、その様な式は k の "ラヨ文字列" であり、k は n 個の記号で "ラヨ命名可" であると言える。

注釈

[編集]
  1. ^ このイベントは、計算能力理論、無限序数、高次言語、表現システムの表現限界、そして数学と哲学の間の領域について興味を持つ学生を集める目的で行われた。2人の哲学者、MIT准教授アグスティン・ラヨとプリンストン大学准教授Adam Elgaの間でどちらがより巨大な有限数(the largest finite number)を作れるかを競った。
  2. ^ 巨大数決闘当日対決の終盤ホワイトボードにまず書かれた定義は
    The smallest number bigger than any number that can be named by an expression in the language of first order set-theory with less than a googol (10100) symbols.
    (和訳:一階述語論理による集合論の言葉でグーゴル(10100)個未満の記号を使った式で指定できるどの様な数より大きい最小の数)
    であり[5]直ぐに上記の定義文に改められた。
  3. ^ "決闘"には"Primitive semantic vocabulary is not allowed."(原始意味論語彙は許されない)というルールがあった。

出典

[編集]
  1. ^ CH. Rayo's Number” (英語). The Math Factor Podcast. 2017年11月29日閲覧。
  2. ^ Kerr, Josh (7 December 2013). “Name the biggest number contest”. 20 March 2016時点のオリジナルよりアーカイブ。27 March 2014閲覧。[リンク切れ]
  3. ^ Elga, Adam. “Large Number Championship”. 24 March 2014閲覧。[リンク切れ]
  4. ^ Large Number Championship” (英語). MIT (23 jan 07). 2018年1月19日閲覧。
  5. ^ a b Manzari, Mandana; Nick Semenkovich (31 January 2007). “Profs Duke It Out in Big Number Duel” (英語). The Tech. http://tech.mit.edu/V126/N64/64largenumber.html 2017年11月29日閲覧。 
  6. ^ フィッシュ『巨大数論 第2版』インプレス R&D、東京、2017年。ISBN 9784802093194http://gyafun.jp/ln/ 
  7. ^ a b c Rayo, Augustin. “Big Number Duel” (英語). 2017年11月29日閲覧。

外部リンク

[編集]

関連項目

[編集]