幾何化予想

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索

幾何化予想(きかかよそう、Geometrization conjecture)は、1982年にアメリカ数学者ウィリアム・サーストンによって提出された「コンパクト3次元多様体は、幾何構造を持つ8つの部分多様体に分解される」という命題位相幾何学微分幾何学を結びつけるものでありミレニアム懸賞問題にも挙げられていたポアンカレの予想問題の解法の過程として思いつかれた。2003年グリゴリー・ペレルマンによるリッチフローRicci flow)を用いた証明が示され、現在ではその証明が基本的に正しいものとされている。これにより、およそ100年にわたり未解決だった3次元ポアンカレ予想が証明されることになった。

概説[編集]

2次元多様体では3種類の幾何構造(ユークリッド構造ロバチェフスキー構造リーマン構造)が考えられ、全ての2次元多様体はこの内1つを自然な幾何構造として持つというのは良く知られた事実であった[1]が3次元多様体は自由度が高すぎるため一般には自然な幾何構造は持たせることはできないと考えられていた(実際これは正しい)。

これに対しウィリアム・サーストンは3次元の多様体上の自然な幾何構造というものを新たに定義しそれに基づけば8種類の幾何構造を考えられることを示した。これらには2次元にも存在する3種類の幾何構造と2次元の円筒に対応する球面及び双曲面線分積空間のもつ構造(円周と線分の積空間である2次元多様体、円筒は2次元ユークリッド構造をもつ。また、平面と線分の積空間は3次元ユークリッド構造を持つ)、及び2次の実特殊線形群(双曲平面の変換群)の普遍被覆空間(なお、球面の変換群の普遍被覆空間は3次元球面)及びニルソルと呼ばれる、合わせて3つの、2次元と1次元の多様体の単純な積では構成できない特殊な幾何構造がある。サーストンの幾何化予想とは全ての3次元多様体はこれらのいずれかの幾何構造を持つ幾つかの部分多様体に分解できるというものである[2]

微分幾何学からのアプローチ[編集]

この予想の解決に大きな役割を担ったのはリチャード・S・ハミルトンが導入したリッチフローという偏微分方程式である。これはもともとハミルトンが熱伝導を記述するために考案したものだがシン=トゥン・ヤウが幾何化予想解決につながると考えハミルトンに研究を促したもので、19世紀の数学者グレゴリオ・リッチ=クルバストロの名を冠するのは彼が自分の弟子のトゥーリオ・レヴィ=チヴィタと共に書いた論文で導入したことに由来する、リッチフローは以後数学のみならず物理学まで広く使われることになるテンソルの概念を基盤としている。

リッチフローは前述の通りもともと熱伝導を表すもので金融理論の有名な方程式であるブラック-ショールズ方程式とも近いものだが、ハミルトンとヤウのアイディアはこれを用いて多様体の曲率を表そうというものである。しかし曲率は熱と比べて非常に複雑な対象である[3]。ハミルトンはどんな滑らかな多様体でもリッチフローを持つことを証明した[4]

しかし、リッチフローには特異点という計算不可能な点を産み出すことがあるという問題があった(=リッチフローの特異点問題)。ハミルトンは解決を試み幾つかの特異点を消すことに成功はしたものの、最終的な解決はグリゴリー・ペレルマンを待つことになる。

8種類の幾何構造[編集]

  • 球体
  • ドーナツ形
  • 内側に折り返せない横の輪のあるドーナツ形
  • 外側に折り返せない横の輪のあるドーナツ形
  • 内側に折り返せない縦の輪のあるドーナツ形
  • 外側に折り返せない縦の輪のあるドーナツ形
  • クラインの壷
  • 折り返せない縦の輪のあるクラインの壷

関連項目[編集]

外部リンク[編集]

脚注[編集]

  1. ^ ベルンハルト・リーマンの考察を受け1907年アンリ・ポアンカレパウル・ケーベがそれぞれ独立に証明。
  2. ^ 全ての3次元多様体が幾つかの素な多様体に分解できることは1929年ヘルムート・クネーザーにより証明されていた。
  3. ^ 熱はスカラー量だが曲率は行列で表される。
  4. ^ 曲率は滑らかな多様体上でしか定義できないのででは滑らかでない多様体ではそもそもリッチフローを考えることができない。ただしどんな多様体にもそれと同相な滑らかな多様体が存在することが示されているため滑らかな多様体だけ考えても差し支えない。この事実はエドウィン・モイーズアーエイチ・ビングピーター・シェーレンらによって証明された。3人ともポアンカレ予想を解決しようとして結局それがかなわなかった数学者である。