「SARSコロナウイルス2の変異株」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
init; copy from Variants of SARS-CoV-2 02:24, 7 March 2021 UTC (oldid= 1010745782)
(相違点なし)

2021年3月7日 (日) 09:58時点における版

Template:COVID-19 pandemic sidebar

Positive, negative, and neutral mutations during the evolution of coronaviruses like SARS-CoV-2.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), has many variants; some are or have been believed to be of particular importance. This article discusses such notable variants of SARS-CoV-2, and also discusses notable missense mutations found in some, or all, of these variants.

The sequence WIV04/2019, belonging to the GISAID S clade / PANGO A lineage / Nextstrain 19B clade, is thought likely to most closely reflect the sequence of the original virus infecting humans known as "sequence zero", and is widely referred to as such and used as a reference sequence.[1]

Overview table

First detection PANGO Lineages nomenclature system Other names Notable mutations Evidence of clinical changes[note 1] Spread Ref.
Location Date Transmissibility Virulence Antigenicity
ナイジェリアの旗 ナイジェリア 2020年8月 B.1.1.207 P681H Localized [2]
イギリスの旗 イギリス 2020年9月 B.1.1.7 VOC-202012/01, 20I/501Y.V1 N501Y, 69–70del, P681H Increased ~50% (NERVTAG) Potentially 30% more lethal (NERVTAG) Indications of ostensible reduced antigenic activity (ECDC) Global [2][3][4][5]
デンマークの旗 デンマーク 2020年10月 Cluster 5, ΔFVI-spike (SSI) Y453F, 69–70deltaHV Moderately decreased sensitivity to neutralising antibodies (WHO) Likely extinct [6][7][8]
南アフリカ共和国の旗 南アフリカ 2020年12月 B.1.351 501.V2, 20H/501Y.V2,
VOC-202012/02
N501Y, K417N, E484K Increased 50% (ECDC) 21% reduction in antigenicity, but effective neutralisation (ECDC) Global [2][9][10][3][11][12][13]
日本の旗 日本
ブラジルの旗 ブラジル
2021年1月 P.1 Descendant of B.1.1.28, VOC-202101/02 N501Y, E484K, K417T Likely increased (CDC) Overall reduction in effective neutralisation (ECDC) Global [10][14][15][16][13][3]
イギリスの旗 イギリス
ナイジェリアの旗 ナイジェリア
2020年12月 B.1.525 VUI-202102/03 (PHE), formerly UK1188 E484K, F888L "Modestly" reduced neutralisation (COG-UK) International [17][18][19]
Notes
  1. ^ "—" denotes that no reliable sources could be found to cite.

Nomenclature

SARS-CoV-2 corresponding nomenclatures[20]
PANGO lineages (cf. Nomenclature proposal, Nature) Notes to PANGO lineages (cf. Alm et al.) Nextstrain clades, 2021[21] GISAID clades Notable variants
A.1–A.6 19B S contains "reference sequence" WIV04/2019[1]
B.3–B.7, B.9, B.10, B.13–B.16 19A L
O[注釈 1]
B.2 V
B.1 B.1.5–B.1.72 20A G Lineage B.1 in the PANGO Lineages nomenclature system
B.1.9, B.1.13, B.1.22, B.1.26, B.1.37 GH
B.1.3–B.1.66 20C Includes CAL.20C[22]
20G Predominant in US generally, Jan '21[22]
20H Includes B.1.351 aka 20H/501Y.V2 or 501.V2 lineage
B.1.1 20B GR Includes B.1.1.207
20D Includes P.1 and P.2[23]
20F
20I Includes lineage B.1.1.7 aka VOC-202012/01 or 20I/501Y.V1
B.1.177 20E (EU1)[21] GV[注釈 1] Derived from 20A[21]

No consistent nomenclature has been established for SARS-CoV-2.[25] Colloquially, including by governments and news organizations, concerning variants are often referred to by the country in which they were first identified,[26][27][28] but 2021年1月 (2021-01)現在, the World Health Organization (WHO) is working on "standard nomenclature for SARS-CoV-2 variants that does not reference a geographical location".[29]

While there are many thousands of variants of SARS-CoV-2,[30] subtypes of the virus can be put into larger groupings such as lineages or clades.[注釈 2] Three main, generally used nomenclatures[25] have been proposed:

  • 2021年1月 (2021-01)現在, GISAID—referring to SARS-CoV-2 as hCoV-19[31]—had identified eight global clades (S, O, L, V, G, GH, GR, and GV).[32]
  • In 2017, Hadfield et al. announced Nextstrain, intended "for real-time tracking of pathogen evolution".[33] Nextstrain has later been used for tracking SARS-CoV-2, identifying 11 major clades[注釈 3] (19A, 19B, and 20A–20I) 2021年1月 (2021-01)現在.[34]
  • In 2020, Rambaut et al. of the Phylogenetic Assignment of Named Global Outbreak Lineages (PANGOLIN)[35] software team proposed in an article[36] "a dynamic nomenclature for SARS-CoV-2 lineages that focuses on actively circulating virus lineages and those that spread to new locations";[25] 2021年2月 (2021-02)現在, six major lineages (A, B, B.1, B.1.1, B.1.177, B.1.1.7) had been identified.[37][38]

Criteria for notability

Viruses generally acquire mutations over time, giving rise to new variants. When a new variant appears to be growing in a population, it can be labeled as an "emerging variant".

Some of the potential consequences of emerging variants are the following:[2][39]

  • Increased transmissibility
  • Increased morbidity
  • Increased mortality
  • Ability to evade detection by diagnostic tests
  • Decreased susceptibility to antiviral drugs (if and when such drugs are available)
  • Decreased susceptibility to neutralizing antibodies, either therapeutic (e.g., convalescent plasma or monoclonal antibodies) or in laboratory experiments
  • Ability to evade natural immunity (e.g., causing reinfections)
  • Ability to infect vaccinated individuals
  • Increased risk of particular conditions such as multisystem inflammatory syndrome or long-haul COVID.
  • Increased affinity for particular demographic or clinical groups, such as children or immunocompromised individuals.

Variants that appear to meet one or more of these criteria may be labeled "variants under investigation" or "variants of interest" pending verification and validation of these properties. Once validated, a "variant under investigation/ of interest" may be renamed a "variant of concern" by monitoring organizations, such as the CDC.[40][41]

Notable variants

Cluster 5

In early November 2020, Cluster 5, also referred to as ΔFVI-spike by the Danish State Serum Institute (SSI),[6] was discovered in Northern Jutland, Denmark, and is believed to have been spread from minks to humans via mink farms. On 4 November 2020, it was announced that the mink population in Denmark would be culled to prevent the possible spread of this mutation and reduce the risk of new mutations happening. A lockdown and travel restrictions were introduced in seven municipalities of Northern Jutland to prevent the mutation from spreading, which could compromise national or international responses to the COVID-19 pandemic. By 5 November 2020, some 214 mink-related human cases had been detected.[42]

The World Health Organization (WHO) has stated that cluster 5 has a "moderately decreased sensitivity to neutralizing antibodies".[7] SSI warned that the mutation could reduce the effect of COVID-19 vaccines under development, although it was unlikely to render them useless. Following the lockdown and mass-testing, SSI announced on 19 November 2020 that cluster 5 in all probability had become extinct.[8] As of 1 February 2021, authors to a peer-reviewed paper, all of whom were from the SSI, assessed that cluster 5 was not in circulation in the human population.[43]

B.1.1.207Lineage B.1.1.207

First sequenced in August 2020 in Nigeria,[44] the implications for transmission and virulence are unclear but it has been listed as an emerging variant by the US Centers for Disease Control.[2] Sequenced by the African Centre of Excellence for Genomics of Infectious Diseases in Nigeria, this variant has a P681H mutation, shared in common with UK's Lineage B.1.1.7. It shares no other mutations with Lineage B.1.1.7 and as of late December 2020 this variant accounts for around 1% of viral genomes sequenced in Nigeria, though this may rise.[44]

Lineage B.1.1.7 / Variant of Concern 202012/01

First detected in October 2020 during the COVID-19 pandemic in the United Kingdom from a sample taken the previous month,[45] Lineage B.1.1.7,[46] was previously known as the first Variant Under Investigation in December 2020 (VUI – 202012/01)[47] and also as lineage B.1.1.7 or 20I/501Y.V1 (formerly 20B/501Y.V1).[48][49][2] Since then, its prevalence odds have doubled every 6.5 days, the presumed generational interval.[50][51] It is correlated with a significant increase in the rate of COVID-19 infection in United Kingdom, associated partly with the N501Y mutation. There is some evidence that this variant has 40%–80% increased transmissibility (with most estimates lying around the middle to higher end of this range),[52] and early analyses suggest an increase in lethality.[4][53]

Variant of Concern 202102/02

Variant of Concern 202102/02 (VOC-202102/02), described by Public Health England (PHE) as "B.1.1.7 with E484K"[17] is of the same lineage in the Rambaut classification system but has an additional E484K mutation. As of 18 February 2021, there are 26 confirmed cases of VOC-202102/02 in the UK.[17]

Lineage B.1.1.317

While B.1.1.317 is not considered a Variant of concern, Queensland Health forced 2 people undertaking hotel quarantine in Brisbane, Australia to undergo an additional 5 days quarantine on top of the mandatory 14 days after it was confirmed they were infected with this variant.[54]

Lineage B.1.1.318

Lineage B.1.1.318 was designated by PHE as a VUI (VUI-202102/04) on 24 February 2021. 16 cases of it have been detected in the UK.[55][56]

Lineage B.1.351

On 18 December 2020, the 501.V2 variant, also known as 501.V2, 20H/501Y.V2 (formerly 20C/501Y.V2), VOC-202012/02 (PHE), or lineage B.1.351,[2] was first detected in South Africa and reported by the country's health department.[57] Researchers and officials reported that the prevalence of the variant was higher among young people with no underlying health conditions, and by comparison with other variants it is more frequently resulting in serious illness in those cases.[58][59] The South African health department also indicated that the variant may be driving the second wave of the COVID-19 epidemic in the country due to the variant spreading at a more rapid pace than other earlier variants of the virus.[57][58]

Scientists noted that the variant contains several mutations that allow it to attach more easily to human cells because of the following three mutations in the receptor-binding domain (RBD) in the spike glycoprotein of the virus: N501Y,[57][60] K417N, and E484K.[9][61] The N501Y mutation has also been detected in the United Kingdom.[57][62]

CAL.20CLineage B.1.429 / CAL.20C

CAL.20C, also known as lineage B.1.429, is defined by five distinct mutations (I4205V and D1183Y in the ORF1ab-gene, and S13I, W152C, L452R in the spike proteins S-gene), of which the L452R (previously also detected in other unrelated lineages) was of particular concern.[22][63] CAL.20C is possibly more transmissible, but further study is necessary to confirm this.[63] It was first observed in July 2020 by researchers at the Cedars-Sinai Medical Center, California, in one of 1,230 virus samples collected in Los Angeles County since the start of the COVID-19 epidemic.[64] It was not detected again until September when it reappeared among samples in California, but numbers remained very low until November.[65][66] In November 2020, the CAL.20C variant accounted for 36 percent of samples collected at Cedars-Sinai Medical Center, and by January 2021, the CAL.20C variant accounted for 50 percent of samples.[63] In a joint press release by University of California, San Francisco, California Department of Public Health, and Santa Clara County Public Health Department,[67] the variant was also detected in multiple counties in Northern California. From November to December 2020, the frequency of the variant in sequenced cases from Northern California rose from 3% to 25%.[68] In a preprint, CAL.20C is described as belonging to clade 20C and contributing approximately 36% of samples, while an emerging variant from the 20G clade accounts for some 24% of the samples in a study focused on Southern California. Note however that in the US as a whole, the 20G clade predominates, as of January 2021.[22] Following the increasing numbers of CAL.20C in California, the variant has been detected at varying frequencies in most US states. Small numbers have been detected in other countries in North America, and in Europe, Asia and Australia.[65][66]

B.1.525Lineage B.1.525

B.1.525, also called VUI-202102/03 by Public Health England (PHE) and formerly known as UK1188,[17] does not carry the same N501Y mutation found in B.1.1.7, 501.V2 and P.1, but carries the same E484K-mutation as found in the P.1, P.2, and 501.V2 variants, and also carries the same ΔH69/ΔV70 deletion (a deletion of the amino acids histidine and valine in positions 69 and 70) as found in B.1.1.7, N439K variant (B.1.141 and B.1.258) and Y453F variant (Cluster 5).[69] B.1.525 differs from all other variants by having both the E484K-mutation and a new F888L mutation (a substitution of phenylalanine (F) with leucine (L) in the S2 domain of the spike protein). As of March 5, it had been detected in 23 countries, including the UK, Denmark, Finland, Norway, Netherlands, Belgium, France, Spain, Nigeria, Ghana, Jordan, Japan, Singapore, Australia, Canada, Germany, Italy, Slovenia, Austria, Malaysia, Switzerland, the Republic of Ireland and the US.[70][71][72][19][73][74][75] It has also been reported in Mayotte, the overseas department/region of France.[70] The first cases were detected in December 2020 in the UK and Nigeria, and as of 15 February, it had occurred in the highest frequency among samples in the latter country.[19] As of 24 February, 56 cases were found in the UK.[17] Denmark, which sequence all their COVID-19 cases, found 113 cases of this variant from January 14 to February 21, of which seven were directly related to foreign travels to Nigeria.[71]

UK experts are studying it to understand how much of a risk it could be. It is currently regarded as a "variant under investigation", but pending further study, it may become a "variant of concern". Prof Ravi Gupta, from the University of Cambridge spoke to the BBC and said B.1.525 appeared to have "significant mutations" already seen in some of the other newer variants, which is partly reassuring as their likely effect is to some extent more predictable.[18]

Lineage P.1

Lineage P.1, termed Variant of Concern 202101/02 by Public Health England[17] and 20J/501Y.V3 by Nextstrain,[76][77] was detected in Tokyo on 6 January 2021 by the National Institute of Infectious Diseases (NIID). The new lineage was first identified in four people who arrived in Tokyo having travelled from the Brazilian Amazonas state on 2 January 2021.[78] On 12 January 2021, the Brazil-UK CADDE Centre confirmed 13 local cases of the P.1 new lineage in the Amazon rain forest.[15] This variant of SARS-CoV-2 has been named P.1 lineage (although it is a descendant of B.1.1.28, the name B.1.1.28.1 is not permitted and thus the resultant name is P.1) and has 17 unique amino acid changes, 10 of which in its spike protein, including N501Y and E484K.[15] The new lineage was absent in samples from March to November from Manaus, Amazonas state, but it was identified in 42% of the samples from December 2020 collected in the same city, suggesting a recent increase in frequency.[15] A separate preprint by Voloch et al. identified another sub-lineage of the B.1.1.28 lineage circulating in the state of Rio de Janeiro, Brazil, now named P.2 lineage[79] (previously referred to as B.1.1.248[80]), that harbours the E484K mutation but not the N501Y mutation. The P.2 lineage is not directly related with the P.1 lineage identified in Manaus.[15][81] Although both lineages harbour the E484K mutation, the mutation was acquired independently through convergent evolution.[15][より良い情報源が必要] Nevertheless, on 3 March 2021, scientists reported that the Lineage P.1 variant may be associated with Covid-19 disease reinfection after recovery from an earlier Covid-19 infection.[82][83]

Notable missense mutations

D614G

Prevalence of D614G in 2020 according to sequences in the GISAID database[84]

D614G is a missense mutation that affects the spike protein of SARS-CoV-2. The frequency of this mutation in the viral population has increased during the pandemic. G (glycine) has replaced D (aspartic acid) at position 614 in many countries, especially in Europe though more slowly in China and the rest of East Asia, supporting the hypothesis that G increases the transmission rate, which is consistent with higher viral titers and infectivity in vitro.[1] Researchers with PANGOLIN nicknamed this mutation "Doug".[85]

In July 2020, it was reported that the more infectious D614G SARS-CoV-2 variant had become the dominant form in the pandemic.[86][87][88][89] PHE confirmed that the D614G mutation had a "moderate effect on transmissibility" and was being tracked internationally.[90]

The global prevalence of D614G correlates with the prevalence of loss of smell (anosmia) as a symptom of COVID-19, possibly mediated by higher binding of the RBD to the ACE2 receptor or higher protein stability and hence higher infectivity of the olfactory epithelium.[91]

Variants containing the D614G mutation are found in the G clade by GISAID[1] and the B.1 clade by the PANGOLIN tool.[1]

E484K

The name of the mutation, E484K, refers to an exchange whereby the glutamic acid (E) is replaced by lysine (K) at position 484.[92] It is nicknamed "Eeek".[85]

E484K has been reported to be an escape mutation (i.e., a mutation that improves a virus's ability to evade the host's immune system[93][94]) from at least one form of monoclonal antibody against SARS-CoV-2, indicating there may be a "possible change in antigenicity".[12] The P.1. lineage described in Japan and Manaus,[15] the P.2 lineage (also known as B.1.1.248 lineage, Brazil)[81] and 501.V2 (South Africa) exhibit this mutation.[12] A limited number of B.1.1.7 genomes with E484K mutation have also been detected.[95] Monoclonal and serum-derived antibodies are reported to be from 10 to 60 times less effective in neutralizing virus bearing the E484K mutation.[96][13] On 2 February 2021, medical scientists in the United Kingdom reported the detection of E484K in 11 samples (out of 214,000 samples), a mutation that may compromise current vaccine effectiveness.[97][98]

N501Y

N501Y denotes a change from asparagine (N) to tyrosine (Y) in amino-acid position 501.[90] N501Y has been nicknamed "Nelly".[85]

This change is believed by PHE to increase binding affinity because of its position inside the spike glycoprotein's receptor-binding domain, which binds ACE2 in human cells; data also support the hypothesis of increased binding affinity from this change.[5] Variants with N501Y include P.1 (Brazil/Japan),[12][15] Variant of Concern 202012/01 (UK), 501.V2 (South Africa), and COH.20G/501Y (Columbus, Ohio). This last became the dominant form of the virus in Columbus in late December 2020 and January and appears to have evolved independently of other variants.[99][100]

S477G/N

A highly flexible region in the receptor binding domain (RBD) of SARS-CoV-2, starting from residue 475 and continuing up to residue 485, was identified using bioinformatics and statistical methods in several studies. The University of Graz[101] and the Biotech Company Innophore[102] have shown in a recent publication that structurally, the position S477 shows the highest flexibility among them.[103]

At the same time, S477 is hitherto the most frequently exchanged amino acid residue in the RBDs of SARS-CoV-2 mutants. By using molecular dynamics simulations of RBD during the binding process to hACE2, it has been shown that both S477G and S477N strengthen the binding of the SARS-COV-2 spike with the hACE2 receptor. The vaccine developer BioNTech[104] referenced this amino acid exchange as relevant regarding future vaccine design in a preprint published in February 2021.[105]

P681H

Prevalence of P681H in 2020 according to sequences in the GISAID database[84]

In January 2021, scientists reported in a preprint that the mutation 'P681H', a characteristic feature of the significant novel SARS-CoV-2 variants detected in the U.K. (B.1.1.7) and Nigeria (B.1.1.207), is showing a significant exponential increase in worldwide frequency, similar to the now globally prevalent 'D614G'.[106][84]

New variant detection and assessment

On 26 January 2021, the British government said it would share its genomic sequencing capabilities with other countries in order to increase the genomic sequencing rate and trace new variants, and announced a "New Variant Assessment Platform".[107] 2021年1月 (2021-01)現在, more than half of all genomic sequencing of COVID-19 was carried out in the UK.[108]

Origin of variants

Researchers have suggested that multiple mutations can arise in the course of the persistent infection of an immunocompromised patient, particularly when the virus develops escape mutations under the selection pressure of antibody or convalescent plasma treatment,[109][110] with the same deletions in surface antigens repeatedly recurring in different patients.[111]

Combined mutation variants

On 4 March 2021, scientists reported a problematic variant of SARS-CoV-2, less susceptible to vaccines, a combination of British B.1.1.7 and South African E484K (Eeek) mutations, in the state of Oregon.[112][113]

Differential vaccine effectiveness

Page 'COVID-19 vaccine#Variants' not found

See also

References

Explanatory notes
  1. ^ a b In another source, GISAID name a set of 7 clades without the O clade but including a GV clade.[24]
  2. ^ According to the WHO, "[l]ineages or clades can be defined based on viruses that share a phylogenetically determined common ancestor".[25]
  3. ^ 2021年1月 (2021-01)現在, at least one of the following criteria must be met in order to count as a clade in the Nextstrain system (quote from source):[21]
    1. A clade reaches >20% global frequency for 2 or more months
    2. A clade reaches >30% regional frequency for 2 or more months
    3. A VOC (‘variant of concern’) is recognized (applies currently [6 January 2021] to 501Y.V1 and 501Y.V2)
Sources
  1. ^ a b c d e Zhukova, Anna; Blassel, Luc; Lemoine, Frédéric; Morel, Marie; Voznica, Jakub; Gascuel, Olivier (2020-11-24). “Origin, evolution and global spread of SARS-CoV-2”. Comptes Rendus Biologies: 1–20. doi:10.5802/crbiol.29. PMID 33274614. https://comptes-rendus.academie-sciences.fr/biologies/item/CRBIOL_0__0_0_A1_0/. 
  2. ^ a b c d e f g CDC. “Emerging SARS-CoV-2 Variants” (英語). Centers for Disease Control and Prevention. 2021年1月4日閲覧。  この記述には、アメリカ合衆国内でパブリックドメインとなっている記述を含む。
  3. ^ a b c ECDC (2021年1月21日). “Risk related to the spread of new SARS-CoV-2 variants of concern in the EU/EEA - first update”. European Centre for Disease Prevention and Control. 2021年2月2日閲覧。
  4. ^ a b Gallagher, James (2021年1月22日). “Coronavirus: UK variant 'may be more deadly'”. BBC News. https://www.bbc.com/news/health-55768627 2021年1月22日閲覧。 
  5. ^ a b Chand et al., "Potential impact of spike variant N501Y" (p. 6). 引用エラー: 無効な <ref> タグ; name "FOOTNOTEChand_et_al."Potential_impact_of_spike_variant_N501Y"_(p._6)"が異なる内容で複数回定義されています
  6. ^ a b Lassaunière, Ria (2020年11月11日). “SARS-CoV-2 spike mutations arising in Danish mink and their spread to humans”. Statens Serum Institut. 2020年11月10日時点のオリジナルよりアーカイブ。2020年11月11日閲覧。
  7. ^ a b SARS-CoV-2 mink-associated variant strain – Denmark”. World Health Organization (2020年11月6日). 2021年1月16日閲覧。
  8. ^ a b De fleste restriktioner lempes i Nordjylland” [most restrictions eased in North Jutland]. Sundheds- og Ældreministeriet (2020年11月19日). 2021年1月16日閲覧。 “Sekventeringen af de positive prøver viser samtidig, at der ikke er påvist yderligere tilfælde af minkvariant med cluster 5 siden den 15. september, hvorfor Statens Serums Institut vurderer, at denne variant med stor sandsynlighed er døet ud. ("With high probability [...] died out")”
  9. ^ a b Lowe, Derek (2020年12月22日). “The New Mutations”. In the Pipeline. American Association for the Advancement of Science. 2020年12月23日閲覧。 “I should note here that there's another strain in South Africa that is bringing on similar concerns. This one has eight mutations in the Spike protein, with three of them (K417N, E484K and N501Y) that may have some functional role.”
  10. ^ a b Kupferschmidt, Kai (15 January 2021). “New coronavirus variants could cause more reinfections, require updated vaccines”. Science (American Association for the Advancement of Science). doi:10.1126/science.abg6028. https://www.sciencemag.org/news/2021/01/new-coronavirus-variants-could-cause-more-reinfections-require-updated-vaccines 2021年2月2日閲覧。. 
  11. ^ “Coronavirus variants and mutations: The science explained” (英語). BBC News. (2021年1月6日). https://www.bbc.com/news/science-environment-55404988 2021年2月2日閲覧。 
  12. ^ a b c d "Brief report: New Variant Strain of SARS-CoV-2 Identified in Travelers from Brazil" (PDF) (Press release). Japan: NIID (National Institute of Infectious Diseases). 12 January 2021. 2021年1月14日閲覧
  13. ^ a b c Kupferschmidt, Kai (January 22, 2021). “New mutations raise specter of 'immune escape'”. Science 371 (6527): 329–330. doi:10.1126/science.371.6527.329. PMID 33479129. https://science.sciencemag.org/content/371/6527/329 2021年1月25日閲覧。. 
  14. ^ Voloch, Carolina M.; et al. (2020). "Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil" full text (see figure 5). Retrieved 15 January 2021. doi:10.1101/2020.12.23.20248598 – via medRxiv.
  15. ^ a b c d e f g h Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings” (英語). Virological (2021年1月12日). 2021年1月23日閲覧。
  16. ^ Lovett, Samuel (2021年1月14日). “What we know about the new Brazilian coronavirus variant”. The Independent (London). https://www.independent.co.uk/news/health/covid-japan-new-variant-brazil-latest-b1786847.html 2021年1月14日閲覧。 
  17. ^ a b c d e f Public Health England (2021年2月18日). “Variants: distribution of cases data” (英語). GOV.UK. 2021年2月18日閲覧。
  18. ^ a b Roberts, Michelle (2021年2月16日). “Another new coronavirus variant seen in the UK”. BBC NEWS. 16 February 2021. https://www.bbc.co.uk/news/health-56082573 2021年2月16日閲覧。 
  19. ^ a b c B.1.525”. Rambaut Group, University of Edinburgh. PANGO Lineages (2021年2月15日). 2021年2月16日閲覧。
  20. ^ This table is an adaptation and expansion of Alm et al., figure 1.
  21. ^ a b c d Updated Nextstrain SARS-CoV-2 clade naming strategy”. nextstrain.org/blog (2021年1月6日). 2021年1月19日閲覧。
  22. ^ a b c d Zhang, Wenjuan; Davis, Brian D.; Chen, Stephanie S.; Martinez, Jorge M Sincuir; Plummer, Jasmine T.; Vail, Eric (2021). Emergence of a novel SARS-CoV-2 strain in Southern California, USA. doi:10.1101/2021.01.18.21249786. https://www.medrxiv.org/content/10.1101/2021.01.18.21249786v1. 
  23. ^ PANGO lineages-Lineage B.1.1.28 cov-lineages.org, accessed 4 February 2021
  24. ^ clade tree (from 'Clade and lineage nomenclature')”. www.gisaid.org (2020年7月4日). 2021年1月7日閲覧。
  25. ^ a b c d WHO Headquarters (8 January 2021). “3.6 Considerations for virus naming and nomenclature”. SARS-CoV-2 genomic sequencing for public health goals: Interim guidance, 8 January 2021. World Health Organization. p. 6. https://www.who.int/publications/i/item/WHO-2019-nCoV-genomic_sequencing-2021.1 2021年2月2日閲覧。 
  26. ^ Don't call it the 'British variant.' Use the correct name: B.1.1.7” (英語). STAT (2021年2月9日). 2021年2月12日閲覧。
  27. ^ Flanagan, Ryan (2021年2月2日). “Why the WHO won't call it the 'U.K. variant', and you shouldn't either” (英語). Coronavirus. 2021年2月12日閲覧。
  28. ^ For a list of sources using names referring to the country in which the variants were first identified, see, for example, Talk:South African COVID variant and Talk:U.K. Coronavirus variant.
  29. ^ World Health Organization (2021年1月15日). “Statement on the sixth meeting of the International Health Regulations (2005) Emergency Committee regarding the coronavirus disease (COVID-19) pandemic”. 2021年1月18日閲覧。
  30. ^ Koyama, Takahiko; Platt, Daniel; Parida, Laxmi (June 2020). “Variant analysis of SARS-CoV-2 genomes”. Bulletin of the World Health Organization 98 (7): 495–504. doi:10.2471/BLT.20.253591. PMC 7375210. PMID 32742035. https://www.who.int/bulletin/volumes/98/7/20-253591/en/. "We detected in total 65776 variants with 5775 distinct variants." 
  31. ^ Alm, E.; Broberg, E. K.; Connor, T.; Hodcroft, E. B.; Komissarov, A. B.; Maurer-Stroh, S.; Melidou, A.; Neher, R. A. et al. (2020). “Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020”. Euro Surveillance 25 (32). doi:10.2807/1560-7917.ES.2020.25.32.2001410. PMC 7427299. PMID 32794443. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427299/. 
  32. ^ Global phylogeny, updated by Nextstrain”. GISAID (2021年1月18日). 2021年1月19日閲覧。
  33. ^ Hadfield, J.; Megill, C; Bell, S.M.; Huddleston, J.; Potter, B.; Callender, C. (May 2018). “Nextstrain: real-time tracking of pathogen evolution.”. Bioinformatics 34 (23): 4121–4123. doi:10.1093/bioinformatics/bty407. PMC 6247931. PMID 29790939. https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29790939. 
    Preprint: ——— (November 2017). Nextstrain: real-time tracking of pathogen evolution.. doi:10.1101/224048. https://www.biorxiv.org/content/10.1101/224048v1. 
  34. ^ Nextclade” (What are the clades?). clades.nextstrain.org. 2021年1月19日時点のオリジナルよりアーカイブ。2021年1月19日閲覧。
  35. ^ cov-lineages/pangolin: Software package for assigning SARS-CoV-2 genome sequences to global lineages”. Github. 2021年1月2日閲覧。
  36. ^ Rambaut, A.構文エラー:「etal」を認識できません。 (2020). “A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology”. Nature Microbiology 5 (11): 1403–1407. doi:10.1038/s41564-020-0770-5. PMID 32669681. https://www.nature.com/articles/s41564-020-0770-5.  Cited in Alm et al.
  37. ^ Lineages”. cov-lineages.org. 2020年12月24日閲覧。
  38. ^ Addendum: A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology”. Nature Microbiology (2020年7月15日). doi:10.1038/s41564-021-00872-5. 2021年3月3日閲覧。
  39. ^ Contributor, IDSA (2021年2月2日). “COVID "Mega-variant" and eight criteria for a template to assess all variants” (英語). Science Speaks: Global ID News. 2021年2月20日閲覧。
  40. ^ Variants: distribution of cases data”. GOV.UK (2021年1月28日). 2021年2月19日閲覧。 “SARS-CoV-2 variants, if considered to have concerning epidemiological, immunological, or pathogenic properties, are raised for formal investigation. At this point they are designated Variant Under Investigation (VUI) with a year, month, and number. Following a risk assessment with the relevant expert committee, they may be designated Variant of Concern (VOC)”
  41. ^ CanCOGeN Interim Recommendations for Naming, Identifying,and Reporting SARS-CoV-2 Variants of Concern”. CanCOGeN (nccid.ca) (2021年1月15日). 2021年2月25日閲覧。
  42. ^ Detection of new SARS-CoV-2 variants related to mink”. European Centre for Disease Prevention and Control (2020年11月12日). 2020年11月12日閲覧。
  43. ^ Larsen, Helle Daugaard; Fonager, Jannik; Lomholt, Frederikke Kristensen; Dalby, Tine; Benedetti, Guido; Kristensen, Brian; Urth, Tinna Ravnholt; Rasmussen, Morten et al. (2021-02-04). “Preliminary report of an outbreak of SARS-CoV-2 in mink and mink farmers associated with community spread, Denmark, June to November 2020”. Eurosurveillance 26 (5). doi:10.2807/1560-7917.ES.2021.26.5.210009. ISSN 1025-496X. PMC 7863232. PMID 33541485. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7863232/. 
  44. ^ a b Detection of SARS-CoV-2 P681H Spike Protein Variant in Nigeria” (英語). Virological (2020年12月23日). 2021年1月1日閲覧。
  45. ^ “Covid: Ireland, Italy, Belgium and Netherlands ban flights from UK”. BBC News. (2020年12月20日). https://www.bbc.co.uk/news/world-europe-55385768 
  46. ^ Chand, Meera; Hopkins, Susan; Dabrera, Gavin; Achison, Christina; Barclay, Wendy; Ferguson, Neil; Volz, Erik; Loman, Nick; Rambaut, Andrew; Barrett, Jeff (21 December 2020). Investigation of novel SARS-COV-2 variant: Variant of Concern 202012/01 (PDF) (Report). Public Health England. 2020年12月23日閲覧
  47. ^ PHE investigating a novel strain of COVID-19”. Public Health England (PHE) (2020年12月14日). Template:Cite webの呼び出しエラー:引数 accessdate は必須です。
  48. ^ Rambaut, Andrew; Loman, Nick; Pybus, Oliver; Barclay, Wendy; Barrett, Jeff; Carabelli, Alesandro; Connor, Tom; Peacock, Tom; L. Robertson, David; Vol, Erik (2020). Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations (Report). Written on behalf of COVID-19 Genomics Consortium UK. 2020年12月20日閲覧
  49. ^ Kupferschmidt, Kai (2020年12月20日). “Mutant coronavirus in the United Kingdom sets off alarms but its importance remains unclear” (英語). Science Mag. 2020年12月21日閲覧。
  50. ^ New evidence on VUI-202012/01 and review of the public health risk assessment”. khub.net (2020年12月15日). Template:Cite webの呼び出しエラー:引数 accessdate は必須です。
  51. ^ COG-UK Showcase Event - YouTube”. YouTube. 2020年12月25日閲覧。
  52. ^ Estimated transmissibility and severity of novel SARS-CoV-2 Variant of Concern 202012/01 in England”. CMMID Repository (2020年12月23日). 2021年1月24日閲覧。
    Cited in European Centre for Disease Prevention and Control (ECDC) (2021年1月21日). “Risk related to the spread of new SARS-CoV-2 variants of concern in the EU/EEA – first update”. Stockholm: ECDC. 2021年1月24日閲覧。
  53. ^ Peter Horby, Catherine Huntley, Nick Davies, John Edmunds, Neil Ferguson, Graham Medley, Andrew Hayward, Muge Cevik, Calum Semple (2021年2月11日). “NERVTAG paper on COVID-19 variant of concern B.1.1.7: NERVTAG update note on B.1.1.7 severity (2021-02-11)”. www.gov.uk. Template:Cite webの呼び出しエラー:引数 accessdate は必須です。
  54. ^ “Queensland travellers have hotel quarantine extended after Russian variant of coronavirus detected” (英語). www.abc.net.au. (2021年3月3日). https://www.abc.net.au/news/2021-03-03/coronavirus-queensland-russian-variant-quarantine-qantas-flight/13191524 2021年3月3日閲覧。 
  55. ^ Variants of concern or under investigation: data up to 3 March 2021 4 March 2021 www.gov.uk, accessed 5 March 2021
  56. ^ Latest update: New Variant Under Investigation designated in the UK 4 March 2021 www.gov.uk, accessed 5 March 2021
  57. ^ a b c d South Africa announces a new coronavirus variant”. The New York Times (2020年12月18日). 2020年12月20日閲覧。
  58. ^ a b South Africa coronavirus: Second wave fueled by new strain, teen 'rage festivals'”. The Washington Post (2020年12月18日). 2020年12月20日閲覧。
  59. ^ Mkhize, Dr Zwelini (18 December 2020). "Update on Covid-19 (18th December 2020)" (Press release). South Africa. COVID-19 South African Online Portal. 2020年12月23日閲覧Our clinicians have also warned us that things have changed and that younger, previously healthy people are now becoming very sick.
  60. ^ Abdool Karim (2020年12月19日). “The 2nd Covid-19 wave in South Africa:Transmissibility & a 501.V2 variant, 11th slide”. www.scribd.com. Template:Cite webの呼び出しエラー:引数 accessdate は必須です。
  61. ^ Statement of the WHO Working Group on COVID-19 Animal Models (WHO-COM) about the UK and South African SARS-CoV-2 new variants”. World Health Organization (2020年12月22日). 2020年12月23日閲覧。
  62. ^ "Novel mutation combination in spike receptor binding site" (Press release). GISAID. 21 December 2020. 2020年12月23日閲覧
  63. ^ a b c “New California Variant May Be Driving Virus Surge There, Study Suggests”. New York Times. (2021年1月19日). https://www.nytimes.com/2021/01/19/health/coronavirus-variant-california.html 
  64. ^ "Local COVID-19 Strain Found in Over One-Third of Los Angeles Patients". news wise (Press release). California: Cedars Sinai Medical Center. 19 January 2021. 2021年3月3日閲覧
  65. ^ a b B.1.429”. Rambaut Group, University of Edinburgh. PANGO Lineages (2021年2月15日). 2021年2月16日閲覧。
  66. ^ a b B.1.429 Lineage Report”. Scripps Research. outbreak.info (2021年2月15日). 2021年2月16日閲覧。
  67. ^ COVID-19 Variant First Found in Other Countries and States Now Seen More Frequently in California”. www.cdph.ca.gov. 2021年1月30日閲覧。
  68. ^ Weise, Karen Weintraub and Elizabeth. “New strains of COVID swiftly moving through the US need careful watch, scientists say” (英語). USA TODAY. 2021年1月30日閲覧。
  69. ^ Delta-PCR-testen” [The Delta PCR Test] (Danish). Statens Serum Institut (2021年2月25日). 2021年2月27日閲覧。
  70. ^ a b GISAID hCOV19 Variants (see menu option 'G/484K.V3 (B.1.525)')”. www.gisaid.org. 2021年3月4日閲覧。
  71. ^ a b Status for udvikling af SARS-CoV-2 Variants of Concern (VOC) i Danmark” [Status of development of SARS-CoV-2 Variants of Concern (VOC) in Denmark] (Danish). Statens Serum Institut (2021年2月27日). 2021年2月27日閲覧。
  72. ^ Varianten van het coronavirus SARS-CoV-2” [Variants of the coronavirus SARS-CoV-2] (Dutch). Rijksinstituut voor Volksgezondheid en Milieu, RIVM (2021年2月16日). 2021年2月16日閲覧。
  73. ^ “A coronavirus variant with a mutation that 'likely helps it escape' antibodies is already in at least 11 countries, including the US”. Business Insider. (2021年2月16日). https://www.businessinsider.com/virus-variant-in-11-countries-and-may-resist-antibodies-report-2021-2?r=US&IR=T 2021年2月16日閲覧。 
  74. ^ “En ny variant av koronaviruset er oppdaget i Norge. Hva vet vi om den? [A new variant of the coronavirus has been discovered in Norway. What do we know about it?]” (Norwegian). Aftenposten. (2021年2月18日). https://www.aftenposten.no/norge/i/0Koll2/en-ny-variant-av-koronaviruset-er-oppdaget-i-norge-hva-vet-vi-om-den 2021年2月18日閲覧。 
  75. ^ Cullen, Paul (2021年2月25日). “Coronavirus: Variant discovered in UK and Nigeria found in State for first time”. The Irish Times. https://www.irishtimes.com/news/health/coronavirus-variant-discovered-in-uk-and-nigeria-found-in-state-for-first-time-1.4495002 2021年2月25日閲覧。  Gataveckaite, Gabija (2021年2月25日). “First Irish case of B1525 strain of Covid-19 confirmed as R number increases”. Irish Independent. https://www.independent.ie/news/first-irish-case-of-b1525-strain-of-covid-19-confirmed-as-r-number-increases-40132928.html 2021年2月25日閲覧。  McGlynn, Michelle (2021年2月25日). “Nphet confirm new variant B1525 detected in Ireland as 35 deaths and 613 cases confirmed”. Irish Examiner. https://www.irishexaminer.com/news/arid-40233749.html 2021年2月25日閲覧。 
  76. ^ Cases, Data, and Surveillance”. Centers for Disease Control and Prevention (2020年2月11日). 2021年2月19日閲覧。
  77. ^ SARS-CoV-2 Variants”. Centers for Disease Control and Prevention (2020年1月31日). 2021年2月20日閲覧。
  78. ^ “Japan finds new coronavirus variant in travelers from Brazil”. Japan Today (Japan). (2021年1月11日). https://japantoday.com/category/national/corrected-update-3-japan-finds-new-coronavirus-variant-in-travellers-from-brazil 2021年1月14日閲覧。 
  79. ^ PANGO lineages Lineage P.2 cov-lineages.org, accessed 28 January 2021 "P.2...Alias of B.1.1.28.2, Brazilian lineage"
  80. ^ PANGO lineages Lineage B.1.1.248 cov-lineages.org, accessed 26 February 2021 "Brazilian lineage [B.1.1.248] reassigned B.1.1.28"
  81. ^ a b Voloch, Carolina M.; F, Ronaldo da Silva; Almeida, Luiz G. P. de; Cardoso, Cynthia C.; Brustolini, Otavio J.; Gerber, Alexandra L.; Guimarães, Ana Paula de C.; Mariani, Diana et al. (2020-12-26). “Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil” (英語). Le Phare de l'Esperanto. doi:10.1101/2020.12.23.20248598. ISSN 2024-8598. https://www.medrxiv.org/content/10.1101/2020.12.23.20248598v1. 
  82. ^ Andreoni, Manuela; Londoño, Ernesto; Casado, Leticia (2021年3月3日). “Brazil’s Covid Crisis Is a Warning to the Whole World, Scientists Say - Brazil is seeing a record number of deaths, and the spread of a more contagious coronavirus variant that may cause reinfection.”. The New York Times. https://www.nytimes.com/2021/03/03/world/americas/Brazil-covid-variant.html 2021年3月3日閲覧。 
  83. ^ Zimmer, Carl (2021年3月1日). “Virus Variant in Brazil Infected Many Who Had Already Recovered From Covid-19 - The first detailed studies of the so-called P.1 variant show how it devastated a Brazilian city. Now scientists want to know what it will do elsewhere.”. The New York Times. https://www.nytimes.com/2021/03/01/health/covid-19-coronavirus-brazil-variant.html 2021年3月3日閲覧。 
  84. ^ a b c Maison, David P.; Ching, Lauren L.; Shikuma, Cecilia M.; Nerurkar, Vivek R. (7 January 2021). “Genetic Characteristics and Phylogeny of 969-bp S Gene Sequence of SARS-CoV-2 from Hawaii Reveals the Worldwide Emerging P681H Mutation” (英語). bioRxiv : The Preprint Server for Biology: 2021.01.06.425497. doi:10.1101/2021.01.06.425497. PMC 7805472. PMID 33442699. https://www.biorxiv.org/content/10.1101/2021.01.06.425497v1 2021年2月11日閲覧。.  Available under CC BY 4.0.
  85. ^ a b c Mandavilli, Apoorva; Mueller, Benjamin (2021年3月2日). “Why Virus Variants Have Such Weird Names”. The New York Times. ISSN 0362-4331. https://www.nytimes.com/2021/03/02/health/virus-variant-names.html 2021年3月2日閲覧。 
  86. ^ Schraer, Rachel (2020年7月18日). “Coronavirus: Are mutations making it more infectious?”. BBC News. https://www.bbc.co.uk/news/health-53325771 2021年1月3日閲覧。 
  87. ^ “New, more infectious strain of COVID-19 now dominates global cases of virus: study” (英語). medicalxpress.com. オリジナルの2020年11月17日時点におけるアーカイブ。. https://web.archive.org/web/20201117010819/https://medicalxpress.com/news/2020-07-infectious-strain-covid-dominates-global.html 2020年8月16日閲覧。 
  88. ^ Korber, Bette; Fischer, Will M.; Gnanakaran, Sandrasegaram; Yoon, Hyejin; Theiler, James; Abfalterer, Werner et al. (2 July 2020). “Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus” (英語). Cell 182 (4): 812–827.e19. doi:10.1016/j.cell.2020.06.043. ISSN 0092-8674. PMC 7332439. PMID 32697968. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7332439/. 
  89. ^ SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo "an emergent Asp614→Gly (D614G) substitution in the spike glycoprotein of SARS-CoV-2 strains that is now the most prevalent form globally" 18 December 2020 science.sciencemag.org, accessed 14 January 2021 DOI: 10.1126/science.abe8499
  90. ^ a b COG-UK update on SARS-CoV-2 Spike mutations of special interest: Report 1 (PDF) (Report). COVID-19 Genomics UK Consortium (COG-UK). 20 December 2020. p. 7. 2020年12月25日時点のオリジナル (PDF)よりアーカイブ。2020年12月31日閲覧
  91. ^ Butowt, R.; Bilinska, K.; Von Bartheld, C. S. (2020-10-21). “Chemosensory Dysfunction in COVID-19: Integration of Genetic and Epidemiological Data Points to D614G Spike Protein Variant as a Contributing Factor”. ACS Chem Neurosci. 11 (20): 3180–3184. doi:10.1021/acschemneuro.0c00596. PMC 7581292. PMID 32997488. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581292/. 
  92. ^ Greenwood, Michael (2021年1月15日). “"What Mutations of SARS-CoV-2 are Causing Concern?"]”. News Medical Lifesciences. 2021年1月16日閲覧。
  93. ^ escape mutation”. HIV i-Base (2012年10月11日). 2021年2月19日閲覧。
  94. ^ Wise, Jacqui (5 February 2021). “Covid-19: The E484K mutation and the risks it poses”. The BMJ 372: n359. doi:10.1136/bmj.n359. ISSN 1756-1833. PMID 33547053. https://www.bmj.com/content/372/bmj.n359. 
  95. ^ Technical briefing 5”. Gov.uk. Public Health England. p. 17. 2021年2月2日閲覧。
  96. ^ Greaney, Allison (January 4, 2021). Comprehensive mapping of mutations to the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human serum antibodies. doi:10.1101/2020.12.31.425021. https://www.biorxiv.org/content/10.1101/2020.12.31.425021v1.article-info 2021年1月25日閲覧。. 
  97. ^ Rettner, Rachael (2021年2月2日). “UK coronavirus variant develops vaccine-evading mutation - In a handful of instances, the U.K. coronavirus variant has developed a mutation called E484K, which may impact vaccine effectiveness.”. Live Science. https://www.livescience.com/uk-coronavirus-variant-mutation-e484k.html 2021年2月2日閲覧。 
  98. ^ Achenbach, Joel; Booth, William (2021年2月2日). “Worrisome coronavirus mutation seen in U.K. variant and in some U.S. samples”. The Washington Post. https://www.washingtonpost.com/health/new-covid-mutation-uk-variant/2021/02/02/a164f17a-6577-11eb-886d-5264d4ceb46d_story.html 2021年2月2日閲覧。 
  99. ^ Researchers Discover New Variant of COVID-19 Virus in Columbus, Ohio 13 January 2021, wexnermedical.osu.edu, accessed 16 January 2021
  100. ^ Tu, Huolin; Avenarius, Matthew R.; Kubatko, Laura; Hunt, Matthew; Pan, Xiaokang; Ru, Peng; Garee, Jason; Thomas, Keelie et al. (26 January 2021). “Distinct Patterns of Emergence of SARS-CoV-2 Spike Variants including N501Y in Clinical Samples in Columbus Ohio” (英語). bioRxiv: 2021.01.12.426407. doi:10.1101/2021.01.12.426407. https://www.biorxiv.org/content/10.1101/2021.01.12.426407v3. 
  101. ^ University of Graz”. www.uni-graz.at. 2021年2月22日閲覧。
  102. ^ Coronavirus SARS-CoV-2 (formerly known as Wuhan coronavirus and 2019-nCoV) - what we can find out on a structural bioinformatics level” (英語). Innophore (2020年1月23日). 2021年2月22日閲覧。
  103. ^ Singh, Amit; Steinkellner, Georg; Köchl, Katharina; Gruber, Karl; Gruber, Christian C. (2021-02-22). “Serine 477 plays a crucial role in the interaction of the SARS-CoV-2 spike protein with the human receptor ACE2” (英語). Scientific Reports 11 (1): 4320. doi:10.1038/s41598-021-83761-5. ISSN 2045-2322. https://www.nature.com/articles/s41598-021-83761-5. 
  104. ^ BioNTech: We aspire to individualize cancer medicine” (英語). BioNTech. 2021年2月22日閲覧。
  105. ^ Schrörs, Barbara; Gudimella, Ranganath; Bukur, Thomas; Rösler, Thomas; Löwer, Martin; Sahin, Ugur (2021-02-04). “Large-scale analysis of SARS-CoV-2 spike-glycoprotein mutants demonstrates the need for continuous screening of virus isolates” (英語). bioRxiv. doi:10.1101/2021.02.04.429765. https://www.biorxiv.org/content/10.1101/2021.02.04.429765v1. 
  106. ^ “Study shows P681H mutation is becoming globally prevalent among SARS-CoV-2 sequences” (英語). News-Medical.net. (2021年1月10日). https://www.news-medical.net/news/20210110/Study-shows-P681H-mutation-is-becoming-globally-prevalent-among-SARS-CoV-2-sequences.aspx 2021年2月11日閲覧。 
  107. ^ Smout, Alistair (2021年1月26日). “Britain to help other countries track down coronavirus variants”. www.reuters.com. 2021年1月27日閲覧。
  108. ^ Donnelly, Laura (2021年1月26日). “UK to help sequence mutations of Covid around world to find dangerous new variants”. www.telegraph.co.uk. 2021年1月28日閲覧。
  109. ^ Kupferschmidt, Kai (2020年12月23日). “U.K. variant puts spotlight on immunocompromised patients’ role in the COVID-19 pandemic”. Science. https://www.sciencemag.org/news/2020/12/uk-variant-puts-spotlight-immunocompromised-patients-role-covid-19-pandemic 
  110. ^ Sutherland, Stephani (2021年2月23日). “COVID Variants May Arise in People with Compromised Immune Systems”. Scientific American. https://www.scientificamerican.com/article/covid-variants-may-arise-in-people-with-compromised-immune-systems/ 
  111. ^ McCarthy, Kevin R.; Rennick, Linda J.; Nambulli, Sham; Robinson-McCarthy, Lindsey R.; Bain, William G.; Haidar, Ghady; Duprex, W. Paul (3 Feb 2021). “Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape”. Science. doi:10.1126/science.abf6950. https://science.sciencemag.org/content/early/2021/02/02/science.abf6950.full. 
  112. ^ Mandavilli, Apoorva (2021年3月5日). “In Oregon, Scientists Find a Virus Variant With a Worrying Mutation - In a single sample, geneticists discovered a version of the coronavirus first identified in Britain with a mutation originally reported in South Africa.”. The New York Times. https://www.nytimes.com/2021/03/05/health/virus-oregon-variant.html 2021年3月6日閲覧。 
  113. ^ Chen, Rita E. (4 March 2021). “Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies”. Nature Medicine. doi:10.1038/s41591-021-01294-w. https://www.nature.com/articles/s41591-021-01294-w 2021年3月6日閲覧。. 

External links

Template:Wikitionary

Template:Coronaviridae