光速

出典: フリー百科事典『ウィキペディア(Wikipedia)』

これはこのページの過去の版です。Luckas-bot (会話 | 投稿記録) による 2012年5月14日 (月) 10:21個人設定で未設定ならUTC)時点の版 (r2.7.1) (ロボットによる 追加: ast:Velocidá de la lluz)であり、現在の版とは大きく異なる場合があります。

しんくうちゅうのこうそくど
真空中の光速度
記号 c
プランク単位系
速度
SI 299 792 458 m/s
テンプレートを表示

光速(こうそく)、光速度(こうそくど)は、が伝播する速さのことである。真空中における光速の値は 299 792 458 m/s(≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回る速さ」[1]とも表現される。

光速は一般に記号cで表される。これはラテン語で速さを意味する celeritas または定数を意味するconstant (Weber's constant[1]) に由来する[2]

現代の国際単位系では長さの単位メートルが光速と時間により定義されている。光速度は電磁場の伝播速度でもあり、マクスウェルの方程式媒質真空にすると光速が一定となるということが相対性理論の根本原理になっている。

重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された[2]

光速度の測定

その後マイクロ波を使う方法、レーザーの使用などにより測定の精度が高まった[3]

1983年には、国際度量衡総会により、メートルを光速によって定義することとなった。これにより、真空中の光速が299 792 458 m/sと定義されたことになる。

電磁場の伝播と光速度

マクスウェルの方程式によれば、電磁場の伝播速度は次の関係で与えられる。

c は一定)

ここで、ε0 は真空の誘電率μ0 は真空の透磁率である。定数 c が光速に一致するという事実により、マクスウェルは「光が電磁波の一種である」ことを予言し、後にヘルツによって実証された。

物質中の光速

光速は、物質中では真空中よりも遅くなる。屈折という現象がおきるのは、光速が媒質によって異なるためである。また、物質中の光速よりも速い速度で荷電粒子が運動することが可能であり、このときチェレンコフ放射が発生する。

物質の絶対屈折率は、真空中の光速をその物質中の光速で割った値で定義されている。たとえば屈折率は可視光領域波長で約1.33、真空中の光速度は約30万km/sであるから、水中での光速度は約22.5万km/sとなる。

超光速の観測と実験

一般に、あらゆる情報物質は、真空中の光速よりも速く伝播することは不可能であるとされている。相対論の方程式によれば、光速よりも速く移動する物体を仮定すると、実数で表すことのできない物理量が現れ、質量が無限大になってしまうからである。しかし、光速よりも大きな速度が出現する物理的状況というのは数多く存在する。

光速よりも速く伝播するもの

波動の速度と同時的イベント

光の「群速度」が光速を超えることが可能であるということは、理論的に古くから知られていた[4]。ある最近の実験では、セシウム原子中の非常に短い距離を、光速の310倍の群速度でレーザー光線を伝えることに成功した。2002年にはモンクトン大学の物理学者Alain Hachéは、超光速の群速度をもつパルスを、長い距離にわたって伝えることに初めて成功した。この実験では、同軸フォトニック結晶の120メートルケーブルの中を、光速の3倍の群速度のパルスが伝播した[5]。しかし、この技術を超光速の情報伝達のために使うことは不可能である。情報伝達の速度というのは前面速度(パルスの最初の立ち上がりが伝播する速さ)によっており、群速度と前面速度の積は物質中の光速の2乗に等しいからである。

このように光の群速度が光速を超えられるというのは、音速にあてはめて次のように理解できる。人々を、距離をあけて一列に並べたとする。そして、各々が自分の腕時計でタイミングを見はからい、短い間隔で順番に掛け声をあげさせるとする。このとき、彼らは隣の人の声を聞くのを待たずに声をあげることができる。またある例として、海岸に打ち上げられる波にも同じようなことが見られる。波と海岸線の間の角度が十分小さければ、砕ける波は、内陸を波が伝わるよりもずっと大きな速さで波長に沿って伝播することができる。

光のスポットと影

たとえばレーザーが遠方にある物体の表面を横切ると、光のスポットの速度は簡単に光速を超えることができる[6]。遠方の物体に影を投射させても同様である。どちらの場合も、物質や情報が光速を超えて伝播しているわけではない。

量子力学

光速は、エバネッセント波が関与する現象、たとえばトンネル効果などにおいても超えることができる。エバネッセント波の位相速度と群速度は光速を超えうることが、実験によって示されている。しかしながら前面速度は光速を超えられないとされているため、この場合にも情報が光速を超えて伝播することはない。

量子力学では、ある種の量子的効果が光速を超えて伝播することがある(実際に、空間的隔たりのある物体同士の相互作用は長らく量子力学の問題であると見なされてきた。EPRパラドックスも参照)。たとえば、二つの粒子の量子状態量子もつれの状態にあり、一方の粒子の状態が他方の粒子の状態を固定するものとする(ここでは、一方のスピンが+½でなければならず、他方が-½でなければならないとする)。観測されるまでは、二つの粒子は(+½, −½)および(−½, +½)という二つの量子状態の重ね合わせ状態にある。二つの粒子が離れ、一方の粒子が観測されて量子状態が決定されたとすると、自動的に他方の粒子の量子状態も決定される。もし、ある種の量子力学の解釈のように、量子状態についての情報が一つの粒子について局所的であるとするなら、次のように結論づけなければならない。すなわち、最初の観測がなされると、二つ目の粒子は即座に、その量子状態を占めるのである。しかしながら、最初の粒子が観測されたときにどちらの量子状態にあるかを制御することは不可能なので、この方法でも情報は伝播できない。物理法則は、情報がもっと賢い方法で伝播することをも妨げており、これは量子複製不可能定理やno-communication theoremへとつながることになった。

接近速度

二つの物体が互いに向かい合う方向に運動しており、それぞれ、ある慣性系における速度が0.8cであったとする。このとき、その系において、それらは1.6cの速度で接近していることになる。これを接近速度とよぶ。接近速度はある系におけるどんな物体の速度も表していないことに注意が必要である。

固有速度

ある宇宙船が、地球から(地球の静止系で)1光年離れた惑星まで光速で移動するとする。これに要する時間は、宇宙船内の時計でみると1年よりも短くなることが可能である(地球上の時計でみれば、必ず1年以上かかる)。このとき、地球の系でみた移動距離を、宇宙船の時計でみた経過時間で割った値のことを、固有速度という。固有速度はあるひとつの慣性系で観測される速度を表しているわけではないので、この値には上限がない。しかしもちろん、同時に地球を出発した光信号はどんな場合にも宇宙船より速く惑星に到達する。

光速よりも速く伝播するように見えるだけのもの

いわゆる超光速運動とよばれるものが、電波銀河クエーサージェットなど、ある種の天体において観測される。しかし、これらのジェットは光速よりも速く運動しているわけではない。この見かけ上の超光速運動は、物体が光速に近い速度で運動しており、その方向と視線とのなす角度が小さいときに起こる投影効果である。

媒質中の光速よりも速く伝播するもの

逆説的のようだが、電磁放射で衝撃波をつくることが可能である。荷電粒子が絶縁された媒質中を通過するとき、粒子は媒質の局所的電磁場を乱す。媒質の原子中の電子は、通過する荷電粒子の場によって動かされ、偏極が起きる。粒子が通過したあとに媒質中の電子が再び平衡状態に戻るとき、光子が放射される(伝導体においては、光子を放射することなく平衡状態に戻る)。通常の場合、この光子は破壊的に干渉しあい、放射は検出されない。しかし場の乱れが光子よりも速いとき、すなわち荷電粒子が媒質中の光速よりも速いとき、光子は創造的に干渉しあい、観測される放射強度は増幅される。この放射は音波におけるソニックブームのようなもので、チェレンコフ放射とよばれる。

2011年 - ニュートリノ実験

2011年9月23日、CERNにおけるニュートリノ実験OPERAで光速より2.48×10-5(およそ40322.58分の1、統計誤差: ±0.28、系統誤差: ±0.30)速いという実験結果[7][8]が得られたことが発表された。OPERAチームは声明の中で「この結果が科学全般に与える潜在的な衝撃の大きさから、拙速な結論や物理的解釈をするべきではない」とし、検証を呼びかけている[9]

理論上の超光速粒子

光速変動理論

宇宙の初期に関する理論であるインフレーション理論に対抗する光速変動理論 (VSL) などのアイデアが存在している。光子が非常に高いエネルギーであるときに、光速が速くなる、とする考えだが、場当たり的な仮定が多く[要検証]、方程式も複雑であるため、正しく宇宙の法則をとらえた理論であるとは考えられていない。[要出典]

光速の暗唱

真空中における光速の値を、全桁、記憶術に頼らずに暗記する方法が存在する。例として、次のものがある。

29979 にく(憎)くなく 2 二人 4 寄れば 5 いつも 8 ハッピー
29979 にく(憎)くなく 2458 にょうご(女御)や - m表記による値
 

脚注

  1. ^ 地球の極円周を7.5倍した値が299 403 019.2 m赤道半径を7.5倍したものが300 410 252.7 mであるため、正確であるといえる。
  2. ^ クエーサー木星による掩蔽の観測を、重力レンズ効果の数値と比較:NASA
  3. ^ 西条敏美「物理定数とはなにか」 ISBN 4-0625-7144-7
  4. ^ Egan, Greg (2000年8月17日). “Applets Gallery / Subluminal”. 2007年2月6日閲覧。
    References LJ Wang; A Kuzmich & A Dogariu (2000年7月20日). “Gain-assisted superluminal light propagation”. Nature (406): p277. 
  5. ^ Electrical pulses break light speed record, physicsweb, 2002年1月22日; A Haché and L Poirier (2002), Appl. Phys. Lett. v.80 p.518.も参照。
  6. ^ Shadows and Light Spots”. 2008年3月2日閲覧。
  7. ^ OPERA experiment reports anomaly in flight time of neutrinos from CERN to Gran Sasso:CERN Press Release
  8. ^ Measurement of the neutrino velocity with the OPERA detector in the CNGS beam:Preprint on arxiv.org
  9. ^ ニュートリノは光より速い?NHK:9月23日 18時57分

関連項目

Template:Link FA Template:Link FA

Template:Link FA Template:Link FA