ロボノート

出典: フリー百科事典『ウィキペディア(Wikipedia)』
移動: 案内検索
ISSで作業するロボノート(イメージ図)

ロボノート: Robonaut)はNASAジョンソン宇宙センターにあるデクストラウス・ロボティックス研究所(Dextrous Robotics Laboratory)が行っているヒューマノイドロボット開発計画。

ロボノートシリーズ開発の背景にある中心的アイディアは宇宙飛行士と共に働くマシンを作ることである。そのため、宇宙服を着た宇宙飛行士と同様の環境で同じ工具を使用して作業できるよう設計されている。

ロボノートは他の宇宙ロボットとは異なるタイプのロボットで、例えばローバー英語版火星探査機マーズ・エクスプロレーション・ローバーなど)といったものより非常に繊細さの要求される作業に焦点を置いている。

1990年代に開発が始まり[1]、ロボノートシリーズ第1世代(R1)の開発は国防高等研究計画局を含む多くの共同開発者によって行われた。第2世代(R2)はNASAとゼネラルモーターズの共同プロジェクトで行われている。

R2は2011年2月24日に打ち上げられたディスカバリーSTS-133)によって国際宇宙ステーション(ISS)へ輸送され、与圧室内に保管された[1][2][3]

初期の計画[編集]

初期のコンセプト図(1996年)
ロボノートB(2003年12月)

ロボノートの初期設計では国際宇宙ステーションに搭載されているカナダアーム2エンドエフェクタ英語版として用いられ、宇宙飛行士の代わりにステーションの外部メンテナンスを行うことになっていた。

その他にも惑星表面で遠隔操作ロボットとして使用する、といった案も提案されている[4]

2003年に発表された初の試作機ロボノート1(R1)は上半身が人型で、4自由度のアームを持ち、指の先端にはタッチセンサー英語版が用いられている[1][5][6][7]

下半身は地上移動用の4輪車、2輪のセグウェイ船外活動用の0Gレッグと複数のタイプがある[8]

ロボノート2[編集]

R2(2009年7月)

次世代のロボノートはNASAとジェネラルモータの共同開発によって誕生した。NASAとGMの協力は2007年に始まり、2010年2月4日に公表された。

R2はR1の4倍の速さで動け、より小型軽量化した設計となっている。アームを最大2m/sで動かし、40ポンドの物体を持つことができる。握力は指1本あたり約5lb。350個以上のセンサがロボットに搭載されており、腕は衝突しても自動停止する機能を有している。重さは約136キロ[1]

R1は地上試験のみだったが、R2は宇宙試験も行われ、2011年2月24日に打ち上げられたディスカバリーによってISSへ輸送され、アメリカの実験棟デスティニー内で試験が行われている。2013年12月にはR2に追加するために開発された2本脚が公開された。脚を装着した時の長さは9ft(2m74cm)になる。各脚には関節7個を装備し、両脚の先端にはエンドエフェクタが装着されており、これを使って船内・船外のハンドレールやソケットに固定させることができる。 エンドエフェクタ用の視覚装置も装備しているため、自動で把持することができる。2014年初めにはこの脚がISSに運ばれる予定。なお、この脚は船外での使用も可能な設計であるが、上半身の方は船外で使用する前に改良を行う必要がある [9]

なお、R2は2基製造されており、1台は地上に残されてソフトウエアの開発・検証に使われる。地上のR2で検証されたプログラムが軌道上にも送られて実行されることになる。


またプロジェクトMと呼ばれる将来構想も提案されており、もしミッションが承認されれば1,000日以内にR2ロボットを月面に着陸させるという[10]

参考文献[編集]

  1. ^ a b c d ロボット宇宙飛行士「ロボノート2」、ケネディ宇宙センターに到着”. sorae.jp. 2010年8月12日閲覧。
  2. ^ NASA Prepares for Robonaut Launch to ISS on STS-133/Discovery”. NASA spaceflight.com. 2010年8月12日閲覧。
  3. ^ ISS to get 'Man Cave' Complete with Robot Butler”. Universe Today. 2010年8月12日閲覧。
  4. ^ Future Mars Explorers Might Only See the Planet from Orbit”. Universe Today (2007年12月3日). 2009年8月12日閲覧。
  5. ^ M.K. O'Malley and R.O. Ambrose, "Haptic feedback applications for Robonaut," Industrial Robot: An International Journal, Vol. 30, pp. 531-542 (2003) DOI: 10.1108/01439910310506800
  6. ^ Robonaut Hand subsystem”. NASA. 2010年8月12日閲覧。
  7. ^ C. S. Lovchik and M. A. Diftler, "The Robonaut hand: a dexterous robot hand for space," 1999 IEEE International Conference on Robotics and Automation,Vol. 2, pp. 907-912, DOI 10.1109/ROBOT.1999.772420
  8. ^ Mobility Concepts”. NASA. 2010年8月12日閲覧。
  9. ^ “NASA Developing Legs for Space Station's Robonaut 2”. NASA. (2013年12月9日). http://www.nasa.gov/press/2013/december/nasa-developing-legs-for-space-stations-robonaut-2/#.UstolkCqM7M 2014年1月7日閲覧。 
  10. ^ Will NASA Send Robots to the Moon with "Project M?"”. Universe Today. 2010年8月12日閲覧。

技術論文

  • R.O. Ambrose, H. Aldridge, R.S. Askew, R. Burridge, W. Bluethman, M.A. Diftler, C. Lovchik, D. Magruder, F. Rehnmark, ROBONAUT: NASA’s Space Humanoid, IEEE Intelligent Systems Journal, Vol. 15, No. 4, pp. 57-63, July/Aug. 2000, doi:10.1109/5254.867913.
  • M. A. Diftler, C. J. Culbert, and R.O. Ambrose, "Evolution of the NASA/DARPA Robonaut Control System," in IEEE International Conf. Robotics Automation, pp. 2543-2548, 2003.
  • G. Landis, "Teleoperation from Mars Orbit: A Proposal for Human Exploration," Acta Astronautica, Vol. 61, No. 1, 59-65 (Jan. 2008); also paper IAC-04-IAA.3.7.2.05, 55th International Astronautical Federation Congress (2004). (A popular version is available from NASA.)

外部リンク[編集]