「コットンテンソル」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
Enyokoyama (会話 | 投稿記録)
→‎共形りスケーリング: 数式のインでクス修正
25行目: 25行目:
ここに <math>S^{\alpha}_{\beta\gamma}</math> は
ここに <math>S^{\alpha}_{\beta\gamma}</math> は


:<math>S^{\alpha}_{\beta\gamma}=\delta^{\lambda}_{\mu}\partial_{\beta}\omega+\delta^{\lambda}_{\beta}\partial_{\mu}\omega-g_{\beta\mu}\partial^{\lambda}\omega</math>
:<math>S^{\alpha}_{\beta\gamma} = \delta^{\alpha}_{\gamma} \partial_{\beta} \omega + \delta^{\alpha}_{\beta} \partial_{\gamma} \omega - g_{\beta\gamma} \partial^{\alpha} \omega</math>


のテンソルである。[[リーマン曲率テンソル]]は次のように変換される。
のテンソルである。[[リーマン曲率テンソル]]は次のように変換される。
33行目: 33行目:
<math>n</math> -次元多様体では、[[リッチテンソル]]は縮約したRiemannテンソルで表すことで、次の式になることが分かる。
<math>n</math> -次元多様体では、[[リッチテンソル]]は縮約したRiemannテンソルで表すことで、次の式になることが分かる。


:<math>\widetilde{R}_{\beta\mu}=R_{\beta\mu}-g_{\beta\mu}\nabla^{\alpha}\partial_{\alpha}\omega-(n-2)\nabla_{\mu}\partial_{\beta}\omega+(n-2)(\partial_{\mu}\omega\partial_{\beta}\omega-g_{\beta\mu}\partial^{\lambda}\omega\partial_{\lambda}\omega)</math>
:<math>{\widetilde{R}^{\lambda}}{}_{\mu\alpha\beta}={R^{\lambda}}_{\mu\alpha\beta}+\nabla_{\alpha}S^{\lambda}_{\beta\mu}-\nabla_{\beta}S^{\lambda}_{\alpha\mu}+S^{\lambda}_{\alpha\rho}S^{\rho}_{\beta\mu}-S^{\lambda}_{\beta\rho}S^{\rho}_{\alpha\mu}</math>


同様に、リッチスカラー(スカラー曲率)は次のように変換される。
同様に、リッチスカラー(スカラー曲率)は次のように変換される。

2014年12月2日 (火) 02:26時点における版

微分幾何学では n 次元(擬)リーマン多様体上のコットンテンソル(: Cotton tensor)は、ワイルテンソル英語版のように、計量に伴う3階のテンソル場である。n ≥ 4 のときのワイルテンソルがそうである(多様体が共形平坦となることと同値)ように、n = 3 の場合には、コットンテンソルがゼロになることと、多様体が共形平坦英語版であることとは同値である。n < 3 に対し、コットンテンソルは恒等的にゼロである。この命名はエミール・コットン英語版にちなんでいる。

n = 3 の場合のコットンテンソルがゼロとなることと計量が共形平坦となるという古典的な結果の証明は、アイゼンハルト英語版により標準的な可積分性英語版の議論をもちいてなされた。このテンソル密度英語版は、任意の計量に対して微分可能であるという要求と結びついた共形性という性質により一意に特徴づけられることが、(Aldersley 1899)により示された。

最近、3-次元空間の研究では非常に注目されている。その理由は、コットンテンソルはアインシュタイン方程式の中で物資のエネルギー・モーメントテンソル英語版リッチテンソルの間の関係を制限し、一般相対論ハミルトニアン定式化で重要な役割を果たすからである。

定義

座標を使って Rijリッチテンソルを表し、R でスカラー曲率を表すと、コットンテンソルの成分は、

となる。コットンテンソルは2-形式に値を持つべクトルとみなすことができ、n = 3 に対してはホッジスター作用素英語版を使い、これを2階のトレースがゼロとなる自由テンソル密度

へ変換することができる。これをコットン・ヨークテンソルと呼ぶこともある。

性質

共形りスケーリング

あるスカラー函数 が存在して、計量 の共形スケーリングの下では、クリストッフェル記号は次のように変換する。

ここに

のテンソルである。リーマン曲率テンソルは次のように変換される。

-次元多様体では、リッチテンソルは縮約したRiemannテンソルで表すことで、次の式になることが分かる。

同様に、リッチスカラー(スカラー曲率)は次のように変換される。

これらの事実を互いに組み合わせると、コットン・ヨークテンソルは次のように変換されると結論づけられる。

あるいは、座標とは独立な記述をするならば、

となる。右辺の勾配(gradient)の部分はワイルテンソル英語版  W の対称性を保つ部分との内積を取ることを意味する。

対称性

コットンテンソルは対称性

を持ち、従って、

となる。加えて、ワイルテンソルについてのビアンキ公式は次のように書くことができる。

ここに は W の第一成分の正の発散(divergence)である。

参考文献

  • Aldersley, S. J. (1979). “Comments on certain divergence-free tensor densities in a 3-space”. Journal of Mathematical Physics 20 (9): 1905–1907. Bibcode1979JMP....20.1905A. doi:10.1063/1.524289. 
  • Choquet-Bruhat, Yvonne (2009). General Relativity and the Einstein Equations. Oxford, England: Oxford University Press. ISBN 978-0-19-923072-3 
  • Cotton, É. (1899). “Sur les variétés à trois dimensions”. Annales de la Faculté des Sciences de Toulouse. II 1 (4): 385–438. http://www.numdam.org/numdam-bin/fitem?id=AFST_1899_2_1_4_385_0. 
  • Eisenhart, Luther P. (1977) [1925]. Riemannian Geometry. Princeton, NJ: Princeton University Press. ISBN 0-691-08026-7 
  • A. Garcia, F.W. Hehl, C. Heinicke, A. Macias (2004) "The Cotton tensor in Riemannian spacetimes", Classical and Quantum Gravity 21: 1099–1118, Eprint arXiv:gr-qc/0309008